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ABSTRACT
Recent studies have emphasized the merits of search processes
that lack overarching objectives, instead promoting divergence
by rewarding behavioral novelty. While this less objective search
paradigm is more open-ended and divergent, it still di�ers sig-
ni�cantly from nature’s mechanism of divergence. Rather than
measuring novelty explicitly, nature is guided by a single, funda-
mental constraint: survive long enough to reproduce. Surprisingly,
this simple constraint produces both complexity and diversity in a
continual process unparalleled by any algorithm to date. Inspired
by the relative simplicity of open-endedness in nature in compar-
ison to recent non-objective algorithms, this paper investigates
the extent to which interactions between two coevolving popula-
tions, both subject to their own constraint, or minimal criterion, can
produce results that are both functional and diverse even without
any behavior characterization or novelty archive. To test this new
approach, a novel maze navigation domain is introduced wherein
evolved agents must learn to navigate mazes whose structures are
simultaneously coevolving and increasing in complexity. �e result
is a broad range of maze topologies and successful agent trajectories
in a single run, thereby suggesting the viability of minimal criterion
coevolution as a new approach to non-objective search and a step
towards genuinely open-ended algorithms.
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1 INTRODUCTION
A delicate tension has persisted historically between the practically-
oriented pursuits of evolutionary computation (EC) and the more
abstract questions of arti�cial life (alife) that in recent years may
be starting to fade. �e focus in EC on solving problems has tra-
ditionally excluded more philosophical issues in alife like the pur-
suit of open-endedness [27] (i.e. trying to understand processes
that continue to generate interesting artifacts inde�nitely). His-
torically, open-ended evolution like that seen in nature has been
studied as a side-e�ect of Earth-like domains with organism-like
occupants and ecosystems [19, 23], a distant cousin to evolving
targeted solutions to problems like walking or maze-navigation.
However, this dichotomy has begun to close with the recent rise
of non-objective algorithms that began with the introduction of
novelty search [8, 10].

�is new class of algorithms focuses on divergence, i.e. on mov-
ing the search away from previously-visited locations, which aligns
more closely with the idea of open-ended discovery. And yet, in-
terestingly, such algorithms can be applied to domains outside the
traditional con�nes of alife. In recent years these algorithms have
increased in sophistication as researchers have learned to balance
divergent pressure with a more objective �tness-like counterpart to
produce a process called quality diversity (QD) that yields both high
quality and diversity simultaneously in one run [22]. QD algorithms
such as novelty search with local competition (NSLC) [11] and the
Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [17]
have produced arguably practical results, such as a repertoire of
robot walking strategies [29], even as they incorporate some of the
�avor of alife research into open-endedness.

However, despite this progress, there remain limits to any ana-
logy between QD and open-endedness in the spirit of nature. First,
to date QD algorithms generally require de�ning a behavior char-
acterization (BC), which is a descriptor of the phenotype behavior
(and sometimes physical properties) of individuals in the search
space. �is requirement diverges from nature, where there is no
need for anyone to develop a formalism for describing organism
behavior simply to allow evolution to proceed. Second, though it
may be vast, the descriptor space of BCs is intrinsically �nite. For
example, if the behavior of an individual is its average velocity and
size, once the full spectrum of velocities and sizes has been sampled,
the pressure toward novelty by necessity diminishes signi�cantly.
While there are interesting hints that BCs may be possible to ex-
pand over time [13], allowing the behaviors to expand unboundedly
remains a signi�cant challenge. Finally, QD algorithms generally
require an archive of some sort – in NSLC it is literally a record of
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past points visited, while in MAP-Elites it is points already visited
in the existing map. In nature, no such archiving strategy is needed.

Nature thereby becomes inspiration for seeking approaches to
open-ended discovery without the need for such mechanisms. To
explore alternative paradigms for open-endedness outside typical
alife worlds, this paper pursues a strategy relying heavily on dri�.
QD algorithms to date rely on identifying and hence rewarding
novelty to facilitate divergence, which leads to the need for BCs
(descriptors), but divergence is also in principle a byproduct of
simple dri� [12] subject to a minimal criterion (MC) constraint for
reproduction. However, while researchers have previously explored
MCs [9, 14], it is di�cult to know a priori what the MC should be
(or how it should change over time) to facilitate �nding interesting
new behaviors over a long period of time. �e main contribution
of this paper is to show that coevolution may help to address this
problem by forcing the MCs of two interlocking populations to
satisfy minimal criteria with respect to each other, even as both
populations are gradually shi�ing simultaneously.

�is idea, called minimal criterion coevolution (MCC), is tested
by coevolving a population of mazes with a population of maze
navigating neural networks, where the MC is that each maze must
be solved by at least one neural network, and each neural network
must solve at least one maze. Anyone who satis�es that constraint
can reproduce. For the �rst time (to our knowledge), a proliferation
of diverse solutions (and diverse mazes) of varying complexity
is shown to emerge in a single run from an algorithm without
any behavioral description or archive. To provide guidance for
future applications, two variants of MCC are tested to expose the
conditions that yield best performance.

2 BACKGROUND
�is section reviews the history behind the MC in the �elds of EC
and alife. Coevolution in non-objective search is also discussed.

2.1 Minimal Criteria in EC
�e �eld of EC has historically focused on the idea of selecting
individuals for reproduction based on an objective performance
scale and iteratively converging on a solution [2]. �e less com-
mon notion of imposing a lower bound on individual performance
was introduced early on by Ma�iussi and Floreano [15] and later
elaborated as the sole driver of evolution by Maesani et al. [14].
�eir proposed algorithm, called viability evolution (ViE), intro-
duces a threshold on one or more constraints that individuals must
meet to survive and reproduce. At the beginning of evolution, these
thresholds, or viability boundaries, encompass the entire population
but are then incrementally tightened until the algorithm converges
on a set of individuals who satisfy all of the constraints.

One bene�t of this approach is that it avoids the o�en tricky art
of cra�ing an objective function, particularly when that function
considers multiple objectives that must be appropriately weighted.
Another bene�t is that the loose criterion of viability means that the
reproductive pool is generally larger and less biased, allowing more
stepping stones to be sampled. MCC draws original inspiration from
the generally �tness-agnostic approach of ViE, but fundamentally
di�ers in that it has no drive toward convergence.

Like ViE, novelty search [8, 10] and QD algorithms [11, 17, 22]
have challenged conventional views of objective-driven evolution-
ary search. By design, novelty search and QD tend to spread the
search to anywhere novel. A side e�ect and common criticism of
this dynamic is the algorithm’s consequent susceptibility to expend-
ing resources exploring unimportant areas of vast behavior spaces.
To address this ine�ciency and to be�er align novelty search with
selection processes in natural evolution, minimal criteria novelty
search (MCNS) was introduced [9]. MCNS bounds the behavior
space by tagging individuals who traverse beyond the boundary
(i.e. the MC) as non-viable, meaning they are not eligible to repro-
duce. �is approach avoids establishing new lineages of individuals
that would primarily explore areas of the behavior space that are
orthogonal to the desired search results. MCC in the present pa-
per preserves the concept of the MC, but demonstrates how the
MC alone (i.e. without a BC, without narrowing viability boundar-
ies, and without the need for an archive) can e�ciently produce
open-ended evolutionary artifacts, even in non-alife domains.

2.2 �e MC and Open-endedness in Alife
Soros and Stanley [26] recently suggested that the MC is a reason-
able interpretation of natural evolution in the sense that making a
copy of oneself is the MC for continuing one’s lineage. �ey intro-
duced an alife world called Chromaria to highlight this point – in
Chromaria there is no explicit �tness function and everyone who
satis�es the MC reproduces, yet evolution still progresses. In fact,
constraining evolution through the MC rather than explicit �tness
in e�ect helps to avoid convergence and promote open-endedness.
However, a key factor in Chromaria’s success is that organisms in-
teract with each other to satisfy the MC, which allows its di�culty
to vary organically over time as the population changes. �is idea
raises the interesting question of whether a similarly open-ended
dynamic can be created outside of a conventional alife world.

2.3 Coevolution
Coevolution in the �eld of EC has a rich history [20] focused on
a�ributing �tness when it is prohibitive to evaluate individuals on
their own through an extrinsic absolute measure of performance.
�ese types of scenarios are traditionally divided between com-
petitive coevolution, where individuals are rewarded according to
their performance against other individuals in a competition [3],
and cooperative coevolution, where instead �tness is a measure of
how well an individual performs in a cooperative team with other
evolving individuals [30]. Coevolution itself has inspired interest in
open-endedness because of the potential for a never-ending arms
race, but in practice has proven di�cult to sustain perpetually [3].
An important contribution of the present work is to introduce a
new kind of coevolution (minimal criterion coevolution) that does
not �t neatly into the traditional competitive versus cooperative
dichotomy. Instead, the idea is to provoke a Chromaria-like diver-
gent search dynamic through the interaction of individuals under
a MC, but in a more general context that is independent from any
overarching alife world. While this idea bears some resemblance
to previous work in co-evolving learners and tests [1], a key dis-
tinction is that it does not require an archive for non-dominated
learners, nor does it impose a ranking among solutions. Moreover,
rather than placing an emphasis on evolving the context (i.e. the
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test) for a single population, the focus of this work is in producing
a broad array of functional diversity in both populations.

3 APPROACH: MINIMAL CRITERION
COEVOLUTION

In nature, each organism or species has the potential to traverse its
own unique path to satisfying the MC. For example, the develop-
mental path toward reproductive viability for bacteria is far shorter
and less complex than for mammals. Furthermore, the interactions
between individuals and other coevolving populations results in
an on-going �ux of each species’ path towards the MC.

Inspired by this perspective, minimal criterion coevolution (MCC)
is proposed as a dual-population coevolutionary algorithm; how-
ever, given its unorthodox evaluation process and reward mechan-
ism, it does not fall into the traditional categories of cooperative or
competitive coevolution. �at is, individuals from one population
are not rewarded based on the success or failure of another; rather,
they are selected as parents based solely on their satisfaction of the
MC. A notable characteristic of this process is that it imposes no
ranking among individuals (that is, they either satisfy the MC or
not), necessitating a selection method that is free of bias. One such
method that has been demonstrated to be e�ective in alife is storing
the population in a �xed-size queue, called the “parent queue” in the
alife world of Chromaria [26]. �e queue retains individuals who
satisfy the MC in the order of insertion, and a queue pointer points
to the location of the individual next in line for reproduction. If the
pointer reaches the end of the queue, it simply wraps back around
to the beginning. Additionally, if the insertion of a new individual
exceeds the queue’s capacity, the oldest individual in the queue
is removed to make room. �is setup overall ensures that every
individual added to the queue gets at least one chance to reproduce.
Other than that, there is no a�empt to say any candidate is be�er
than any other. �is agnosticism means that the algorithm keeps
many divergent paths open simultaneously without convergence,
as long as they satisfy the MC.

Most evolutionary algorithms begin evolution with a randomly
generated population; however, the requirement that queue mem-
bership be predicated on satisfying the MC necessitates special
consideration for MCC initialization. In particular, it is unlikely
that a randomly generated individual will be capable of meeting
a non-trivial MC, thereby denying admi�ance to any of the popu-
lation queues. �erefore, each population queue must undergo a
bootstrap process wherein the requisite number of seed genomes re-
quired by the applicable population queue are pre-evolved (novelty
search serves as the bootstrap in this paper).

MCC’s selection process closely resembles that of a steady-state
evolutionary algorithm; however, its absolute measure of perform-
ance (i.e. the MC) allows large chunks of a population to be evalu-
ated in parallel (their �tness never needs to be computed or com-
pared). �is freedom facilitates a distributed execution paradigm
wherein evaluations are spread across multiple nodes, allowing
MCC to scale when simulating evolutionary processes. Algorithm
1 formalizes the MCC selection, evaluation, and removal process,
which is alternately applied to both of the coevolving populations.

In addition to this base MCC algorithm, speciation can be intro-
duced as a lightweight method to sustain diversity. It is lightweight
because, unlike in other QD algorithms, it can be based entirely

Algorithm 1 MCC Evaluation Process
Require:
batchSize - # of individuals to evaluate simultaneously
numSeeds - # of seed genomes to evolve that satisfy the MC

. Evolve seed genomes that satisfy MC
randPop ← GenerateRandomPopulation()
viablePop ← EvolveSeedGenomes(randPop,numSeeds)

loop
. Reproduce children and add parents back into queue
parents ← viablePop.Dequeue(batchSize)
children ← Reproduce(parents)
viablePop.Enqueue(parents)

for all child ∈ children do
. MC involves interaction with the other coevolving pop.
mcSatis f ied ← EvaluateMC(child)
if mcSatis f ied then

viablePop.Enqueue(child)
end if

end for

. Removed oldest if queue capacity exceeded
if viablePop.Size > viablePop.Capacity then

numRemovals ← viablePop.Size −viablePop.Capacity
RemoveOldest(viablePop,numRemovals)

end if
end loop

on the genome with no need to characterize or compare actual
phenotypes or behaviors. While individuals from a given pop-
ulation remain physically stored in a queue structure, they are
clustered into separate logical groups, or species, based on their
genetic similarity and tagged with a species identi�er. �e seed
genomes for a given population constitute the centroids of these
species clusters. Additionally, the queue capacity is evenly distrib-
uted among species such that each species i has a maximum size
equivalent to capacity(i) = n

s , where n is the number of individuals
in the population, and s is the number of species.

In the speciated version, instead of simply including the next
batch of individuals in the queue order, a proportionate number
of individuals are aggregated from each species for reproduction
(though queue insertion order still dictates the order of selection).
Recall that only individuals who satisfy the MC are in the queue.
�e o�spring of the batch who satisfy the MC are then added to
the queue as normal but also assigned to the species that shares the
greatest genetic similarity. If any species has exceeded its capacity
as a result of speciating the o�spring, the oldest individuals assigned
to those species are removed from the queue. �is process also
ensures that the queue remains at or below capacity. Overall, the
hope is that both populations will in e�ect diverge through dri�,
but the MC will force them only to dri� toward further desirable
interactions with each other, yielding a continual, virtually open-
ended process. �e importance of speciation to this process will be
addressed in the experiment.
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4 EXPERIMENT
�anks to their relatively light computational load and easily visu-
alized and adjustable level of deception, maze domains have proven
instrumental in the initial investigations into various non-objective
search algorithms [9, 10, 16, 18, 22]. In particular, mazes make de-
ceptive and non-optimal trajectories (usually obtained by evolved
neurocontrollers) through the solution space visually explicit in the
form of dead ends and wandering paths, thereby facilitating the
identi�cation of principled strategies.

Mazes are also a good choice for investigating MCC, though
their implications in its context are di�erent. Rather than revealing
an ability to explore diverse paths through a single maze, with MCC
mazes demonstrate something new: solutions to numerous mazes
of varying complexity in a single run, all without the need for any
kind of BC or description. �is novel capability portends a new,
open-ended approach to QD with broad potential applications. For
example, robot morphologies could be coevolved with controllers
in an analogous realization of MCC in the future.

Maze-navigating agents use NEAT-evolved arti�cial neural net-
works (ANNs) to navigate from their starting location to the target
location. �e NeuroEvolution of Augmenting Topologies (NEAT)
[28] algorithm is a common choice for evolving the agent’s ANNs
based on its long track record in control tasks, particularly in navig-
ation domains [8, 10]. NEAT begins evolution with a population of
networks that have minimal structure (i.e no hidden layer) and in-
crementally complexi�es their topology by adding connections and
nodes. Each structural addition is encoded in the NEAT genome and
assigned a historical marking, allowing genomes to be compared
based on the genes that they have in common. In conventional
NEAT, genomes that are topologically similar are grouped together,
or speciated, thereby protecting new innovations by reducing com-
petition with more established genomes [28]. Importantly, ANN
complexi�cation increases the number of free parameters, which
will o�en lead to increasingly complex behaviors.

�e maze domain used for the experiments in this paper is a
square grid with the start location in the upper-le� corner and
the target location in the lower right; both points remain �xed
throughout evolution. An agent, controlled by a NEAT-evolved
ANN, begins a trial at the start location and is evaluated on its ability
to reach the target location within the time allo�ed for a single
trial. Multiple obstructions and cul-de-sacs impede a direct path
to the target, necessitating the evolution of nontrivial navigation
strategies. �e agent ANN architecture is identical to that used
in the original novelty search studies [8]: six range�nder sensors
measure distance to line-of-sight obstructions while four pie slice
radar sensors activate when the target location is within the sensor’s
arc. Motion is controlled by two actuators that can rotate and propel
the agent. �e sections that follow describe key elements of the
experimental setup in detail.

4.1 Maze Evolution Methodology
While one population is the maze-navigating agents, the other is
the mazes. Evolving mazes requires that the maze structure be
encoded in a representation on which evolutionary operators can
be applied. For this purpose, a maze in this work is a collection
of component walls. Fixed exterior walls bound the maze space
while interior walls introduce obstructions and generally increase

the di�culty of navigating from one location to another. For the
purposes of this paper, the complexity of a maze is estimated as the
number of interior walls it contains. �e �xed canvas size bounds
the permissible number of interior walls, thereby imposing an
upper limit on maze complexity that keeps this initial investigation
tractable. (Future work will focus on removing this constraint.)

For each wall, the genome encodes the relative position of the
wall within the maze and the relative position of an opening, or
“passage.” Like the NEAT connection gene weights, maze genomes
adopt a real-valued encoding in the interval [0, 1]. �e combination
of wall position and passage position de�ne a single maze gene. All
maze genome reproduction is asexual, with three new parameters
controlling mutations: �e wall mutation probability impacts the
relative position of the wall within the maze sub-space while the
passage mutation probability a�ects the relative position of the
passage within a wall. �e add wall probability is a complexi�cation
operation, controlling the addition of wall genes. When the genome
reaches maximum complexity, the add wall operation is disabled.

Mazes are decoded into their phenotype by iteratively bisecting
the maze space and scaling the relative wall and passage position
to the dimensions of the a�ected sub-space. For example, the �rst
gene in the genome bisects the entire maze space, creating two
sub-spaces with a passage through which the agent can traverse
between the two. If the bisection is vertical, the second gene bisects
the le�-most sub-space, creating two additional sub-spaces. Simil-
arly, if the original bisection is horizontal, the second gene bisects
the uppermost sub-space. �e orientation of each wall is dictated by
the dimensions of its assigned sub-space such that the wall is placed
perpendicular to the dimension of greatest magnitude. �is process
continues until all genes are decoded. �e maze generation ap-
proach is inspired by the recursive division algorithm [4], but uses
a breadth-�rst implementation to avoid unbalanced wall placement
for mazes that have not yet reached maximum complexity. Figure
1 depicts the maze complexi�cation process. As with the evolution
of ANNs in NEAT, mazes begin evolution in this experiment with
few walls and increase in complexity as evolution progresses.
4.2 Minimal Criterion De�nition
Soros and Stanley [26] have suggested that a nontrivial MC is a
necessary condition for open-ended evolution. �e motivation
behind the MCs in this work is that the ability to navigate mazes
is nontrivial. In these experiments, each agent is evaluated on
potentially many di�erent mazes from the maze population queue,
and the MC is that the agent must solve at least one of those mazes.
Conversely, the maze population MC is a successful navigation by
at least one agent from the current agent queue.

Recall that for evolution to begin, the individuals in the initial
population must themselves meet the MC. Given its ability to ef-
�ciently discover diverse solutions, the novelty search algorithm
serves as a “bootstrap” method to evolve a requisite number of seed
genomes that meet the MC for a set of simple mazes (parameters
are given in section 4.4).
4.3 Experimental Methods
Given that MCC represents a signi�cant departure from both ob-
jective and, to a lesser extent, non-objective search algorithms
published to date, a direct, quantitative comparison to those al-
gorithms in their current form is not feasible. For example, typical
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Figure 1: Maze genotype (top) and phenotype (bottom). An example of the maze complexi�cation process is shown. �e table above
each maze enumerates the genes within the genome that decode to the phenotype immediately below them. Each gene contains a wall
position and passage position, both real numbers in the interval [0, 1]. �e wall position describes the relative position of a wall within
its subspace while the passage position describes the relative position of a passage within that wall. Each gene maps to one wall in the
phenotype. �e wall that corresponds to the rightmost gene in its genotype is emboldened in the phenotype depiction. �e starting position
and target position are �xed and are shown in the phenotype at the upper le� and lower right respectively.

QD algorithms invent many new behaviors for a given maze, but
they do not invent new mazes and new behaviors at the same time.
Instead, the experiments that follow survey for the �rst time the
artifacts produced by an almost entirely undirected and potentially
open-ended search process, and elucidate some of the factors that
can enhance such a process.

�e �rst experiment admits agents to a global agent queue and
mazes to a global maze queue based on satisfaction of their respect-
ive MC (detailed in section 4.2). As MCC is a parallel algorithm, a
“batch” of individuals is selected from both the maze and agent par-
ent queues on each iteration and evaluated asynchronously. When
either queue reaches its capacity, excess individuals are removed
based on their comparative age (i.e. oldest �rst) to make room for
new, functional o�spring. �is con�guration represents a simple
baseline operation of an MCC algorithm, and acts as a control
against which the second experiment is compared.

While MCC has no explicit objective or drive toward novel be-
haviors, some individuals will be be�er at producing competent
o�spring than others. Over time, this disparity could result in
a coevolutionary convergence. In nature, individuals are segreg-
ated into species, each of which �lls a particular ecological niche
[6]. Every niche has a �nite capacity, thereby allowing for a more
localized regulation of population growth, which in turn leaves
room for founding a wide array of diverse niches. Accordingly,
genetics-based speciation is a long-standing popular mechanism in
evolutionary computation for preserving diversity [10, 21, 28].

�e second experiment models this notion of local regulation by
speciating both the agent queue and the maze queue. Given that
agents are evolved using the NEAT algorithm, they adopt NEAT’s
built in speciation mechanism [28]. Mazes are speciated based on
a cantor pairing of each gene’s relative wall position and relative
passage position. More concretely, both gene components (wall
position and passage position) are combined to give each genemi
in maze genomem a scalar value:

mi =
1
2 (wi + pi )(wi + pi + 1) + pi , (1)

where wi and pi are the relative wall and passage positions spe-
ci�ed by gene i , respectively. Genetic similarity is then based on
computing the Euclidean distance between two full maze position
vectors. If two vectors have di�erent sizes, the missing genes in the
shorter vector are assigned position zero. Individuals in both the
agent queue and the maze queue are grouped with genetically sim-
ilar agents or mazes respectively. Selection and removal processes
are then carried out on a per-species basis (as explained in section
3). It is important to note that this kind of genetics-based speciation
does not require characterizing behavior or maintaining an archive
[8, 10, 24] or map [17], and therefore sustains the unique nature of
MCC as a QD algorithm without a behavior characterization.
4.4 Experimental Parameters
�e novelty search bootstrap is executed with 250 agents and NEAT
parameters identical to those in Lehman and Stanley [10]. Agents
are evaluated on ten randomly-generated mazes, each with 8 walls
of random composition. Execution halts when 20 distinct agents
are evolved that can solve one or more mazes, and each of the 10
mazes is solved by at least one agent. �e 20 agents and 10 mazes
then seed their respective MCC queues. In the speciated variant,
the seed genomes are the initial centroids of each species cluster.

Both con�gurations are executed for 20 runs of 2,000 batches
each. �e agent queue is seeded with 20 genomes and has a max-
imum capacity of 250 with a 0.7 probability of mutating connection
weights, 0.1 of adding a connection, 0.01 of adding a neuron, and
0.0001 of deleting a connection. �e maze queue is seeded with 10
genomes and has a maximum capacity of 50 with a 0.05 probability
of mutating a wall location, 0.05 of mutating a passage location,
and 0.7 of adding a wall. �ese values produced reasonably diverse
and complex results in an initial parameter sweep.

Agents have a maximum velocity of 3 units per second and are
allo�ed up to 600 time steps to complete a 320 × 320 unit maze.
SharpNEAT version 3.0 [5] is the neuroevolution platform, and was
extended to implement the MCC and novelty search algorithms as
well as to support encoding and evolving maze genomes. Source
code for the experiments is available at h�p://bit.ly/2oM22YK.

http://bit.ly/2oM22YK
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5 RESULTS
One of the primary hypothesized bene�ts of MCC is its ability
to produce a broad diversity of functional solutions to a range
of di�erent problems. To that end, this section showcases the
range and complexity of navigable mazes and the learned agent
trajectories through those mazes. �e quantitative portion of the
analysis focuses on maze complexity trends over evolution and
the comparative diversity of trajectories between the control and
speciated variant.
5.1 �alitative Results
Figure 2 depicts a sample of the mazes evolved by a typical single
run of the MCC control. While the mazes o�en reach maximum
complexity with e�ective agent trajectories, the trajectories that the
maze structures permit tend to be similar. Interestingly, di�erent
runs of the control converge to di�erent such consistent structures,
suggesting that the agent and maze populations are converging
in control runs to trajectories and maze structures that become
standards across the run.

Figure 3 depicts a sample of the mazes evolved by a single run
of the MCC speciated variant. Maze structures and agent traject-
ories are signi�cantly more diverse in these runs, suggesting that
enforcing genetic diversity through maze and agent queue speci-
ation is a viable approach to maintaining divergent and functional
phenotypic diversity in a minimal criterion coevolutionary system.
5.2 �antitative Results
To give a more holistic and comprehensive view of system dynamics,
a quantitative analysis is performed to capture global diversity
trends and increases in system complexity over evolution.

Population diversity is computed by measuring the Euclidean
distance between each point on a given agent’s trajectory and the
corresponding point at the same time step on every other success-
ful agent’s trajectory. Formally, the diversity score of an agent
trajectory is given by

div(a) = 1
n

n∑
i=1
( 1
m

m∑
t=1

dist(at , µi,t )), (2)

where a represents the agent trajectory whose diversity is being
measured, at is the position of the agent at time step t , µi,t cor-
responds to the position of the agent against which a is compared
at time step t , m is the number of time steps in the simulation, n
corresponds to the number of agents who also successfully navig-
ated a maze in the current maze population, and dist represents the
function that computes the distance between any two agent’s tra-
jectories (in this case, the Euclidean distance). �e overall diversity
is simply the average of all agent trajectory diversity measurements.
�is approach has been shown (and taken before) to be e�ective
for measuring phenotypic and behavioral diversity [7, 18, 25].

Ultimately the primary concern of open-endedness or QD is to
accumulate diverse, functional artifacts throughout the entirety
of the run. Figure 4 (which encompasses maze-solving agents dis-
covered over entire runs) demonstrates that speciating the maze
and agent queues results in a signi�cantly larger diversity of maze
solutions (p < 0.001; Welch’s t-test).

An interesting side e�ect of a lack of diversity in the control is
a comparatively high proportion of mazes that are navigable by

the existing agents at any point in time (�gure 5). �e speciated
variant indicates a signi�cantly lower proportion of mazes that are
successfully navigated by each agent at every point in evolution
(p < 0.001; Welch’s t-test), a side e�ect of more diverse maze
structures and navigation strategies. An important implication is
that the mazes being evolved are nontrivial to solve because there
is not a single navigation strategy that can solve more than a small
fraction of them.

In addition to producing functional diversity, MCC was able to
evolve increasingly complex behavioral artifacts, quickly reaching
maximum maze complexity. Figure 6 depicts a population-wide dri�
toward higher maze complexity, which implies the development of
increasingly advanced control policies to solve those mazes. �is
result raises the interesting question of whether complexity would
continue to increase unboundedly if mazes did not have a size cap.

6 DISCUSSION AND CONCLUSIONS
Of fundamental importance is the extent to which MCC using either
experimental method was able to induce a reciprocating increase
in complexity between both populations, ultimately reaching the
maximum complexity supported by the domain constraints. �is
phenomenon persisted consistently in all runs even without any
BCs or behavior archives. Speciation e�ectively adds the ability also
to explore divergent lines simultaneously, validating the existence
of an entirely new kind of divergent search algorithm.

In all runs, MCC evolved agents able to solve mazes at their
maximum level of complexity (i.e. with the maximum number of
walls supported by mazes of the given dimensions) well before
the allo�ed time. �is complexity ceiling was imposed to ensure
the computational tractability of this intial investigation, wherein
the dynamics of MCC were previously unknown. However, as an
algorithm designed to facilitate open-ended evolutionary dynamics
even beyond conventional QD approaches, MCC should in the
future be tested for its capacity to support the continual, unbounded
complexi�cation of all coevolving populations. �e hope is that
MCC will serve as a scalable and �exible platform for the production
and investigation of both QD and open-ended evolution.
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