
1 System of linear equations

1.1 Two equations in two unknowns

The following is a system of two linear equations in the two unknowns x and y:

x− y = 1

3x+ 4y = 6.

A solution to the system is a pair (x, y) of numbers that satisfy both equations.
Each of these equations represents a line in the xy-plane, so a solution is a point
in the intersection of the lines.

1.1.1 Example (Unique solution)

Sketch the following lines and then solve the system to find the point(s) of
intersection:

x− y = 1

3x+ 4y = 6.

Solution We sketch the lines by first finding their x- and y-intercepts. In the
first equation, setting y = 0 we get x = 1, which is the x-intercept, and setting
x = 0 we get y = −1, which is the y-intercept. Similarly, the second line has
x-intercept 2 and y-intercept 3/2. Here is the sketch:

Next, we solve the system. Adding −3 times the first equation to the second
gets the x’s to drop out:

−3( x− y = 1)

3x+ 4y = 6
⇒ x− y = 1

7y = 3.

The second equation gives y = 3/7 and then the first equation gives x = 10/7.
Therefore, the lines intersect in the point (10/7, 3/7) (this answer seems reason-
able in view of the sketch).
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A system of two linear equations in two unknowns need not always have a
unique solution. If the lines that the equations represent are coincident (i.e., the
same), then the solution includes every point on the line so there are infinitely
many solutions. On the other hand, if the equations represent parallel but not
coincident lines, then there is no solution. The following examples illustrate
these two possibilities.

1.1.2 Example (Infinitely many solutions)

Solve the following system:

−x+ 4y = 2

3x− 12y = −6.

Solution Adding 3 times the first equation to the second gets the x’s to drop
out:

3(−x+ 4y = 2)

3x− 12y = −6
⇒ −x+ 4y = 2

0 = 0.

The second equation 0 = 0 places no constraints on x and y so it can be ignored.
Therefore, a point (x, y) satisfies the system if and only if it satisfies the first
equation, that is, if and only if it is a point on the line −x+4y = 2. (The slope-
intercept form of both lines is y = 1

4
x+ 1

2
, so the lines are actually coincident.)

We express the solution set by introducing a parameter. If y = t, then the
equation gives x = 4t− 2, so the solution set is

{(4t− 2, t) | t ∈ R}.

This is read “the set of all points (4t − 2, t) such that t is in the set of real
numbers.”

1.1.3 Example (No solution)

Solve the following system:

x+ y = 1

2x+ 2y = −2

Solution Adding −2 times the first equation to the second gets the x’s to drop
out:

−2(x+ y = 1)

2x+ 2y = −2
⇒ x+ y = 1

0 = −4.
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The equation 0 = −4 is never satisfied no matter what x and y are. Therefore
the solution set is ∅ (empty set).

(The slope-intercept forms of the lines are

y = −x+ 1

y = −x− 1.

The lines have the same slope (−1), so they are parallel. They have different
y-intercepts (1 and −1), so they are not coincident.)

We have seen that a system of two linear equations in two unknowns can have a
unique solution, infinitely many solutions, or no solution. It turns out that the
same is true no matter how many equations or how many variables there are.

1.2 Three equations in three unknowns

Here is a system of three linear equations in the three unknowns x1, x2, and x3:

x1 − 2x2 + 3x3 = 1

2x1 − 3x2 + 5x3 = 0

−x1 + 4x2 − x3 = −1

Each of these equations represents a plane in space, so a solution is a point in
the intersection of the three planes.

In calculus, the letters x, y, and z are used for the spacial variables, but we
use subscripts here to help prepare the way for working with any number of
variables.

1.2.1 Example Solve the system

x1 − 2x2 + 3x3 = 1

2x1 − 3x2 + 5x3 = 0

−x1 + 4x2 − x3 = −1

Solution The method is a generalization of that for finding the intersection
of two lines (see Section 1.1). Add −2 times the first equation to the second
equation in order to cancel the x1-term:

−2( x1 − 2x2 + 3x3 = 1)

2x1 − 3x2 + 5x3 = 0

−x1 + 4x2 − x3 = −1

⇒
x1 − 2x2 + 3x3 = 1

x2 − x3 = −2

−x1 + 4x2 − x3 = −1



1 SYSTEM OF LINEAR EQUATIONS 4

Then add the first equation to the third equation, again in order to cancel the
x1-term:

x1 − 2x2 + 3x3 = 1

x2 − x3 = −2

−x1 + 4x2 − x3 = −1

⇒
x1 − 2x2 + 3x3 = 1

x2 − x3 = −2

2x2 + 2x3 = 0

Then add −2 times the second equation to the third equation in order to cancel
the x2-term:

x1 − 2x2 + 3x3 = 1

−2( x2 − x3 = −2)

2x2 + 2x3 = 0

⇒
x1 − 2x2 + 3x3 = 1

x2 − x3 = −2

4x3 = 4

The last equation shows that x3 = 1. The other unknowns are determined using
a process called “back substitution”: Now that we know that x3 = 1, we use
the second equation

x2 − x3 = −2 ⇒ x2 − (1) = −2 ⇒ x2 = −1

and then the first equation

x1 − 2x2 + 3x3 = 1 ⇒ x1 − 2(−1) + 3(1) = 1 ⇒ x1 = −4.

Therefore, the three planes intersect in the point (−4,−1, 1). The solution set
is {(−4,−1, 1)}.

This solution illustrates an algorithm for finding the solution to a system of equa-
tions called Gaussian elimination (after the mathematician Carl Friedrich
Gauss).

A system of three linear equations in three unknowns need not have a unique
solution. The planes that they represent might be coincident, or they might
intersect in a line, either case giving infinitely many solutions. On the other
hand, the planes might be parallel but not all coincident, in which case there
would be no solution.

A linear equation is an equation of the form

a1x1 + a2x2 + · · · anxn = b,

where a1, a2, . . . , an and b are numbers.



1 SYSTEM OF LINEAR EQUATIONS 5

Theorem. A system of linear equations has one of the follow-

ing:

� a unique solution,

� infinitely many solutions,

� no solution.

In Section 1.6 we obtain a general procedure for writing the solutions to a system
of linear equations. But first, we introduce a way of writing systems that will
reduce the amount of writing we have to do.

1.3 Augmented matrix of system

The augmented matrix of the system

x1 − 2x2 + 3x3 = 1

2x1 − 3x2 + 5x3 = 0

−x1 + 4x2 − x3 = −1

is the matrix




1 −2 3 1
2 −3 5 0
−1 4 −1 −1



 .

This is just the array of numbers appearing in the system.

A “matrix” is a rectangular array of numbers. The modifier “augmented” is
used here to indicate that the matrix of numbers to the left of the equality signs
has been augmented (added on to) by the matrix of numbers to the right.

The augmented matrix of a system provides a way to avoid unnecessary writing
when working with the system.

In the solution to the following example, we refer to the “rows” of the matrix.
These are the horizontal lists of numbers in the matrix. They are numbered
starting from the top.

1.3.1 Example Use the associated augmented matrix to solve the system

x1 − 2x2 + 3x3 = 1

2x1 − 3x2 + 5x3 = 0

−x1 + 4x2 − x3 = −1
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Solution The first half of the solution is essentially a repetition of the solution
in the preceding example (1.2.1) with the letters x1, x2, and x3, as well as the
equality sign, suppressed. We have





1 −2 3 1
2 −3 5 0
−1 4 −1 −1





−2 1
∼





1 −2 3 1
0 1 −1 −2
0 2 2 0



−2

∼





1 −2 3 1
0 1 −1 −2
0 0 4 4





1/4

∼





1 −2 3 1
0 1 −1 −2
0 0 1 1





The steps that we applied in the earlier example are indicated here using num-
bers and arrows. For instance the first two steps are “add −2 times the first row
to the second row” and “add 1 times the first row to the third row.” It is useful
to keep in mind that the arrow always points to the row that is being changed.

The symbol ∼ we use to connect the matrices is read “is row equivalent to” (see
Section 1.5).

At this point we could return to the usual notation with x1, x2, and x3 to get

1x1 − 2x2 + 3x3 = 1

0x1 + 1x2 − 1x3 = −2

0x1 + 0x2 + 1x3 = 1

or just

x1 − 2x2 + 3x3 = 1

x2 − x3 = −2

x3 = 1

and then solve the system by using back substitution as before. Instead, we
continue to work with the augmented matrix until the solution becomes obvious:





1 −2 3 1
0 1 −1 −2
0 0 1 1





1 −3
∼





1 −2 0 −2
0 1 0 −1
0 0 1 1



2

∼





1 0 0 −4
0 1 0 −1
0 0 1 1





Therefore,
x1 = −4

x2 = −1
x3 = 1
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and we get the solution {(−4,−1, 1)} as before.

1.4 Row operations

The operations we have been using to reduce a system of equations to one where
the solution is apparent are called “row operations.” We list them here:

Row operations.

I. interchange two rows,

II. multiply a row by a nonzero number,

III. add a multiple of one row to another row,

(IV.) add a multiple of one row to a nonzero multiple of another
row.

The row operations of type I, II, and III are the elementary row operations.

The row operation of type (IV) is just a combination of types II and III (hence
the parentheses). It is useful for avoiding fractions as the following example
illustrates:

1.4.1 Example Given the augmented matrix
[

7 4 1
3 2 1

]

,

create a zero where the 3 is by

(a) using a type (IV) row operation,

(b) using only a type (III) row operation.

Solution (a) Using a type (IV) row operation, we have
[

7 4 1
3 2 1

]

−3
7

∼

[

7 4 1
0 2 4

]

.

(b) Using only a type (III) row operation, we have
[

7 4 1
3 2 1

]

− 3

7 ∼

[

7 4 1
0 2

7

4

7

]

.
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Applying a row operation to an augmented matrix is in effect making a change to
the corresponding system of equations. It is a fact that the listed row operations
do not change the solution set of the system (i.e., a solution to the old system
is also a solution to the new system and vice versa). This justifies our method
for solving a system of equations, which is to apply row operations until the
solution becomes apparent.

1.5 Row echelon form

The method shown for solving a system of linear equations involves applying
row operations to the corresponding augmented matrix in order to put it first
in “row echelon form” and then finally in “reduced row echelon form.”

Here is a matrix in “row echelon form” :








3 −1 2 0 7 −5
0 0 4 8 −2 0
0 0 0 6 −9 1
0 0 0 0 0 0









.

The first nonzero entry in each nonzero row is called that row’s pivot entry. So
the first row has pivot entry 3, the second row has pivot entry 4, and the third
row has pivot entry 6.

Row echelon form.

A matrix is in row echelon form (abbreviated REF), if

(a) its nonzero rows come before its zero rows,

(b) each of its pivot entries is to the right of the pivot entry
in the row above (if any).

Roughly speaking, a matrix is in row echelon form (REF) if the first nonzero
entries of the rows form a stair step pattern as shown, with just zeros below and
with each step of height one.

For example, the first matrix below is in row echelon form, but the second
matrix is not (due to the step of height two):
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2 −3 0 4
0 0 7 6
0 0 0 −5
0 0 0 0









(REF)





3 2 7
1 4 −1
0 −8 6



 (not REF)

Two matrices A and B are row equivalent (written A ∼ B) if B is obtained
from A by applying one or more elementary row operations. Although it is not
apparent from the definition, it follows from the reversibility of row operations
that A ∼ B if and only if B ∼ A.

Every matrix is row equivalent to a matrix in row echelon form (REF).

1.5.1 Example Find a matrix in row echelon form (REF) that is row-
equivalent to the matrix









0 0 6 10 −1
3 1 −2 −5 −3
6 2 0 −9 −1
−3 −1 4 3 8









.

Solution The first row starts with a 0. No matter what row operations we
apply, we cannot make all of the entries below that 0 also 0’s. Therefore, in
order to get the desired stair step pattern, we need to interchange the first row
with one of the other rows (any will do). After that, we use each pivot entry
to create 0’s below that entry (keeping a watch for any time we can make the
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numbers smaller by dividing out a number):









0 0 6 10 −1
3 1 −2 −5 −3
6 2 0 −9 −1
−3 −1 4 3 8









∼









3 1 −2 −5 −3
0 0 6 10 −1
6 2 0 −9 −1
−3 −1 4 3 8









−2 1

∼









3 1 −2 −5 −3
0 0 6 10 −1
0 0 4 1 5
0 0 2 −2 5









−2
3

1

−3

∼









3 1 −2 −5 −3
0 0 6 10 −1
0 0 0 −17 17
0 0 0 16 −16







− 1

17
1

16

∼









3 1 −2 −5 −3
0 0 6 10 −1
0 0 0 1 −1
0 0 0 1 −1







−1

∼









3 1 −2 −5 −3
0 0 6 10 −1
0 0 0 1 −1
0 0 0 0 0









(REF)

The order in which the 0’s were obtained in the preceding example illustrates
the general method:









• ∗ ∗ ∗ ∗
'&%$ !"#1 0 • ∗ ∗
'&%$ !"#2 0 '&%$ !"#4 • ∗
'&%$ !"#3 0 '&%$ !"#5 '&%$ !"#6 0









The •’s represent the pivot entries and the circled numbers show the order in
which the 0’s are obtained. (The other 0’s just happen to occur.)

In general, a matrix is row equivalent to more than one matrix in row echelon
form (unless the matrix has all zero entries) since one can always multiply a row
by a nonzero constant. By adding more stringent conditions to those for row
echelon form we get a new form called reduced row echelon form. A matrix is
row equivalent to one and only one matrix in reduced row echelon form.
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Here is a matrix in reduced row echelon form:








1 −1 0 0 7 −5
0 0 1 0 −2 0
0 0 0 1 −9 1
0 0 0 0 0 0









The matrix is in row echelon form (REF), but it has additional features as well
to make it “reduced”:

First, the entries above (and below) the pivot entries are all 0’s. (The 0’s below
each pivot entry are already a feature of row echelon form so it is just the
requirement of 0’s above each pivot entry that is new.)

Second, the pivot entries are all 1’s.

Reduced row echelon form.

A matrix is in reduced row echelon form (abbreviated
RREF) if

(a) it is in row echelon form,

(b) each entry above (and below) a pivot entry is 0,

(c) each pivot entry is 1.

In the next section, we will see that having the reduced row echelon form
(RREF) of the augmented matrix of a system of equations is convenient for
writing down the solution to the system.

1.5.2 Example Find the matrix in reduced row echelon form (RREF) that
is row-equivalent to the matrix









0 0 6 10 −1
3 1 −2 −5 −3
6 2 0 −9 −1
−3 −1 4 3 8









.

Solution This is the matrix from Example 1.5.1. We have already found a
matrix in row reduced form (REF) that is row-equivalent to it, so we can just
use it here without repeating the steps. To get the reduced row echelon form,
we use the pivot entries to create 0’s above those entries and end by changing



1 SYSTEM OF LINEAR EQUATIONS 12

all of the pivot entries to 1’s:









0 0 6 10 −1
3 1 −2 −5 −3
6 2 0 −9 −1
−3 −1 4 3 8









Ex. 1.5.1

∼









3 1 −2 −5 −3
0 0 6 10 −1
0 0 0 1 −1
0 0 0 0 0







−10 5

∼









3 1 −2 0 −8
0 0 6 0 9
0 0 0 1 −1
0 0 0 0 0









3
1

∼









9 3 0 0 −15
0 0 6 0 9
0 0 0 1 −1
0 0 0 0 0









1

9
1

6

∼









1 1

3
0 0 − 5

3

0 0 1 0 3

2

0 0 0 1 −1
0 0 0 0 0









(RREF)

In the following example, “2× 3 matrix” refers to a matrix having 2 rows and
3 columns, so of this shape:

[

∗ ∗ ∗
∗ ∗ ∗

]

.

1.5.3 Example Write a list of all possible 2 × 3 matrices in reduced row
echelon form (RREF).

Solution We organize the matrices according to how many nonzero rows they
have (starting with two):

[

1 0 ∗
0 1 ∗

]

,

[

1 ∗ 0
0 0 1

]

,

[

0 1 0
0 0 1

]

[

1 ∗ ∗
0 0 0

]

,

[

0 1 ∗
0 0 0

]

,

[

0 0 1
0 0 0

]

[

0 0 0
0 0 0

]
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1.6 Writing solutions to systems

Once we have the reduced row echelon form (RREF) of the augmented matrix
of a system, we can write down the solution. The next three examples illustrate
the procedure for each of the three possibilities: unique solution, infinitely many
solutions, and no solution.

1.6.1 Example (Unique solution)

Write the solution to a system given that its augmented matrix is row equivalent
to the RREF matrix









1 0 0 2
0 1 0 −3
0 0 1 5
0 0 0 0









Solution The augmented matrix corresponds to the system

x1 = 2
x2 = −3

x3 = 5

so there is a unique solution, namely x1 = 2, x2 = −3, and x3 = 5. The solution
set is {(2,−3, 5)}.

1.6.2 Example (Infinitely many solutions)

Write the solution to a system given that its augmented matrix is row equivalent
to the RREF matrix









1 −5 0 3 0 0 4
0 0 1 −9 0 0 2
0 0 0 0 1 0 8
0 0 0 0 0 1 −6









Solution The pivot entries appear in the positions of the variables x1, x3, x5,
and x6. These are called the lead variables. The remaining variables, x2 and
x4, are called the free variables. These variables are called free because we can
let them be any real numbers. We indicate this by writing

x2 = t, x4 = s.

Then we solve each of the equations in the system for the lead variable in terms
of t and s. Taking the first equation as an example, we have

x1 − 5x2 + 3x4 = 4 ⇒ x1 − 5t+ 3s = 4 ⇒ x1 = 4 + 5t− 3s.

Similarly, we get

x3 = 2 + 9s, x5 = 8, x6 = −6.
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Therefore, the solution set is

{(4 + 5t− 3s, t, 2 + 9s, s, 8,−6) | s, t ∈ R}.

Since we get a solution for every possible choice of the numbers s and t, there
are infinitely many solutions.

1.6.3 Example (No solution)

Write the solution to a system given that its augmented matrix is row equivalent
to the RREF matrix









1 3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









Solution The last row of the augmented matrix corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 1,

that is, 0 = 1. Since this equation is never satisfied, we conclude that the system
has no solution. The solution set is ∅ (empty set).

The examples show that we can tell whether a system has a unique solution,
infinitely many solutions, or no solution by just looking at the reduced row ech-
elon form (RREF) of its augmented matrix. The criteria refer to the “columns”
of the matrix, which are its vertical lists of numbers:

a pivot in every column except
the augmented column

⇒ unique solution

no pivot in the augmented col-
umn and no pivot in at least one
other column

⇒ infinitely many solu-
tions

a pivot in the augmented col-
umn

⇒ no solution

We can draw these same conclusions from any row echelon form of the aug-
mented matrix (not necessarily reduced).



1 SYSTEM OF LINEAR EQUATIONS 15

1 –Exercises

1–1 In each case, sketch the lines to decide whether the system has a unique
solution, no solution, or infinitely many solutions. Then solve the system ei-
ther by using the methods of Section 1.1 or by applying row operations to the
augmented matrix of the system.

(a)
x1 + 2x2 = 2

3x1 − x2 = 3

(b)
x1 − x2 = 1

2x1 − 2x2 = −3

(c)
3x1 + x2 = 2

6x1 + 2x2 = 4

1–2 Sketch the three lines and try to decide whether there is a unique solution,
no solution, or infinitely many solutions. Then solve the system either by using
the methods of Section 1.1 or by applying row operations to the augmented
matrix of the system.

x1 + 2x2 = 2

2x1 − x2 = 1

5x1 + 2x2 = 6

1–3 Apply suitable row operations to the matrix on the left to put it in the
form of the matrix on the right. Use type IV row operations, if necessary, to
avoid fractions.

(a)









0 1 4
2 −1 6
−3 5 0
4 3 9









∼









2 ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗









(b)









4 −2 5 3
0 0 6 1
0 0 9 −2
0 0 −1 2









∼









4 −2 5 3
0 0 6 1
0 0 0 ∗
0 0 0 ∗
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1–4 Apply suitable row operations to the matrix on the left to put it in the
form of the matrix on the right. Use type IV row operations, if necessary, to
avoid fractions until the last step.





1 −1 4 6 3
0 2 −3 −8 0
0 0 0 −2 1



 ∼





1 0 ∗ 0 ∗
0 1 ∗ 0 ∗
0 0 0 1 ∗



 (RREF)

1–5 Find the matrix in reduced row echelon form (RREF) that is row-equivalent
to the matrix









4 2 1 −7 −5
−4 −2 0 4 7
8 4 0 −8 −7
4 2 −2 2 −11









.

1–6 In each case, write the solution to a system given that its augmented ma-
trix is row equivalent to the given matrix in reduced row echelon form (RREF).

(a)





1 7 −4 0 0
0 0 0 1 0
0 0 0 0 1



 ,

(b)





1 0 −2 0 1 7 4
0 1 4 0 9 0 2
0 0 0 1 −3 6 8



 ,

(c)









1 0 0 0 −1
0 1 0 0 5
0 0 1 0 −6
0 0 0 1 2









1–7 A census of quail in Conecuh National Forest is taken in the fall and it is
found that there are a0 adult birds and j0 juvenile birds. Studies have shown
that for each adult one can expect to find one year later 0.2 adults (due to
survival) and 1.6 juveniles (due to reproduction), and for each juvenile one can
expect to find one year later 0.4 adults (due to maturation and survival) and
1.4 juveniles (due to reproduction).

(a) Write a system of equations that expresses the next year’s adult a1 and
juvenile j1 populations in terms of the current year’s numbers, a0 and j0.
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(b) If the next year’s populations are to be 380 adults and 1600 juveniles,
what must the current populations be?
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