
Mutation Testing
Software Testing

1CSE 4321/5321, Ali Sharifara, UTA

Mutation Testing

• What is mutation testing?
• Mutation operators
• Steps of mutation testing
• Conclusions

CSE 4321/5321, Ali Sharifara, UTA 2

What is Mutation Testing ?

CSE 4321/5321, Ali Sharifara, UTA 3

• Mutation Testing is a type of software testing where
we mutate (change) certain statements in the source
code and check if the test cases are able to find the
errors.

• Each mutant is a copy of the program under test,
usually with a small syntactic change, which is
interpreted as a fault
– It is a type of white box testing which is mainly

used for unit testing.
– The changes in mutant program are kept

extremely small, so it does not affect the overall
objective of the program.

The Goal of Mutation Testing

• The goal of Mutation Testing is to assess the
quality of the test cases which should be robust
enough to fail mutant code.
– In other words, the goal of mutation testing is to find

faults on the system under test

• Thus, a test suite is more or less effective
depending on its ability to find faults on the
system under test

• This method is also called as Fault based testing
strategy as it involves creating fault in the
program

CSE 4321/5321, Ali Sharifara, UTA 4

Mutation Testing - Example

CSE 4321/5321, Ali Sharifara, UTA 5

A program and four mutants - Example

CSE 4321/5321, Ali Sharifara, UTA 6

Mutation Coverage

• Given a mutant m of a derivation d, a test is
said to kill the mutant if and only if this test
produces a different output on m than on d.

• Mutation coverage requires every mutant to
be killed by at least one test.

CSE 4321/5321, Ali Sharifara, UTA 7

Different types of Mutants

• Stillborn mutants: Syntactically incorrect,
killed by compiler
– Example : x = a ++ b

• Trivial mutants: Killed by almost any test case
• Equivalent mutant: Always acts in the same

behavior as the original program,
– Example : x = a + b and x = a – (-b)

• Those mutants are interesting which behave differently than the
original program, and we do not have test cases to identify them
(to cover those specific changes)

CSE 4321/5321, Ali Sharifara, UTA 8

Example of an Equivalent mutant

CSE 4321/5321, Ali Sharifara, UTA 9

Basic Ideas (I)

In Mutation Testing:
1. We take a program and a test suite generated for

that program (using other test techniques)
2. We create a number of similar programs (mutants),

each differing from the original in one small way, i.e.,
each possessing a fault
– E.g., replacing an addition operator by a multiplication

operator

3. The original test data are then run on the mutants
4. If test cases detect differences in mutants, then the

mutants are said to be dead (killed), and the test set
is considered adequate

CSE 4321/5321, Ali Sharifara, UTA 10

Basic Ideas (II)

• A mutant remains live either
– Because it is equivalent to the original program

(functionally identical although syntactically
different – called an equivalent mutant) or,

– The test set is inadequate to kill the mutant
• In the latter case, the test data need to be augmented

(by adding one or more new test cases) to kill the live
mutant

• For the automated generation of mutants, we use
mutation operators, that is predefined program
modification rules (i.e., corresponding to a fault
model)

CSE 4321/5321, Ali Sharifara, UTA 11

Some Mutation Operators

CSE 4321/5321, Ali Sharifara, UTA 12

Example of Mutation Operators(I)

• Constant replacement
• Scalar variable replacement
• Scalar variable for constant replacement
• Constant for scalar variable replacement
• Array reference for constant replacement
• Array reference for scalar variable replacement
• Constant for array reference replacement
• Scalar variable for array reference replacement
• Array reference for array reference replacement
• Source constant replacement
• Data statement alteration
• Comparable array name replacement
• Arithmetic operator replacement
• Relational operator replacement
• Logical connector replacement
• Absolute value insertion
• Unary operator insertion
• Statement deletion
• Return statement replacement

CSE 4321/5321, Ali Sharifara, UTA 13

Example of Mutation Operators(II)

• Specific to object-oriented programming
languages:
– Replacing a type with a compatible subtype (inheritance)
– Changing the access modifier of an attribute, a method
– Changing the instance creation expression (inheritance)
– Changing the order of parameters in the definition of a

method
– Changing the order of parameters in a call
– Removing an overloading method
– Reducing the number of parameters
– Removing an overriding method
– Removing a hiding Field
– Adding a hiding field

CSE 4321/5321, Ali Sharifara, UTA 14

Absolute Value Insertion

Each arithmetic expression is modified by
functions abs(), negAbs(), and failOnZero().
Example:
x = 3 * a

x = 3 * abs(a),
x = 3 * - abs(a),
x = 3 * failOnZero(a);

CSE 4321/5321, Ali Sharifara, UTA 15

Original

Mutants

Arithmetic Operator Replacement

Each occurrence of one of the arithmetic operators +, -,
*, /, **, and % is replace by each of the other operators,
and special operators leftOp, rightOp, and mod.
Example:
x = a + b
x = a – b,
x = a * b,
x = a / b,
x = a ** b,
x = a,
x = b,
x = a % b

CSE 4321/5321, Ali Sharifara, UTA 16

Mutants

Relational Operator Replacement

Each occurrence of one of the relational operators (<,
<=, >, >=, =, !=) is replaced by each of the other
operators and by falseOp and trueOp.
Example:
if (m > n)
if (m >= n),
if (m < n),
if (m <= n),
if (m == n),
if (m != n),
if (false),
if (true)

CSE 4321/5321, Ali Sharifara, UTA 17

Mutants

Conditional Operator Replacement

Each occurrence of each logical operator (&&, ||, &, |, ^)
is replaced by each of the other operators, and falseOp,
trueOp, leftOp, and rightOp.
Example:
if (a && b)
if (a || b),
if (a & b),
if (a | b),
if (a ^ b),
if (false),
if (true),
if (a),
if (b)

CSE 4321/5321, Ali Sharifara, UTA 18

Mutants

Shift Operator Replacement

Each occurrence of one of the shift operators
(<<, >>, and >>>) is replaced by each of the
other operators, and the special operator leftOp.
Example:
x = m << a

x = m >> a,
x = m >>> a,
x = m

CSE 4321/5321, Ali Sharifara, UTA 19

Mutants

Logical Operator Replacement

Each occurrence of each bitwise logical operator (&, |,
and ^) is replaced by each of the other operators, and
leftOp and rightOp.
Example:
x = m & n
x = m | n,
x = m ^ n,
x = m,
x = n

CSE 4321/5321, Ali Sharifara, UTA 20

Mutants

Assignment Operator

Each occurrence of one of the assignment operators
(+=, -=, *=, /=, %=, &=, !=, *=, <<==, >>=, >>>=) is
replaced by each of the other operators.
Example:
x += 3
x -= 3,
x *= 3,
x /= 3,
x %= 3,
…

CSE 4321/5321, Ali Sharifara, UTA 21

Mutants

Unary Operator Insertion

Each unary operator (+, -, !, ~) is inserted
before each expression of the correct type.
Example:
x = 3 * a

x = 3 * +a,
x = 3 * -a,
x = +3 * a,
x = -3 * a

CSE 4321/5321, Ali Sharifara, UTA 22

Mutants

Unary Operator Deletion

Each unary operator (+, -, !, ~) is deleted.
Example:
if !(a > - b)

if (a > -b),
if !(a > b)

CSE 4321/5321, Ali Sharifara, UTA 23

Mutants

Scalar Variable Replacement

Each variable reference is replaced by every
other variable of the appropriate type that is
declared in the current scope.
Example:
x = a * b
x = a * a,
a = a * b,
x = x * b,
x = a * x,
x = b * b,
b = a * b

CSE 4321/5321, Ali Sharifara, UTA 24

Mutant

Bomb Statement Replacement

Each statement is replaced by a special Bomb()
function
Example:
x = a * b

Bomb ()

CSE 4321/5321, Ali Sharifara, UTA 25

Mutant

A Simple Example

CSE 4321/5321, Ali Sharifara, UTA 26

Delta’s represent syntactic modifications. In fact, each of them
will be embedded in a different program version, a mutant.

Discussion of the Example

• Mutant 3 is equivalent as, at this point, minVal
and A have the same value

• Mutant 1: In order to find an appropriate test
case to kill it, we must

1. Reach the fault seeded during execution reachability)
1. Always true (i.e., we can always reach the seeded fault)

2. Cause the program state to be incorrect (Infection) • A <> B
3. Cause the program output and/or behavior to be Incorrect

(Propagation) (B<A) = false

CSE 4321/5321, Ali Sharifara, UTA 27

Strong Mutation Coverage

• Requires each mutant be strongly killed by at
least one test.

• Given a mutant m for a program P and a test
t, t is said to strongly kill m if and only if the
output of t on P is different from the output of t
on m.

CSE 4321, Jeff Lei, UTA 28

Assumptions

• What about more complex errors, involving
several statements?

• Let’s discuss two assumptions:
– Competent programmer assumption: They

write programs that are nearly correct
– Coupling effect assumption: Test cases that

distinguish all programs differing from a correct
one by only simple errors is so sensitive that they
also implicitly distinguish more complex errors

CSE 4321/5321, Ali Sharifara, UTA 29

Another Example

• Specification:
– The program should prompt the user for a

positive integer in the range 1 to 20 and
then for a string of that length.

– The program then prompts for a character
and returns the position in the string at
which the character was first found or a
message indicating that the character was
not present in the string.

CSE 4321/5321, Ali Sharifara, UTA 30

Code Chunk

CSE 4321/5321, Ali Sharifara, UTA 31

Mutation Testing Example: Test Set 1

CSE 4321/5321, Ali Sharifara, UTA 32

Mutation Testing Example: Mutant 1
(for Test Set 1)

• Replace Found := FALSE; with Found := TRUE;
• Re-run original test data set
• Note: It is better in Mutation Testing to make only one

small change at a time to avoid the danger of introduced
faults with interfering effects (masking)

• Failure: “character a appears at position 1” instead of
saying “character is not present in the string”

• Mutant 1 is killed (since Output <> Oracle)

CSE 4321/5321, Ali Sharifara, UTA 33

Mutation Testing Example: Mutant 2
(for Test Set 1)

• Replace i:=1; with x:=1;
• Will our original test data (test set 1) reveal the fault?

– No, our original test data set fails to reveal the fault (because the x value was 1 in the
second test case of test set 1)

• As a result of the fault, only position 1 in string will be searched for. So
what should we do?

• In our test set, we need to increase our input string length and search
for a character further along it

• We modify the test set 1 and create a new test set 2 (next) so as
– To preserve the effect of earlier tests
– To make sure the live mutant (#2) is killed

CSE 4321/5321, Ali Sharifara, UTA 34

Mutation Testing Example: Test Set 2

CSE 4321/5321, Ali Sharifara, UTA 35

Mutation Testing Example: Mutant 3
(for Test Set 2)

• i := i + 1; is replaced with i:= i +2;
• Again, our test data (test set 2) fails to kill the mutant
• We must augment the test set 2 and create a new test set 3

(next) to search for a character in the middle of the string
• With the new test set, mutant 3 can be killed
• Many other changes could be made on this short piece of code,

e.g., changing array reference, changing the <= relational
operator

CSE 4321/5321, Ali Sharifara, UTA 36

Mutation Testing Example: Test Set 3

CSE 4321/5321, Ali Sharifara, UTA 37

Example

boolean isEven (int x) {
if (x < 0)

x = 0 – x; // change to x = 0;
if (float) (x / 2) == ((float) x) / 2.0

return true;
else

return false;
}

Reachability: x < 0
Infection: x != 0
Propagation: x must be odd

CSE 4321, Jeff Lei, UTA 38

Mutation Testing Process

Input test
program

Create
mutants

Run
equivalence
heuristic

Generate
test cases

Run tests on P
and mutants

Eliminate
ineffective TCs

Threshold
reached?

P correct?Fix P

Define
threshold

Program P

No

YesNo

Yes
CSE 4321/5321, Ali Sharifara, UTA 39

Kinds of Mutation

• Value Mutations: These mutations involve changing the values
of constants or parameters (by adding or subtracting values etc),
e.g. loop bounds – being one out on the start or finish is a very
common error.

• Decision Mutations: These involves modifying conditions to
reflect potential slips and errors in the coding of conditions in
programs. E.g. a typical mutation might be replacing a > by a <
in a comparison.

• Statement Mutations: These might involve deleting certain
lines to reflect omissions in coding or swapping the order of
lines of code. There are other operations, e.g. changing
operations in arithmetic expressions. A typical omission might
be to omit the increment on some variable in a while loop.

• A wide range of mutation operators is possible…

CSE 4321/5321, Ali Sharifara, UTA 40

Examples: Value Mutation

CSE 4321/5321, Ali Sharifara, UTA 41

Examples: Decision Mutation

CSE 4321/5321, Ali Sharifara, UTA 42

Examples: Statement Mutation

CSE 4321/5321, Ali Sharifara, UTA 43

Steps of mutation testing

• Mutation testing has three main steps:

1. Mutant generation
2. Mutant execution
3. Result analysis

CSE 4321/5321, Ali Sharifara, UTA 44

Mutant generation

• Almost each executable instruction of the
original program can be mutated with several
mutation operators

• Therefore, the number of mutants generated
for a normal program may be huge

• The cost of compilation of all mutants may be
also significant

CSE 4321/5321, Ali Sharifara, UTA 45

Mutant generation: the MuJava
tool

•

CSE 4321/5321, Ali Sharifara, UTA 46

Mutant generation: the MuJava
tool

• In general, a parser is required to generate
mutants:

• a+b is translated into a-b, a*b, a/b
• Then, these program versions are compiled

• MuJava uses “Mutant Schemata Generation”
– With some operators, it substitutes (at bytecode

level) a+b by a OPERATOR b
– Then, all the program versions are directly

generated with no need of compiling

CSE 4321/5321, Ali Sharifara, UTA 47

Mutant execution

• In this case, the problem is the huge number
of test cases that must be executed: each
case is executed against the original program
and the mutants.

• For testing a simple BankingAccount class,
with 96 mutants and 300 test cases,
96*300=28,800 executions are required (with
at least 28,800 accesses to the database,
etc.)

CSE 4321/5321, Ali Sharifara, UTA 48

Mutant execution

• All the outputs must be compared to detect
which mutants are killed:

– In the BankingAccount example, the
outputs of the 300 test cases with the
original and the 96 mutants

– Actually, killed mutants can be removed for
further comparisons

CSE 4321/5321, Ali Sharifara, UTA 49

Mutant execution: MuJava

CSE 4321/5321, Ali Sharifara, UTA 50

Mutant execution: testooj

• testooj is a relatively user-friendly research
tool

• Generates test cases in several formats and
according to several generation strategies

• Executes test cases against versions and
gives some additional results

CSE 4321/5321, Ali Sharifara, UTA 51

Result analysis

• The major difficulties appear with the detection of
functionally equivalent mutants

CSE 4321/5321, Ali Sharifara, UTA 52

Result analysis

• A functionally equivalent mutant is a mutant which
never will be killed

• Actually, the “fault” introduced is not a fault, but a
code de-optimization

CSE 4321/5321, Ali Sharifara, UTA 53

Result analysis

• The example is an occurrence of the AOIS operator

CSE 4321/5321, Ali Sharifara, UTA 54

Result analysis

• Other strategies rely on weak mutation:
– “Strong” mutation has three conditions:

• Reachability (the instruction must be reached)
• Necessity (once the sentences has been reached,

the test case must cause an erroneous state on the
mutant)

• Sufficiency (the erroneous state must be
propagated to the output)

• Instead of observing the output of each test case, the
idea of weak mutation is to detect changes in
intermediate states (reachability + necessity)

CSE 4321/5321, Ali Sharifara, UTA 55

Mutation Testing: Discussion

• It measures the quality of test cases
• A tool’s slogan: “Jester - the JUnit test tester”.
• It provides the tester with a clear target (mutants to kill)
• Mutation testing can also show that certain kinds of faults are

unlikely (those specified by the fault model), since the
corresponding test case will not fail

• It does force the programmer to inspect the code and think of
the test data that will expose certain kinds of faults

• It is computationally intensive, a possibly very large number of
mutants is generated: random sampling, selective mutation
operators (Offutt)

• Equivalent mutants are a practical problem: It is in general an
undecidable problem

• Probably most useful at unit testing level

CSE 4321/5321, Ali Sharifara, UTA 56

Mutation Testing Tools

• Tools – MuClipse: perhaps the
• best tool out there…

– Jester: A Mutation Testing tool in Java (Open Source)
– Pester: A Mutation Testing tool in Python (Open Source)
– Nester: A Mutation Testing tool in C# (Open Source)

CSE 4321/5321, Ali Sharifara, UTA 57

Offutt’s Mutations for Inter-Class
Testing

CSE 4321/5321, Ali Sharifara, UTA 58

Conclusions

• Mutation is an excellent testing technique
• Mutation testing can be a useful addition to

the test process.
• From the point of view of research, it is

mature
• From the industry point of view, user friendly

tools are required
• Mutation is also applied at other levels: black-

box, components, web services, models…

CSE 4321/5321, Ali Sharifara, UTA 59

	
	Mutation Testing
	What is Mutation Testing ?
	The Goal of Mutation Testing
	Mutation Testing - Example
	A program and four mutants - Example
	Mutation Coverage
	Different types of Mutants
	Example of an Equivalent mutant
	Basic Ideas (I)
	Basic Ideas (II)
	Some Mutation Operators
	Example of Mutation Operators(I)
	Example of Mutation Operators(II)
	Absolute Value Insertion
	Arithmetic Operator Replacement
	Relational Operator Replacement
	Conditional Operator Replacement
	Shift Operator Replacement
	Logical Operator Replacement
	Assignment Operator
	Unary Operator Insertion
	Unary Operator Deletion
	Scalar Variable Replacement
	Bomb Statement Replacement
	A Simple Example
	Discussion of the Example
	Strong Mutation Coverage
	Assumptions
	Another Example
	Code Chunk
	Mutation Testing Example: Test Set 1
	Mutation Testing Example: Mutant 1 (for Test Set 1)
	Mutation Testing Example: Mutant 2 (for Test Set 1)
	Mutation Testing Example: Test Set 2
	Mutation Testing Example: Mutant 3 (for Test Set 2)
	Mutation Testing Example: Test Set 3
	Example
	Mutation Testing Process
	Kinds of Mutation
	Examples: Value Mutation
	Examples: Decision Mutation
	Examples: Statement Mutation
	Steps of mutation testing
	Mutant generation
	Mutant generation: the MuJava tool
	Mutant generation: the MuJava tool
	Mutant execution
	Mutant execution
	Mutant execution: MuJava
	Mutant execution: testooj
	Result analysis
	Result analysis
	Result analysis
	Result analysis
	Mutation Testing: Discussion
	Mutation Testing Tools
	Offutt’s Mutations for Inter-Class Testing
	Conclusions

