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These notes correspond to Section 6.1 in the text.

Systems of Linear Equations

One of the most fundamental problems in computational mathematics is to solve a system of n
linear equations

a11x1 + a12x2 + ⋅ ⋅ ⋅+ a1nxn = b1

a21x1 + a22x2 + ⋅ ⋅ ⋅+ a2nxn = b2
...

an1x1 + an2x2 + ⋅ ⋅ ⋅+ annxn = bn

for the n unknowns x1, x2, . . . , xn. Many data fitting problems, including ones that we have previ-
ously discussed such as polynomial interpolation or least-squares approximation, involve the solu-
tion of such a system. Discretization of partial differential equations often yields systems of linear
equations that must be solved. Systems of nonlinear equations are typically solved using iterative
methods that solve a system of linear equations during each iteration. We will now study the
solution of this type of problem in detail.

The basic idea behind methods for solving a system of linear equations is to reduce them to linear
equations involving a single unknown, because such equations are trivial to solve. Such a reduction
is achieved by manipulating the equations in the system in such a way that the solution does not
change, but unknowns are eliminated from selected equations until, finally, we obtain an equation
involving only a single unknown. These manipulations are called elementary row operations, and
they are defined as follows:

∙ Multiplying both sides of an equation by a scalar

∙ Reordering the equations by interchanging both sides of the ith and jth equation in the
system

∙ Replacing equation i by the sum of equation i and a multiple of both sides of equation j

The third operation is by far the most useful. We will now demonstrate how it can be used to
reduce a system of equations to a form in which it can easily be solved.
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Example Consider the system of linear equations

x1 + 2x2 + x3 = 5,

3x1 + 2x2 + 4x3 = 17,

4x1 + 4x2 + 3x3 = 26.

First, we eliminate x1 from the second equation by subtracting 3 times the first equation from the
second. This yields the equivalent system

x1 + 2x2 + x3 = 5,

−4x2 + x3 = 2,

4x1 + 4x2 + 3x3 = 26.

Next, we subtract 4 times the first equation from the third, to eliminate x1 from the third equation
as well:

x2 + 2x2 + x3 = 5,

−4x2 + x3 = 2,

−4x2 − x3 = 6.

Then, we eliminate x2 from the third equation by subtracting the second equation from it, which
yields the system

x1 + 2x2 + x3 = 5,

−4x2 + x3 = 2,

−2x3 = 4.

This system is in upper-triangular form, because the third equation depends only on x3, and the
second equation depends on x2 and x3.

Because the third equation is a linear equation in x3, it can easily be solved to obtain x3 = −2.
Then, we can substitute this value into the second equation, which yields −4x2 = 4. This equation
only depends on x2, so we can easily solve it to obtain x2 = −1. Finally, we substitute the values
of x2 and x3 into the first equation to obtain x1 = 9. This process of computing the unknowns
from a system that is in upper-triangular form is called back substitution. □

In general, a system of n linear equations in n unknowns is in upper-triangular form if the ith
equation depends only on the unknowns xi, xi+1, . . . , xn, for i = 1, 2, . . . , n.

It can be seen from this example that continually rewriting a system of equations as it is reduced
can be quite tedious. Therefore, we instead represent a system of linear equations using a matrix,
which is an array of elements, or entries. We say that a matrix A is m× n if it has m rows and n
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columns, and we denote the element in row i and column j by aij . We also denote the matrix A
by [aij ].

With this notation, a general system of n equations with n unknowns can be represented using
a matrix A that contains the coefficients of the equations, a vectors x that contains the unknowns,
and a vector b that contains the quantities on the right-hand sides of the equations. Specifically,

A =

⎡⎢⎢⎢⎣
a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n
...

...
an1 an2 ⋅ ⋅ ⋅ ann

⎤⎥⎥⎥⎦ , x =

⎡⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎣
b1
b2
...
bn

⎤⎥⎥⎥⎦ .

Note that the vectors x and b are represented by column vectors.
Now, performing row operations on the system can be accomplished by performing them on the

augmented matrix

[
A b

]
=

⎡⎢⎢⎢⎣
a11 a12 ⋅ ⋅ ⋅ a1n ∣ b1
a21 a22 ⋅ ⋅ ⋅ a2n ∣ b2
...

... ∣
...

an1 an2 ⋅ ⋅ ⋅ ann ∣ bn

⎤⎥⎥⎥⎦ .

By working with the augmented matrix instead of the original system, there is no need to continually
rewrite the unknowns or arithmetic operators. Once the augmented matrix is reduced to upper
triangular form, the corresponding system of linear equations can be solved by back substitution,
as before.

The process of eliminating variables from the equations, or, equivalently, zeroing entries of the
corresponding matrix, in order to reduce the system to upper-triangular form is called Gaussian
elimination. The algorithm is as follows:

for j = 1, 2, . . . , n− 1 do
for i = j + 1, j + 2, . . . , n do

mij = aij/ajj
for k = j + 1, j + 2, . . . , n do

aik = aik −mijajk
end
bi = bi −mijbj

end
end

This algorithm requires approximately 2
3n

3 arithmetic operations, so it can be quite expensive if n
is large. Later, we will discuss alternative approaches that are more efficient for certain kinds of
systems, but Gaussian elimination remains the most generally applicable method of solving systems
of linear equations.
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The number mij is called a multiplier. It is the number by which row j is multiplied before
adding it to row i, in order to eliminate the unknown xj from the ith equation. Note that this
algorithm is applied to the augmented matrix, as the elements of the vector b are updated by the
row operations as well.

It should be noted that in the above description of Gaussian elimination, each entry below
the main diagonal is never explicitly zeroed, because that computation is unnecessary. It is only
necessary to update entries of the matrix that are involved in subsequent row operations or the
solution of the resulting upper triangular system. This system is solved by the following algorithm
for back substitution. In the algorithm, we assume that U is the upper triangular matrix containing
the coefficients of the system, and y is the vector containing the right-hand sides of the equations.

for i = n, n− 1, . . . , 1 do
xi = yi
for j = i + 1, i + 2, . . . , n do

xi = xi − uijxj
end
xi = xi/uii

end

This algorithm requires approximately n2 arithmetic operations. We will see that when solving
systems of equations in which the right-hand side vector b is changing, but the coefficient matrix
A remains fixed, it is quite practical to apply Gaussian elimination to A only once, and then
repeatedly apply it to each b, along with back substitution, because the latter two steps are much
less expensive.

We now illustrate the use of both these algorithms with an example.

Example Consider the system of linear equations

x1 + 2x2 + x3 − x4 = 5

3x1 + 2x2 + 4x3 + 4x4 = 16

4x1 + 4x2 + 3x3 + 4x4 = 22

2x1 + x3 + 5x4 = 15.

This system can be represented by the coefficient matrix A and right-hand side vector b, as follows:

A =

⎡⎢⎢⎣
1 2 1 −1
3 2 4 4
4 4 3 4
2 0 1 5

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
5
16
22
15

⎤⎥⎥⎦ .
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To perform row operations to reduce this system to upper triangular form, we define the augmented
matrix

Ã =
[
A b

]
=

⎡⎢⎢⎣
1 2 1 −1 5
3 2 4 4 16
4 4 3 4 22
2 0 1 5 15

⎤⎥⎥⎦ .

We first define Ã(1) = Ã to be the original augmented matrix. Then, we denote by Ã(2) the result of
the first elementary row operation, which entails subtracting 3 times the first row from the second
in order to eliminate x1 from the second equation:

Ã(2) =

⎡⎢⎢⎣
1 2 1 −1 5
0 −4 1 7 1
4 4 3 4 22
2 0 1 5 15

⎤⎥⎥⎦ .

Next, we eliminate x1 from the third equation by subtracting 4 times the first row from the third:

Ã(3) =

⎡⎢⎢⎣
1 2 1 −1 5
0 −4 1 7 1
0 −4 −1 8 2
2 0 1 5 15

⎤⎥⎥⎦ .

Then, we complete the elimination of x1 by subtracting 2 times the first row from the fourth:

Ã(4) =

⎡⎢⎢⎣
1 2 1 −1 5
0 −4 1 7 1
0 −4 −1 8 2
0 −4 −1 7 5

⎤⎥⎥⎦ .

We now need to eliminate x2 from the third and fourth equations. This is accomplished by sub-
tracting the second row from the third, which yields

Ã(5) =

⎡⎢⎢⎣
1 2 1 −1 5
0 −4 1 7 1
0 0 −2 1 1
0 −4 −1 7 5

⎤⎥⎥⎦ ,

and the fourth, which yields

Ã(6) =

⎡⎢⎢⎣
1 2 1 −1 5
0 −4 1 7 1
0 0 −2 1 1
0 0 −2 0 4

⎤⎥⎥⎦ .
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Finally, we subtract the third row from the fourth to obtain the augmented matrix of an upper-
triangular system,

Ã(7) =

⎡⎢⎢⎣
1 2 1 −1 5
0 −4 1 7 1
0 0 −2 1 1
0 0 0 −1 3

⎤⎥⎥⎦ .

Note that in a matrix for such a system, all entries below the main diagonal (the entries where the
row index is equal to the column index) are equal to zero. That is, aij = 0 for i > j.

Now, we can perform back substitution on the corresponding system,

x1 + 2x2 + x3 − x4 = 5,

−4x2 + x3 + 7x4 = 1,

−2x3 + x4 = 1,

−x4 = 3,

to obtain the solution, which yields x4 = −3, x3 = −2, x2 = −6, and x1 = 16. □

It can be seen from the above pseudocode that the algorithms for Gaussian elimination and back
substitution can break down if a diagonal element of the matrix is equal to zero. In order to work
around this potential pitfall, another elementary row operation can be used: a row interchange.
If, when computing the multiplier mij during Gaussian elimination, the entry ajj is equal to zero,
then, to avoid breakdown of the algorithm, row j of the augmented matrix can be interchanged
with row i, for some i > j, where aij ∕= 0, and then Gaussian elimination can continue.

Example Consider the system of linear equations

x1 + 2x2 + x3 − x4 = 5

3x1 + 6x2 + 4x3 + 4x4 = 16

4x1 + 4x2 + 3x3 + 4x4 = 22

2x1 + x3 + 5x4 = 15.

The coefficient matrix A and the right-hand side vector b for this system are

A =

⎡⎢⎢⎣
1 2 1 −1
3 6 4 4
4 4 3 4
2 0 1 5

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
5
16
22
15

⎤⎥⎥⎦ .

To perform Gaussian elimination on this system, we perform row operations on the augmented
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matrix

Ã =
[
A b

]
=

⎡⎢⎢⎣
1 2 1 −1 5
3 6 4 4 16
4 4 3 4 22
2 0 1 5 15

⎤⎥⎥⎦ .

We first set Ã(1) = Ã, and then subtract 3 times the first row from the second row in A(1) to obtain

Ã(2) =

⎡⎢⎢⎣
1 2 1 −1 5
0 0 1 7 1
4 4 3 4 22
2 0 1 5 15

⎤⎥⎥⎦ .

Then, we subtract 4 times the first row from the second to obtain

Ã(3) =

⎡⎢⎢⎣
1 2 1 −1 5
0 0 1 7 1
0 −4 −1 8 2
2 0 1 5 15

⎤⎥⎥⎦ .

We complete the elimination of x1 by subtracting 2 times the first row from the fourth, which yields

Ã(4) =

⎡⎢⎢⎣
1 2 1 −1 5
0 0 1 7 1
0 −4 −1 8 2
0 −4 −1 7 5

⎤⎥⎥⎦ .

Normally, we would continue by subtracting multiples of the second row from the third and fourth,
to eliminate x2 from the third and fourth equations, but the computing the multiples requires
dividing by [Ã(4)]22, which is zero. Therefore, we interchange the second and third rows, which
yields

Ã(5) =

⎡⎢⎢⎣
1 2 1 −1 5
0 −4 −1 8 2
0 0 1 7 1
0 −4 −1 7 5

⎤⎥⎥⎦ .

We then subtract the (new) second row from the fourth to obtain

Ã(6) =

⎡⎢⎢⎣
1 2 1 −1 5
0 −4 −1 8 2
0 0 1 7 1
0 0 0 −1 3

⎤⎥⎥⎦ .

This matrix is already in upper-triangular form, so there is no need to subtract a multiple of the
third row from the fourth, as Gaussian elimination would normally require. Now, we can peform
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back substitution as usual to obtain the solution, which is x1 = 4, x2 = −12, x3 = 22, and x4 = −3.
□

Of course, it may happen that there is no suitable row i with which row j can be interchanged.
In this case, Gaussian elimination fails, and it can be concluded that the system of equations does
not have a unique solution. There are two possibilities that remain: either there is no solution,
or there are infinitely many solutions. To determine which scenario applies, one can continue to
apply Gaussian elimination with the remaining columns of the coefficient matrix. Because there is
at least one column, column j, for which all entries on or below the diagonal are equal to zero, it
will follow that at least one equation in the system will have all coefficients equal to zero. If the
corresponding element on the right-hand side of the equation is nonzero, then there is no solution,
but if it is zero, then there are infinitely many solutions.

Example Consider the system of linear equations

x1 + 2x2 + x3 − x4 = 5

3x1 + 6x2 + 4x3 + 4x4 = 16

4x1 + 8x2 + 3x3 + 4x4 = 22

2x1 + 4x2 + x3 + 5x4 = 15.

The coefficient matrix A and the right-hand side vector b for this system are

A =

⎡⎢⎢⎣
1 2 1 −1
3 6 4 4
4 8 3 4
2 4 1 5

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
5
16
22
15

⎤⎥⎥⎦ .

To perform Gaussian elimination on this system, we perform row operations on the augmented
matrix

Ã =
[
A b

]
=

⎡⎢⎢⎣
1 2 1 −1 5
3 6 4 4 16
4 8 3 4 22
2 4 1 5 15

⎤⎥⎥⎦ .

We first set Ã(1) = Ã, and then subtract 3 times the first row from the second row in A(1) to obtain

Ã(2) =

⎡⎢⎢⎣
1 2 1 −1 5
0 0 1 7 1
4 8 3 4 22
2 4 1 5 15

⎤⎥⎥⎦ .
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Then, we subtract 4 times the first row from the second to obtain

Ã(3) =

⎡⎢⎢⎣
1 2 1 −1 5
0 0 1 7 1
0 0 −1 8 2
2 4 1 5 15

⎤⎥⎥⎦ .

We complete the elimination of x1 by subtracting 2 times the first row from the fourth, which yields

Ã(4) =

⎡⎢⎢⎣
1 2 1 −1 5
0 0 1 7 1
0 0 −1 8 2
0 0 −1 7 5

⎤⎥⎥⎦ .

Normally, we would continue by subtracting multiples of the second row from the third and fourth,
to eliminate x2 from the third and fourth equations, but the computing the multiples requires
dividing by [Ã(4)]22, which is zero. However, we cannot solve this problem by interchanging the
second row with either the third or fourth row, because the elements in those rows, and the second
column, are also zero. Therefore, this system does not have a unique solution.

To determine whether there is a solution at all, we continue the elimination process with x3, in
order to zero elements in the third column. We first add the second row to the third, which yields

Ã(5) =

⎡⎢⎢⎣
1 2 1 −1 5
0 0 1 7 1
0 0 0 15 3
0 0 −1 7 5

⎤⎥⎥⎦ .

We also add the second row to the fourth to obtain

Ã(6) =

⎡⎢⎢⎣
1 2 1 −1 5
0 0 1 7 1
0 0 0 15 3
0 0 0 14 6

⎤⎥⎥⎦ .

Finally, we subtract 14/15 times the third row from the fourth to complete the elimination:

Ã(7) =

⎡⎢⎢⎣
1 2 1 −1 5
0 0 1 7 1
0 0 0 15 3
0 0 0 0 16/5

⎤⎥⎥⎦
The fourth row corresponds to the equation 0 = 16/5, which is a contradiction. Therefore, we
conclude that the original system of linear equations has no solution. If the value on the right-hand
side of this equation had been zero, then the original system would have infinitely many solutions.
□
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