
Matching HTML Tables to DBpedia

Dominique Ritze
Data and Web Science Group,

University of Mannheim,
Mannheim, Germany

dominique@informatik.uni-
mannheim.de

Oliver Lehmberg
Data and Web Science Group,

University of Mannheim,
Mannheim, Germany
oli@informatik.uni-

mannheim.de

Christian Bizer
Data and Web Science Group,

University of Mannheim,
Mannheim, Germany

chris@informatik.uni-
mannheim.de

ABSTRACT
Millions of HTML tables containing structured data can be
found on the Web. With their wide coverage, these ta-
bles are potentially very useful for filling missing values and
extending cross-domain knowledge bases such as DBpedia,
YAGO, or the Google Knowledge Graph. As a prerequi-
site for being able to use table data for knowledge base
extension, the HTML tables need to be matched with the
knowledge base, meaning that correspondences between ta-
ble rows/columns and entities/schema elements of the knowl-
edge base need to be found. This paper presents the T2D
gold standard for measuring and comparing the performance
of HTML table to knowledge base matching systems. T2D
consists of 8 700 schema-level and 26 100 entity-level cor-
respondences between the WebDataCommons Web Tables
Corpus and the DBpedia knowledge base. In contrast re-
lated work on HTML table to knowledge base matching,
the Web Tables Corpus (147 million tables), the knowledge
base, as well as the gold standard are publicly available.
The gold standard is used afterward to evaluate the perfor-
mance of T2K Match, an iterative matching method which
combines schema and instance matching. T2K Match is
designed for the use case of matching large quantities of
mostly small and narrow HTML tables against large cross-
domain knowledge bases. The evaluation using the T2D gold
standard shows that T2K Match discovers table-to-class cor-
respondences with a precision of 94%, row-to-entity corre-
spondences with a precision of 90%, and column-to-property
correspondences with a precision of 77%.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Learning, Knowledge acquisition

General Terms
Algorithms, Experimentation

Keywords
html tables, tables matching, knowledge base extension

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Wims 2015 Limassol, Cyprus
Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
Cross-domain knowledge bases (KBs) like DBpedia [8],

YAGO [15] or the Google Knowledge Graph [13] play an in-
creasingly important role in web search, question answering,
natural language processing, as well as data mining. Ideally,
they are as complete and sound as possible.

The huge amount of relational HTML tables [2] that is
available on the Web suggests itself for filling missing values
in cross-domain KBs (“Slot-filling”). Finding missing values
in multiple HTML tables opens up the possibility to apply
data fusion methods which assess the trustworthiness of each
source and determine the most likely fact in cases of contra-
dicting values [4, 1]. The slot filling process consists of two
parts: first, HTML tables containing missing information
need to be identified by matching the tables with the KB
and second, all candidate values need to be fused to obtain
the value that is most likely correct. In this paper, we focus
on the first step of the process, but also estimate the utility
for filling missing values in DBpedia.

We first present the T2D gold standard for measuring
the performance of HTML table to KB matching systems.
The gold standard was manually created and consists of
8 700 schema-level and 26 100 entity-level correspondences
between the WebDataCommons (WDC) Web Tables Cor-
pus1 and the DBpedia knowledge base. All parts of the gold
standard are publicly available and can thus be used to com-
pare matching systems. Afterward, we present T2K Match,
an iterative matching approach which combines schema and
entity matching and is designed for the use case of match-
ing large quantities of HTML tables against a cross-domain
KB. By solving both matching problems iteratively, the algo-
rithm can benefit from entity-correspondences to find schema-
correspondences and vice versa.

The paper is structured as follows: First, we introduce
the characteristics of the HTML table corpus (Section 2)
and present the T2D gold standard (Section 3). Section 4
describes T2K Match which is evaluated in Section 5. In
Section 6, we discuss related work. Finally, we summarize
our results and show directions for future work (Section 7).

2. THE WDC WEB TABLES CORPUS
The WDC Web Tables Corpus2 is the largest non-commercial

corpus of (quasi-)relational HTML tables that is available to
the public. It has been extracted from the 2012 version of

1http://www.webdatacommons.org/webtables/
2http://webdatacommons.org/webtables/

the CommonCrawl Web corpus3 which consists of 3.5 bil-
lion HTML pages originating from 43M different websites
(PLDs). Altogether, the 2012 version of the corpus con-
tains over 11 billion HTML tables. For building the WDC
Web Tables Corpus, several heuristics were applied to dis-
tinguish between relational and layout tables, e.g. all tables
containing other tables were excluded. Further, a classi-
fier exploiting layout and context features (similar to the
features proposed by Wang et al. [17]) was used to detect
relational tables. After both steps, 147.6 million tables were
classified as relational tables. This corresponds to 1.3% of
the complete corpus which is inline with the results of Ca-
farella et al. [2] that 1.1% of all HTML tables in a Google
crawl contained relational data.

3. THE T2D GOLD STANDARD
The T2D Gold Standard4 was developed with several goals

in mind. We required a realistic ratio of mappable and un-
mappable HTML tables as many relational HTML tables
contain data that cannot be matched with DBpedia. Fur-
ther, characteristics like sizes, coverage of various topics, and
diverse matching behavior, e.g. the number of attributes
that can be matched to DBpedia properties should be bal-
anced.The gold standard consists of two parts:
The Schema-level Gold Standard contains 1 748 tables
of which 762 can be matched with DBpedia classes and 7 983
columns which correspond to DBpedia properties. The ta-
bles were randomly selected from the relational tables in the
WDC corpus.
The Entity-level Gold Standard contains a subset of
233 tables from the schema-level gold standard. In total,
it includes 26 124 row-to-entity correspondences to DBpedia
resources, 2 523 rows were marked as not matchable. To
find annotations on entity-level, the tables need to include
at least one correspondence to a DBpedia resource.
All correspondences were created manually by a team of
two human annotators, requiring altogether about six per-
son weeks. The distribution of the attribute data types in
the schema-level gold standard is similar to the distribution
of data types in the whole corpus, i.e. 68% strings, 27%
numeric. To give an overview on the topics, we grouped the
tables by their corresponding super class in DBpedia, result-
ing in seven categories. For example, the category “Orga-
nization” contains tables about companies, universities and
political parties. Figure 1 shows the number of tables and
instance correspondences per category for the entity-level
gold standard.

Figure 1: Number of class and entity correspon-
dences per category.
3http://commoncrawl.org/
4Project page with download: http://webdatacommons.
org/webtables/goldstandard.html

The average number of entity correspondences for tables
in the entity-level gold standard ranges from 65 (organiza-
tions) to 250 (species) per table. The average number of
property correspondences ranges from 1.5 (person) to 4.1
(populated place). Overall, the entity-level gold standard
contains 1 153 columns whereof 653 are mapped to a DBpe-
dia property (117 distinct properties).

4. T2K MATCH
This Section describes the T2K Match5, a matching method

for iterative instance and schema matching. After describing
the data model and preprocessing, we introduce the major
steps of the algorithm.

Data Model: As internal data model, we use simple
entity-attribute tables. Each table describes a set of en-
tities (rows in HTML tables) having a set of multi-valued
attributes (columns). Each attribute has a header which we
assume to be some surface form of the attribute’s semantic
intention. We distinguish between different attribute data
types like strings and numerical values. Further, we require
that tables contain an attribute with natural language labels
(the entity label attribute) for the entities that they describe
(e.g. New York, Barak Obama).

Preprocessing: In order to match HTML tables, we first
have to clean them, e.g. remove HTML artifacts, special
characters and additional whitespaces. Further, value lists
are split into individual values, all values are lower-cased and
normalized. For the normalization, we use a set of hand-
crafted transformation rules to resolve abbreviations, e.g.
“co.” is transformed into “company”. Further, we normalize
units of measurements using around 200 manually generated
conversion rules, e.g. 8mi2 is converted to 20.72 million m2.

Next, we detect the entity label attributes. For HTML
tables, we apply the heuristic of taking the string attribute
with the highest number of unique values as entity label
attribute (in case of a tie, the left-most attribute is used).
Attributes with values having on average less than four char-
acters are excluded, e.g. IATA airport codes. In DBpedia,
the entity label attribute is the attribute containing the la-
bels (rdfs:label) of the resources. Our strategy for detecting
attribute headers is similar, albeit simpler: we assume that
the attribute header is the first non-empty entity. In DBpe-
dia, the attribute header corresponds to the property label.
An evaluation of the performance of our header and entity
label attribute detection is presented in Section 5.

We further perform a data type detection for each at-
tribute which is important for choosing the similarity mea-
sure. The data type is detected using about 100 manually
defined regular expressions. They are able to detect string,
numeric value, timestamp and coordinate. The final data
type decision for an attribute is based on majority vote.

Figure 2 depicts the mayor steps of the T2K Match algo-
rithm.5 First, we determine a set of candidate resources
from DBpedia to reduce the search space and then cal-
culate value-based similarity scores with the entities from
the HTML table. These similarities are used to determine
an initial schema-level correspondence set which is in the
last step iteratively refined until we obtain the final table-

5Project page with examples and download: http://dws.
informatik.uni-mannheim.de/en/research/T2K

Figure 2: Matching Steps of the Matching Approach

to-class, attribute-to-property and entity-to-resource corre-
spondences. During the whole process, the entity- and schema-
level matching mutually influence each other, as one is used
to weight the similarities of the other. In the following, we
describe the four major steps of the algorithm in more detail:

1. Candidate Selection: The goal of the candidate
selection is to determine a set of candidate resources from
DBpedia for each entity in the HTML table. First, we search
for the entity label in DBpedia. The found candidates are
ranked according to a similarity function and the top k can-
didates are kept. Then, we determine the distribution of
DBpedia classes of the best candidate for each entity and
choose the most frequent classes as candidates for schema
matching. In turn, this is used to refine the candidate re-
sources: All candidates not belonging to a chosen class are
removed, and for each entity we perform another search with
the selected classes as additional constraint.

2. Value-based Matching: We compute similarities
between the values of HTML table entities and candidate
resources by applying two blocking strategies: (1) the val-
ues of each entity are only compared to the values of its
candidates and (2) only values with the same data type are
compared. In case of multi-values, we calculate the similar-
ity of all combinations and choose the maximum.

3. Property-based Matching: In this step, we exploit
the computed value-based similarities for schema matching
by aggregating them per attribute. Such an aggregation is
usually referred to as duplicate-based schema matching [11].
Each value of the top candidates votes for a correspondence
between the attribute and its property. This vote is weighted
by the value-based similarity of the two values and the sim-
ilarity value from the candidate selection step. Votes from
all values are summed up and the attribute property pair
with the highest value is chosen.
It follows the intuition that a similar attribute property pair
has many similar values on similar entities/candidates. Our
computation is purely duplicate-based and does not perform
any label matching on the headers since headers in HTML
tables do not often have meaningful names. The matching
of attributes with properties is further aggregated by sum-
ming up all the scores of all property correspondences per
class to refine the class ranking. At this point we choose the
class with the highest score as final correspondence. Again,
all candidates which do not belong to this class (or its su-
per classes) are removed. The idea behind it is that candi-
dates from multiple classes match the entity labels from the
HTML table, but it is a strong signal if additionally prop-

erties of a class have overlapping values with the entities.
4. Iterative Matching: In the first iteration, the prop-

erty matching is repeated. This is necessary as the list of
candidates has changed and thus the value-based similar-
ity matrix has become smaller. Afterward, the value-based
similarities are weighted with the property matching scores.
These weighted similarities are then aggregated for each en-
tity/candidate pair and the candidate with the highest score
is chosen as correspondence for each entity. To prevent false
positives, a minimum similarity threshold is applied. In the
following iterations, the entity matching scores are used to
weight the value-based similarities for the property match-
ing, and the property matching scores are used as weight for
the entity matching. The algorithm terminates when the
similarities are not changing.

After the iterative part, we transform the similarities be-
tween attributes/properties and entities/candidates into fi-
nal correspondences by choosing the pair with the highest
similarity. Note that while each attribute/entity is only
mapped to one property/resource, it is possible that multi-
ple attributes/entities map to the same property/resource,
as HTML tables can and often do contain duplicates.

In addition to the basic algorithm, we implement several
extensions that improve the result by specifically addressing
the idiosyncrasies of the data that we are matching.

Surface Form Handling: As the values in an HTML
table do not need to be same as the labels of resources from
DBpedia, we search a surface form catalog for each value
from the HTML table. If we find a resource having the
value as surface form, we add the label of this resource as
a value to the HTML table. The list handling of our algo-
rithm will then take care of the rest. If multiple resources are
found, we either (1) take the one with the highest score if it
is much better than the second best score or (2) we take the
top three otherwise. The catalog was created from anchor-
texts of intra-Wikipedia links, Wikipedia article titles and
disambiguation pages. The score is the TF-IDF score with
all surface forms of a certain resource forming a document.

Redirects: A similar strategy as for the surface forms is
applied for redirects in DBpedia. If an HTML table has a
value that exactly matches the label of a resource that redi-
rects to another resource, the label of the redirect target is
added as a value to the HTML table.

Kurtosis Filter: HTML tables tend to have attributes
containing row numbers or rankings. Such attributes cannot
be mapped to DBpedia as they are only meaningful in the
context of HTML tables. As distributions of such attribute
values usually follow a normal distribution, we filter them
out by ignoring numeric attributes with low kurtosis value.

5. EVALUATION
This Section presents the evaluation of T2K Match as well

as our entity label attribute and header detection heuristics.
First, we describe the subset of DBpedia we match with
and the parameter setting used for the experiments. After-
ward, we describe how the T2D gold standard was used to
evaluate T2K Match and compare the algorithm with two
baseline approaches. Finally, we discuss the results.

All experiments have been performed on a Linux machine

with 8 cores and 130GB RAM. To improve the performance,
we keep DBpedia in-memory and use a Lucene6 index for the
candidate selection step. The pruning as well as the candi-
date and type blocking in combination with sparse similarity
matrices improve the performance further.

Reference KB: For the experiments, we use a subset of
DBpedia (version 2014) as reference KB. This subset con-
sists of all classes, properties and resources from DBpedia
that are frequently used and hence are good candidates for
the ultimate goal of our use case. Only classes and proper-
ties from ontology namespace7 are considered. We use all
classes as long as they have at least 1 000 entities. To exclude
too specific classes, we only consider classes up to the fourth
level of the class hierarchy. As the properties are not nec-
essarily used only for the classes they define as domain, we
include a property for a class if at least 5% of the resources
belonging to that class have a triple using this property. The
result of this selection process is a DBpedia subset covering
94 classes, 1 393 properties and about 3M resources.

Parameter Setting: In our algorithm, about 20 param-
eters are included, e.g. different similarity functions for the
data types, the top k parameters for candidates or weights
for properties. We implemented a genetic algorithm to find
the best possible parameter values. To avoid a bias in the
evaluation, we apply split validation. Therefore, we divide
the entity-level gold standard into two equally sized, strat-
ified sets: an optimization set and an evaluation set. The
optimization is run on the optimization set to determine
the best parameter setting. Then, we run our algorithm on
the evaluation set to see the performance on data that was
not optimized for. As final setting, we use Jaccard similar-
ity for the candidate selection with an initial k of 50 and
a refinement k of 100. The value-based similarity functions
are Generalized Levenshtein for strings, deviation similarity
(according to Rinser et al. [11]) for numerical values and a
similarity for dates that computes the deviation of the years.
The weight for the entity label attribute is set to five, which
indicates that the entity label is quite important. The whole
configuration can be found on the project website.

5.1 Entity Label Attribute and Header Detec-
tion Results

It is crucial for the matching process that entity label at-
tributes and headers are correctly detected. If we choose the
wrong entity label attribute, we will select the wrong can-
didates which leads to false class/property correspondences.
As we do not use the attribute labels yet, an incorrectly
detected header is not as critical as a false entity label at-
tribute. The entity label attribute is correctly detected in
97%. Incorrectly classified entity label attributes are for ex-
ample multiple attributes containing the label in different
languages. 93% of the headers are correctly detected. The
main problem with header detection is that we always choose
a header, even if no header is present in the HTML table.

5.2 Matching Results
The results of T2K Match on the entity-level gold stan-

dard are shown in Table 1. While F1 (opt.) indicates the
F1-Score that was achieved on the optimization set, all other

6http://lucene.apache.org/core/
7http://dbpedia.org/ontology/

results indicate the performance on the evaluation data. All
values are micro averaged to get a realistic valuation.

Table 1: T2K Match Evaluation
Task Precision Recall F1 F1 (opt.)

Entities 0.90 0.76 0.82 0.86
Properties 0.77 0.65 0.70 0.73

Classes 0.94 0.94 0.94 0.97

The precision for entity correspondences is quite high with
0.9, which is important for our ultimate goal of extending
KBs. The more precise our correspondences are, the less
incorrect data we have to deal with in the data fusion step.
For property correspondences we achieve a precision of 0.77.
This is mainly due to constellations where the pure value-
based similarity is misleading. For example, an HTML table
attribute “language” (value “German”) is more similar to the
DBpedia property “demonym” (with value “German”) than
to the property “language” (with value “German language”).
Finally, the class correspondences achieve a precision of 0.94.
An example for an incorrectly chosen class is a table that
contains different types of persons where our algorithm de-
cides for the majority more-specific person class.

Figure 3 shows the precision for each of the topical cate-
gories of the entity-level gold standard.

Figure 3: Precision of different categories

The reasons for different category results can be very spe-
cific, thus we only present some examples. The low prop-
erty precision for the person category stems from varying
attribute values, e.g. the weight of an athlete might change
during his/her career and the birth or death dates of historic
persons are often different from source to source.

The better performance for the entity correspondences has
also different reasons. In some cases, a high weight on the
entity label attribute in combination with a class constraint
is sufficient to find the correct correspondences. But, for
example, for companies, we can see that the precision for
tables where no properties can be mapped is only 0.45 and
for tables where we find one property correspondence, it
increases to 0.97. Hence, even a single, mappable property
provides us with a strong signal that our algorithm makes
use of the entity matching task. However, such a signal is
not enough for ambiguous entities, e.g. the natural places
“lake geneva” is mapped to Geneva_Lake instead of Lake_

Geneva. Another problem is related to our concept of entity
label attributes: tables about species often use inconsistent
resource naming, sometimes the Latin name otherwise the
English name is used as entity label.

5.3 Comparison with Baselines
In order to set our results into context, we compare our

entity correspondence results with two baseline approaches.

String matching: Uses the best candidate for each entity
from the first search operation of our candidate selection. It
serves as a reference value for the improvements achieved by
the following steps.
DBpedia Lookup: Queries the DBpedia Lookup service8

for each key value and choose the first result as correspon-
dence. In addition to relying on string comparison, it con-
siders the link indegrees and thus emulates the strategy to
always match the most common sense for each string.

Our algorithm outperforms the baselines concerning pre-
cision, recall, as well as F1 score (Table 2). Both approaches
which purely base on the entity label are not as precise as
our algorithm which indicates that the combination of value-
and property based matching is indeed useful.

Table 2: Entity Correspondence Comparison
Approach Precision Recall F1

String Matching 0.53 0.53 0.53
DBpedia Lookup 0.79 0.73 0.76

Our Approach 0.90 0.76 0.82

Challenges: Having a closer look at the results, we were
able to identify future challenges. For example, some prop-
erties are hard to distinguish, i.e., airports in the United
States almost always have the same IATA as FAA code. If
we encounter a table that only contains airports from the
United States, choosing the correct property is purely ran-
dom as both will have the same similarity score. Another
example stems from the nature of our use case: If the re-
sources in DBpedia that match the entities in the HTML
table have no property values, we cannot compute a similar-
ity and will hence not map these columns. The same holds
the other way around. If the only matching attribute of an
HTML table is the entity label attribute, all we can do is
to apply string matching and determine the most frequent
class. Also, such tables are not directly useful for our use
case as they do not provide us with missing values. How-
ever, they could be used for set completion tasks (i.e., adding
resources to classes) or for the creation of new properties.

5.4 Slot Filling Potential
In order to get an impression of the potential of HTML

tables for slot filling, we calculated the number of facts that
we could add to DBpedia from the 233 HTML tables in the
entity-level gold standard. For this, we counted all values
that are mapped correctly (correct class, property and re-
source correspondence) and for which DBpedia has no value.
Out of all 233 HTML tables, we find 5 178 facts that are
not in DBpedia where 2 691 of them are distinct facts (not
having the same resource and property). These 2 691 facts
concern 2 469 different resources and 52 different properties.
It shows that we can already find a lot of values that are
not yet in DBpedia by considering this very small subset of
the whole corpus. Using the corpus with 35M HTML tables
would thus likely result in an enormous number of additional
facts that are currently missing in DBpedia.

6. RELATED WORK
A number of approaches have been proposed towards un-

derstanding and extracting relational HTML tables from the
Web [2, 18]. Recent studies have shown that the knowledge

8http://wiki.dbpedia.org/lookup/

extracted from HTML tables can be useful for applications
like table search [16], table extension [20, 3], and KB aug-
mentation [17, 12].

Other Gold Standards: Many of the gold standards
about matching HTML tables to KBs mentioned in pub-
lications are not publicly available. One well-known gold
standard has been created by Limaye et al. [9] and maps
tables to YAGO. It consists of a manually created subset
with around 400 tables (general HTML tables as well as
Wikipedia tables) with 10 930 entity, 747 class and 54 rela-
tion correspondences. Since the gold standard of Limaye
et al. is not publicly available, Zhang [22] is using the
same tables but maps them to Freebase. The resulting gold
standard, called Limaye112, covers 112 tables (about 10%
HTML tables and 90% Wikipedia tables) with manually
annotated colunm and automatically created entity corre-
spondences. Other gold standards have been automatically
extracted from IMDB or MusicBrainz [21].

Matching HTML tables: Our work is similar to that
of Limaye et al. [9] which uses a probabilistic graphical
model comprising several features, trying to learn the best
combination with weights. As use case, they describe ta-
ble annotations on a web search tool designed to complete
missing fields in binary relations. Applied on a part of the
Limaye gold standard (371 HTML tables), an F1-score of
0.81 for resource, 0.43 for class and 0.52 for relation corre-
spondences is achieved. Similar work in that direction was
also done by Mulwad et al. [10], who used the Wikitol-
ogy KB, and Venetis et al. [16], who used an isA database.
Zhang [22] introduces an instance-based schema matching
approach to find mappings to resources which are then used
to map each of the columns to a class in the KB. Other than
our algorithm, this approach maps columns to classes (not
properties) and single cells to resources, so no properties are
identified and no rows are mapped to entities, which is a cru-
cial step for KB augmentation. On the Limaye112 gold stan-
dard, they achieved an F1 score of 0.92 for cell correspon-
dences and 0.63 for column correspondences. Since most of
the tables in Limaye112 originate from Wikipedia, these ta-
bles are broader and large as well as cleaner as usual HTML
tables. Sekhavat et al. [12] describe a probabilistic method
that augments an existing KB with facts from HTML ta-
bles by levering a web text corpus and natural language
patterns associated with relations in the KB. Similarly, Fan
et al. [6] propose a two-pronged approach for HTML table
matching. They link the columns to classes by using crowd
sourcing. Other approaches focus on the creation of KBs or
ontologies by exploiting HTML tables. Dong et al. [4] pro-
pose an approach for automatically constructing a web-scale
probabilistic KB that combines extractions from HTML ta-
bles with prior knowledge derived from existing knowledge
repositories. Similar, Gupta et al. [7] explore the use of web
text and HTML tables combined with query stream data to
extract an ontology of binary attributes, called Biperpedia.
Further extensive work on automatic KB construction from
web sources has been summarized by Weikum et al. [19].

Ontology Alignment: Performing simultaneous instance
and schema matching has already been applied in previous
work with focus on matching ontologies. The PARIS sys-
tem by Suchanek et al. [14] combines instance and schema

matching using probabilities. In contrast to our approach,
PARIS is designed for matching ontologies with a rich class
and relation structure. This is often not the case for HTML
tables which can be very noise and usually cover only a few
attributes. We run PARIS on our evaluation dataset but
this did not produce meaningful results. Duan et al. [5] fo-
cus on the scalability of schema matching. They apply their
instance-based type matching to determine containment and
equivalence relations between two ontologies using locality-
sensitive hashing as blocking strategy. In theory, their ap-
proach is also applicable for HTML tables, but it is to be
expected that it will perform better on larger tables.

7. CONCLUSION
In this paper, we present the first public gold standard

T2D for matching HTML tables from a large scale, publicly
available web corpus to DBpedia. Further, we presented the
T2K Match algorithm that performs reasonably well on this
gold standard. Using the results, we were able to explore
the potential of HTML tables for the task of filling missing
values KBs. Even with the small sample used for evaluation,
we produce a fair amount of facts that stem from different
sources and are missing in the current version of DBpedia.

Current ideas for further improving T2K Match are to
adjust the property weights during the iterative step and to
exploit the abstract from DBpedia. Another direction for
improvement is to learn property recognizers for DBpedia.
By this we specialize on DBpedia as our target KB and
should improve on the property matching scores. We plan on
experimenting with candidate consistency measures which
could for example, compare the values of other properties
(independently from whether they can be mapped or not) to
find sets of candidates that are more consistent than others.

As the next step towards the goal of our use case, we
will run the matching algorithm on the complete WDC Web
Tables Corpus and use matching table data to fill missing
values in DBpedia. This will include further work on the
supervised learning of conflict resolution functions [1].

8. REFERENCES
[1] V. Bryl and C. Bizer. Learning conflict resolution

strategies for cross-language Wikipedia data fusion. In
Proc. of the 23rd Int. Conf. on World wide web
companion, pages 1129–1134, 2014.

[2] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. WebTables: Exploring the Power of Tables
on the Web. Proc. VLDB Endow., 1:538–549, 2008.

[3] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee,
F. Wu, R. Xin, and C. Yu. Finding Related Tables. In
Proc. of the Int. Conf. on Management of Data, pages
817–828, 2012.

[4] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,
K. Murphy, T. Strohmann, S. Sun, and W. Zhang.
Knowledge Vault: A Web-scale Approach to
Probabilistic Knowledge Fusion. In Proc. of the 20th
SIGKDD, pages 601–610, 2014.

[5] S. Duan, A. Fokoue, O. Hassanzadeh,
A. Kementsietsidis, K. Srinivas, and M. J. Ward.
Instance-based matching of large ontologies using
locality-sensitive hashing. In The Semantic
Web–ISWC 2012, pages 49–64. Springer, 2012.

[6] J. Fan, L. Meiyu, O. Beng Chin, T. Wang-Chiew, and
M. Zhang. A Hybrid Machine-Crowdsourcing System
for Matching Web Tables. In 30th IEEE Int. Conf. on
Data Engineering, pages 976–987, 2014.

[7] R. Gupta, A. Halevy, X. Wang, S. Whang, and F. Wu.
Biperpedia: An Ontology for Search Applications. In
Proc. 40th Int’l Conf. on Very Large Data Bases, 2014.

[8] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch,
D. Kontokostas, P. Mendes, S. Hellmann, M. Morsey,
P. van Kleef, S. Auer, and C. Bizer. Dbpedia - a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web Journal, 2014.

[9] G. Limaye, S. Sarawagi, and S. Chakrabarti.
Annotating and Searching Web Tables Using Entities,
Types and Relationships. Proc. VLDB Endow.,
3:1338–1347, 2010.

[10] V. Mulwad, T. Finin, Z. Syed, and A. Joshi. Using
linked data to interpret tables. In Proc. of the 1st Int.
Workshop on Consuming Linked Data, 2010.

[11] D. Rinser, D. Lange, and F. Naumann. Cross-Lingual
Entity Matching and Infobox Alignment in Wikipedia.
Inf. Syst., 38:887–907, 2013.

[12] Y. A. Sekhavat, F. di Paolo, D. Barbosa, and
P. Merialdo. Knowledge Base Augmentation using
Tabular Data. In Proc. of the 7th Workshop on Linked
Data on the Web, 2014.

[13] A. Singhal. Introducing the knowledge graph: Things,
not string. Blog, 2012. Retrieved March 19, 2015.

[14] F. Suchanek, S. Abiteboul, and P. Senellart. Paris:
Probabilistic alignment of Relations, Instances, and
Schema. Proc. VLDB Endowment, 5:157–168, 2011.

[15] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A
Core of Semantic Knowledge. In Proc. of the 6th Int.
World Wide Web conference, NY, 2007. ACM Press.

[16] P. Venetis, A. Halevy, J. Madhavan, M. Paşca,
W. Shen, F. Wu, G. Miao, and C. Wu. Recovering
Semantics of Tables on the Web. Proc. of VLDB
Endow., pages 528–538, 2011.

[17] J. Wang, H. Wang, Z. Wang, and K. Q. Zhu.
Understanding Tables on the Web. In Proc. of the 31st
Int. Conf. on Conceptual Modeling, pages 141–155.
Springer-Verlag, 2012.

[18] Y. Wang and J. Hu. Detecting Tables in HTML
Documents. In Proc. of the 5th Int. Workshop on
Document Analysis Systems V, pages 249–260, 2002.

[19] G. Weikum and M. Theobald. From Information to
Knowledge: Harvesting Entities and Relationships
from Web Sources. In Proc. 29th Symp. on Principles
of Database Systems, pages 65–76. ACM, 2010.

[20] M. Yakout, K. Ganjam, K. Chakrabarti, and
S. Chaudhuri. InfoGather: Entity Augmentation and
Attribute Discovery by Holistic Matching with Web
Tables. In Proc. of the 2012 SIGMOD, pages 97–108,
2012.

[21] Z. Zhang. Start small, build complete: Effective and
efficient semantic table interpretation using
tableminer. Under transparent review: The Semantic
Web Journal, 2014.

[22] Z. Zhang. Towards efficient and effective semantic
table interpretation. In The Semantic Web–ISWC
2014, pages 487–502. Springer, 2014.

