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What is Mutation Testing ?
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• Mutation Testing is a type of software testing where 
we mutate (change) certain statements in the source 
code and check if the test cases are able to find the 
errors.

• Each mutant is a copy of the program under test, 
usually with a small syntactic change, which is 
interpreted as a fault
– It is a type of white box testing which is mainly 

used for unit testing.
– The changes in mutant program are kept 

extremely small, so it does not affect the overall 
objective of the program.



The Goal of Mutation Testing

• The goal of Mutation Testing is to assess the 
quality of the test cases which should be robust 
enough to fail mutant code. 
– In other words, the goal of mutation testing is to find 

faults on the system under test

• Thus, a test suite is more or less effective 
depending on its ability to find faults on the 
system under test

• This method is also called as Fault based testing 
strategy as it involves creating fault in the 
program
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Mutation Testing - Example
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A program and four mutants - Example

CSE 4321/5321, Ali Sharifara, UTA 6



Mutation Coverage

• Given a mutant m of a derivation d, a test is 
said to kill the mutant if and only if this test 
produces a different output on m than on d. 

• Mutation coverage requires every mutant to 
be killed by at least one test.
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Different types of Mutants

• Stillborn mutants: Syntactically incorrect, 
killed by compiler
– Example : x = a ++ b

• Trivial mutants: Killed by almost any test case
• Equivalent mutant: Always acts in the same 

behavior as the original program, 
– Example : x = a + b and x = a – (-b)

• Those mutants are interesting which behave differently than the 
original program, and we do not have test cases to identify them 
(to cover those specific changes)
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Example of an Equivalent mutant 
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Basic Ideas (I) 

In Mutation Testing: 
1. We take a program and a test suite generated for 

that program (using other test techniques) 
2. We create a number of similar programs (mutants), 

each differing from the original in one small way, i.e., 
each possessing a fault
– E.g., replacing an addition operator by a multiplication

operator 

3. The original test data are then run on the mutants 
4. If test cases detect differences in mutants, then the 

mutants are said to be dead (killed), and the test set 
is considered adequate
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Basic Ideas (II) 

• A mutant remains live either 
– Because it is equivalent to the original program 

(functionally identical although syntactically 
different – called an equivalent mutant) or, 

– The test set is inadequate to kill the mutant
• In the latter case, the test data need to be augmented 

(by adding one or more new test cases) to kill the live 
mutant 

• For the automated generation of mutants, we use 
mutation operators, that is predefined program 
modification rules (i.e., corresponding to a fault 
model) 
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Some Mutation Operators
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Example of Mutation Operators(I) 

• Constant replacement 
• Scalar variable replacement 
• Scalar variable for constant replacement 
• Constant for scalar variable replacement 
• Array reference for constant replacement 
• Array reference for scalar variable replacement 
• Constant for array reference replacement 
• Scalar variable for array reference replacement 
• Array reference for array reference replacement
• Source constant replacement
• Data statement alteration 
• Comparable array name replacement 
• Arithmetic operator replacement 
• Relational operator replacement 
• Logical connector replacement
• Absolute value insertion 
• Unary operator insertion
• Statement deletion
• Return statement replacement 
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Example of Mutation Operators(II) 

• Specific to object-oriented programming 
languages:
– Replacing a type with a compatible subtype (inheritance)
– Changing the access modifier of an attribute, a method
– Changing the instance creation expression (inheritance)
– Changing the order of parameters in the definition of a 

method
– Changing the order of parameters in a call
– Removing an overloading method
– Reducing the number of parameters
– Removing an overriding method
– Removing a hiding Field
– Adding a hiding field 
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Absolute Value Insertion

Each arithmetic expression is modified by 
functions abs(), negAbs(), and failOnZero().
Example: 
x = 3 * a

x = 3 * abs(a), 
x = 3 * - abs(a), 
x = 3 * failOnZero(a);
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Arithmetic Operator Replacement

Each occurrence of one of the arithmetic operators +, -, 
*, /, **, and % is replace by each of the other operators, 
and special operators leftOp, rightOp, and mod.
Example: 
x = a + b
x = a – b, 
x = a * b,  
x = a / b, 
x = a ** b, 
x = a, 
x = b, 
x = a % b
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Relational Operator Replacement

Each occurrence of one of the relational operators (<, 
<=, >, >=, =, !=) is replaced by each of the other 
operators and by falseOp and trueOp.
Example: 
if (m > n)
if (m >= n), 
if (m < n), 
if (m <= n), 
if (m == n), 
if (m != n), 
if (false), 
if (true)
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Conditional Operator Replacement

Each occurrence of each logical operator (&&, ||,  &, |, ^) 
is replaced by each of the other operators, and falseOp, 
trueOp, leftOp, and rightOp.
Example: 
if (a && b)
if (a || b), 
if (a & b), 
if (a | b), 
if (a ^ b), 
if (false), 
if (true), 
if (a), 
if (b)

CSE 4321/5321, Ali Sharifara, UTA 18

Mutants



Shift Operator Replacement

Each occurrence of one of the shift operators 
(<<, >>, and >>>) is replaced by each of the 
other operators, and the special operator leftOp.
Example: 
x = m << a

x = m >> a, 
x = m >>> a, 
x = m
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Logical Operator Replacement

Each occurrence of each bitwise logical operator (&, |, 
and ^) is replaced by each of the other operators, and 
leftOp and rightOp.
Example: 
x = m & n  
x = m | n, 
x = m ^ n, 
x = m, 
x = n
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Assignment Operator

Each occurrence of one of the assignment operators 
(+=, -=, *=, /=, %=, &=, !=, *=, <<==, >>=, >>>=) is 
replaced by each of the other operators.
Example: 
x += 3
x -= 3,
x *= 3, 
x /= 3, 
x %= 3,
…

CSE 4321/5321, Ali Sharifara, UTA 21

Mutants



Unary Operator Insertion

Each unary operator (+, -, !, ~) is inserted 
before each expression of the correct type.
Example: 
x = 3 * a

x = 3 * +a, 
x = 3 * -a, 
x = +3 * a, 
x = -3 * a
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Unary Operator Deletion

Each unary operator (+, -, !, ~) is deleted.
Example: 
if !(a > - b) 

if (a > -b), 
if !(a > b)

CSE 4321/5321, Ali Sharifara, UTA 23

Mutants



Scalar Variable Replacement

Each variable reference is replaced by every 
other variable of the appropriate type that is 
declared in the current scope.
Example: 
x = a * b 
x = a * a,
a = a * b,
x = x * b, 
x = a * x, 
x = b * b,
b = a * b
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Bomb Statement Replacement

Each statement is replaced by a special Bomb() 
function
Example: 
x = a * b 

Bomb ()
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A Simple Example
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Delta’s represent syntactic modifications. In fact, each of them 
will be embedded in a different program version, a mutant. 



Discussion of the Example 

• Mutant 3 is equivalent as, at this point, minVal
and A have the same value 

• Mutant 1: In order to find an appropriate test 
case to kill it, we must 

1. Reach the fault seeded during execution reachability)
1. Always true (i.e., we can always reach the seeded fault)

2. Cause the program state to be incorrect (Infection) • A <> B 
3. Cause the program output and/or behavior to be Incorrect 

(Propagation) (B<A) = false 
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Strong Mutation Coverage

• Requires each mutant be strongly killed by at 
least one test.

• Given a mutant m for a program P and a test 
t, t is said to strongly kill m if and only if the 
output of t on P is different from the output of t 
on m. 
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Assumptions 

• What about more complex errors, involving 
several statements?

• Let’s discuss two assumptions: 
– Competent programmer assumption: They 

write programs that are nearly correct 
– Coupling effect assumption: Test cases that 

distinguish all programs differing from a correct 
one by only simple errors is so sensitive that they 
also implicitly distinguish more complex errors
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Another Example

• Specification: 
– The program should prompt the user for a 

positive integer in the range 1 to 20 and 
then for a string of that length. 

– The program then prompts for a character 
and returns the position in the string at 
which the character was first found or a 
message indicating that the character was 
not present in the string.
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Code Chunk
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Mutation Testing Example: Test Set 1 
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Mutation Testing Example: Mutant 1
(for Test Set 1) 

• Replace Found := FALSE; with Found := TRUE; 
• Re-run original test data set 
• Note: It is better in Mutation Testing to make only one 

small change at a time to avoid the danger of introduced 
faults with interfering effects (masking) 

• Failure: “character a appears at position 1” instead of 
saying “character is not present in the string” 

• Mutant 1 is killed (since Output <> Oracle) 
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Mutation Testing Example: Mutant 2
(for Test Set 1) 

• Replace i:=1; with x:=1;
• Will our original test data (test set 1) reveal the fault? 

– No, our original test data set fails to reveal the fault (because the x value was 1 in the 
second test case of test set 1)

• As a result of the fault, only position 1 in string will be searched for. So 
what should we do? 

• In our test set, we need to increase our input string length and search 
for a character further along it 

• We modify the test set 1 and create a new test set 2 (next) so as 
– To preserve the effect of earlier tests 
– To make sure the live mutant (#2) is killed 
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Mutation Testing Example: Test Set 2 
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Mutation Testing Example: Mutant 3 
(for Test Set 2) 

• i := i + 1; is replaced with i:= i +2; 
• Again, our test data (test set 2) fails to kill the mutant 
• We must augment the test set 2 and create a new test set 3 

(next) to search for a character in the middle of the string 
• With the new test set, mutant 3 can be killed 
• Many other changes could be made on this short piece of code, 

e.g., changing array reference, changing the <= relational 
operator
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Mutation Testing Example: Test Set 3 
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Example

boolean isEven (int x) {
if (x < 0)

x = 0 – x; // change to x = 0;     
if (float) (x / 2) == ((float) x) / 2.0 

return true;
else

return false;
} 

Reachability: x < 0
Infection:  x != 0
Propagation: x must be odd
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Mutation Testing Process
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Kinds of Mutation

• Value Mutations: These mutations involve changing the values 
of constants or parameters (by adding or subtracting values etc), 
e.g. loop bounds – being one out on the start or finish is a very 
common error. 

• Decision Mutations: These involves modifying conditions to 
reflect potential slips and errors in the coding of conditions in 
programs. E.g. a typical mutation might be replacing a > by a < 
in a comparison. 

• Statement Mutations: These might involve deleting certain 
lines to reflect omissions in coding or swapping the order of 
lines of code. There are other operations, e.g. changing 
operations in arithmetic expressions. A typical omission might 
be to omit the increment on some variable in a while loop.

• A wide range of mutation operators is possible…
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Examples: Value Mutation 
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Examples: Decision Mutation 
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Examples: Statement Mutation 
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Steps of mutation testing

• Mutation testing has three main steps:

1. Mutant generation 
2. Mutant execution 
3. Result analysis
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Mutant generation

• Almost each executable instruction of the 
original program can be mutated with several 
mutation operators 

• Therefore, the number of mutants generated 
for a normal program may be huge 

• The cost of compilation of all mutants may be 
also significant
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Mutant generation: the MuJava
tool

•
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Mutant generation: the MuJava
tool

• In general, a parser is required to generate 
mutants:

• a+b is translated into a-b, a*b, a/b
• Then, these program versions are compiled

• MuJava uses “Mutant Schemata Generation”
– With some operators, it substitutes (at bytecode 

level) a+b by a OPERATOR b
– Then, all the program versions are directly 

generated with no need of compiling
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Mutant execution

• In this case, the problem is the huge number 
of test cases that must be executed: each 
case is executed against the original program
and the mutants.

• For testing a simple BankingAccount class, 
with 96 mutants and 300 test cases, 
96*300=28,800 executions are required (with 
at least 28,800 accesses to the database, 
etc.)
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Mutant execution

• All the outputs must be compared to detect 
which mutants are killed:

– In the BankingAccount example, the 
outputs of the 300 test cases with the 
original and the 96 mutants

– Actually, killed mutants can be removed for 
further comparisons
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Mutant execution: MuJava
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Mutant execution: testooj

• testooj is a relatively user-friendly research 
tool

• Generates test cases in several formats and 
according to several generation strategies

• Executes test cases against versions and 
gives some additional results
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Result analysis

• The major difficulties appear with the detection of 
functionally equivalent mutants
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Result analysis

• A functionally equivalent mutant is a mutant which 
never will be killed 

• Actually, the “fault” introduced is not a fault, but a 
code de-optimization
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Result analysis

• The example is an occurrence of the AOIS operator
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Result analysis

• Other strategies rely on weak mutation:
– “Strong” mutation has three conditions:

• Reachability (the instruction must be reached) 
• Necessity (once the sentences has been reached, 

the test case must cause an erroneous state on the 
mutant) 

• Sufficiency (the erroneous state must be 
propagated to the output) 

• Instead of observing the output of each test case, the 
idea of weak mutation is to detect changes in 
intermediate states (reachability + necessity)
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Mutation Testing: Discussion 

• It measures the quality of test cases 
• A tool’s slogan: “Jester - the JUnit test tester”. 
• It provides the tester with a clear target (mutants to kill) 
• Mutation testing can also show that certain kinds of faults are 

unlikely (those specified by the fault model), since the 
corresponding test case will not fail 

• It does force the programmer to inspect the code and think of 
the test data that will expose certain kinds of faults 

• It is computationally intensive, a possibly very large number of 
mutants is generated: random sampling, selective mutation 
operators (Offutt) 

• Equivalent mutants are a practical problem: It is in general an 
undecidable problem 

• Probably most useful at unit testing level 
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Mutation Testing Tools

• Tools – MuClipse: perhaps the 
• best tool out there… 

– Jester: A Mutation Testing tool in Java (Open Source) 
– Pester: A Mutation Testing tool in Python (Open Source) 
– Nester: A Mutation Testing tool in C# (Open Source) 
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Offutt’s Mutations for Inter-Class 
Testing
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Conclusions 

• Mutation is an excellent testing technique 
• Mutation testing can be a useful addition to 

the test process.
• From the point of view of research, it is 

mature 
• From the industry point of view, user friendly 

tools are required
• Mutation is also applied at other levels: black-

box, components, web services, models…
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