CSE UTA

Mutation Testing

Software Testing

CSE 4321/5321, Ali Sharifara, UTA

CSE_UTA Mutation Testing

e What is mutation testing?
e Mutation operators

e Steps of mutation testing
e Conclusions

CSE 4321/5321, Ali Sharifara, UTA

ceevta \What I1s Mutation Testing ?

e Mutation Testing Is a type of software testing where
we mutate (change) certain statements in the source
code and check if the test cases are able to find the
errors.

« Each mutant is a copy of the program under test,
usually with a small syntactic change, which is
Interpreted as a fault

— It is a type of white box testing which is mainly
used for unit testing.

— The changes in mutant program are kept
extremely small, so it does not affect the overall
objective of the program.

CSE 4321/5321, Ali Sharifara, UTA 3

cseuta The Goal of Mutation Testing

e The goal of Mutation Testing Is to assess the
guality of the test cases which should be robust
enough to fail mutant code.

— In other words, the goal of mutation testing is to find
faults on the system under test

e Thus, a test suite is more or less effective
depending on its ability to find faults on the
system under test

e This method is also called as Fault based testing
strategy as it involves creating fault in the
program

CSE 4321/5321, Ali Sharifara, UTA 4

cseuta Mutation Testing - Example

+ Symiaric
chhange —

m : syntactically correct

CSE 4321/5321, Ali Sharifara, UTA 5

CSECUTA A program and four mutants - Example

Version Code

int sum(int a, int b) {
P (original) return a + b;

}

int sum(int a, int b) {
Mutant 1 returna - b;

) t

int sum(int a, int b) {
Mutant 2 returna * b;

)

int sum(int a, int b) {
Mutant 3 returna/ b;

) t

int sum(int a, int b) {
Mutant 4 return a + b++;

)

CSE 4321/5321, Ali Sharifara, UTA

Test data (a,b)
(1, 1) (0, 0) (-1,0) | (-1,-1)

P 2 0 -1 -2

Mi 0 0 -1 0

M2 1 0 0 1

M3 1 Error | Error 1

M4 2 0 -1 -2

CSECUTA Mutation Coverage

 Given a mutant m of a derivation d, a test Is
said to kill the mutant if and only If this test
produces a different output on m than on d.

e Mutation coverage requires every mutant to
be killed by at least one test.

CSE 4321/5321, Ali Sharifara, UTA

csewta Different types of Mutants

« Stillborn mutants: Syntactically incorrect,
killed by compiler

— Example : x=a++Db
 Trivial mutants: Killed by almost any test case

e Equivalent mutant: Always acts in the same
behavior as the original program,

— Example : x=a + b and x =a - (-b)

 Those mutants are interesting which behave differently than the
original program, and we do not have test cases to identify them
(to cover those specific changes)

CSE 4321/5321, Ali Sharifara, UTA 8

cseuta Example of an Equivalent mutant

Original program

int index=0;
while: [...)

{
index++;
if (index==10)
break:;
3

int index=0;

while .l
{
index++;
if (index>=
break;
h

CSE 4321/5321, Ali Sharifara, UTA

10)

[- . E T T

CSE_UTA Basic ldeas (I)

In Mutation Testing:

1. We take a program and a test suite generated for
that program (using other test techniques)

2. We create a number of similar programs (mutants),
each differing from the original in one small way, i.e.,
each possessing a fault
— E.g., replacing an addition operator by a multiplication

operator

3. The original test data are then run on the mutants

4. If test cases detect differences in mutants, then the
mutants are said to be dead (killed), and the test set
IS considered adequate

CSE 4321/5321, Ali Sharifara, UTA 10

CSE_UTA Basic Ideas (1)

e A mutant remains live either

— Because it is equivalent to the original program
(functionally identical although syntactically
different — called an equivalent mutant) or,

— The test set is inadequate to kill the mutant

* In the latter case, the test data need to be augmented
(by adding one or more new test cases) to kill the live
mutant

« For the automated generation of mutants, we use
mutation operators, that is predefined program
modification rules (i.e., corresponding to a fault
model)

CSE 4321/5321, Ali Sharifara, UTA 11

CSE UTA

Some Mutation Operators

Operator Description
ABS Substitution of a variable x by abs(x)
ACR Substitution of a variable array reference by a constant
AOR Arithmetic operator replacement (a+b by a-b)
CRP Substitution of a constant value
ROR Relational operator replacement (A and B by A or B)
RSR Return statement substitution (return 5 by return o)
SDL Removal of a sentence
UOI Unary operator insertion (instead of x, write —x)

CSE 4321/5321, Ali Sharifara, UTA

12

cseutAa Example of Mutation Operators(l)

» Constant replacement

e Scalar variable replacement

e Scalar variable for constant replacement

» Constant for scalar variable replacement

* Array reference for constant replacement

» Array reference for scalar variable replacement
» Constant for array reference replacement

» Scalar variable for array reference replacement
* Array reference for array reference replacement
* Source constant replacement

« Data statement alteration

 Comparable array name replacement

* Arithmetic operator replacement

* Relational operator replacement

* Logical connector replacement

* Absolute value insertion

* Unary operator insertion

» Statement deletion

* Return statement replacement

CSE 4321/5321, Ali Sharifara, UTA

13

csEutAa Example of Mutation Operators(l1)

e Specific to object-oriented programming
languages:

Replacing a type with a compatible subtype (inheritance)
Changing the access modifier of an attribute, a method
Changing the instance creation expression (inheritance)

Changing the order of parameters in the definition of a
method

Changing the order of parameters in a call
Removing an overloading method
Reducing the number of parameters
Removing an overriding method
Removing a hiding Field

Adding a hiding field

CSE 4321/5321, Ali Sharifara, UTA 14

CSE_UTA Absolute Value Insertion

Each arithmetic expression is modified by
functions abs(), negAbs(), and faillOnZero().

Example:

X = 3 * a <« Original

L

x = 3 * abs(a),

x = 3 * - abs(a), = Mutants
x = 3 * failOnZero(a);

—

CSE 4321/5321, Ali Sharifara, UTA

cseUTA Arithmetic Operator Replacement

Each occurrence of one of the arithmetic operators +, -,
* [, **, and % Is replace by each of the other operators,
and special operators leftOp, rightOp, and mod.

Example:
X=a+b
X=a—b, |
X=a*Dh,
x=alb,
x =a** b, g Mutants
X = a,

X = Db,
Xx=a%b

—

CSE 4321/5321, Ali Sharifara, UTA 16

cseutA Relational Operator Replacement

Each occurrence of one of the relational operators (<,
<=, >, >=, =, I=)is replaced by each of the other
operators and by falseOp and trueOp.

Example:

if (m >n)

if (m >=n),”
if (m < n),

if (m <=n),
if (m==n), .~ Mutants
if (m !=n),
if (false),
if (true)

CSE 4321/5321, Ali Sharifara, UTA 17

cseutAa Conditional Operator Replacement

Each occurrence of each logical operator (&&, ||, &, |, ™)
IS replaced by each of the other operators, and falseOp,
trueOp, leftOp, and rightOp.

Example:

If (a&& b)
if (@] b), |
If (a & b),

if (a | b),

if (@™ b),

If (false),

If (true),

if (a),

= Mutants

if (b)

CSE 4321/5321, Ali Sharifara, UTA 18

csewta Shift Operator Replacement

Each occurrence of one of the shift operators
(<<, >>, and >>>) Is replaced by each of the
other operators, and the special operator leftOp.
Example:
X=m<>a, |
X=m>>>a, = Mutants
X=m

CSE 4321/5321, Ali Sharifara, UTA 19

csewta | ogical Operator Replacement

Each occurrence of each bitwise logical operator (&, |,
and) iIs replaced by each of the other operators, and

leftOp and rightOp.

Example:
X=mé&n
X=m]|n,
X=m"n,

~— Mutants

CSE 4321/5321, Ali Sharifara, UTA

20

CSE_UTA Assignment Operator

Each occurrence of one of the assignment operators
(+=, -=, *=, |=, %=, &=, I=, *=, <<==,>>=,>>>2) IS
replaced by each of the other operators.

Example:

X+=3
X-=3,
X *= 3,

X /=3, p Mutants
X %= 3,

CSE 4321/5321, Ali Sharifara, UTA

CSECUTA Unary Operator Insertion

Each unary operator (+, -, !, ~) Is inserted
before each expression of the correct type.
Example:
X=3%a
X=3%*+a,
—_ * _
Xx=3%-a, L Mutants
X=+4+37*a,
X=-3*a

CSE 4321/5321, Ali Sharifara, UTA 22

CSE_UTA Unary Operator Deletion

Each unary operator (+, -, !, ~) Is deleted.
Example:
if I(a>-Db)

if (a > -b),
£) (a S b) Mutants

CSE 4321/5321, Ali Sharifara, UTA

23

cseuta Scalar Variable Replacement

Each variable reference is replaced by every
other variable of the appropriate type that is
declared in the current scope.

Example:

X=a*b

*

—

*

>(.
o O X O oo

~— Mutant

O X X X Q© X
1

» T O X @ O
>(.

*

CSE 4321/5321, Ali Sharifara, UTA 24

cseutAa Bomb Statement Replacement

Each statement is replaced by a special Bomb()
function

Example:
X=a*b

Bomb () } Mutant

CSE 4321/5321, Ali Sharifara, UTA 25

CSECUTA A Simple Example

Original Function

int Min (int A, int B)
int minVal:

I
|

minVal = A;

if (B < A) Al
|

minVal = B: A2
| A3

return (minVal);
} // end Min
A4

=

A6

With Embedded Muatants

int Min (int A, int B)
int minVal:

{

minVal =

A
minVal = B;

it (B < A
if (B > A
if (B < minVal)

i

I'

minVal = E;

Bomb();

minVal = A ;

minVal = failOnZero (B);

return (minVal)
v // end Min

Delta’s represent syntactic modifications. In fact, each of them
will be embedded in a different program version, a mutant.

CSE 4321/5321, Ali Sharifara, UTA 26

cseuta Discussion of the Example

 Mutant 3 is equivalent as, at this point, minVal
and A have the same value

e Mutant 1: In order to find an appropriate test

case to kill it, we must
1. Reach the fault seeded during execution reachability)
1. Always true (i.e., we can always reach the seeded fault)
2. Cause the program state to be incorrect (Infection) « A<>B

3. Cause the program output and/or behavior to be Incorrect
(Propagation) (B<A) = false

CSE 4321/5321, Ali Sharifara, UTA 27

sewta Strong Mutation Coverage

 Requires each mutant be strongly killed by at
least one test.
« Given a mutant m for a program P and a test

t, tis said to strongly kill m if and only if the
output of t on P Is different from the output of t

on m.

CSE 4321, Jeff Lei, UTA 28

CSE_UTA Assumptions

 What about more complex errors, involving
several statements?

e Let’s discuss two assumptions:

— Competent programmer assumption: They
write programs that are nearly correct

— Coupling effect assumption: Test cases that
distinguish all programs differing from a correct
one by only simple errors is so sensitive that they
also implicitly distinguish more complex errors

CSE 4321/5321, Ali Sharifara, UTA 29

CSE_UTA Another Example

e Specification:

— The program should prompt the user for a
positive integer in the range 1 to 20 and
then for a string of that length.

— The program then prompts for a character
and returns the position in the string at
which the character was first found or a
message indicating that the character was
not present in the string.

CSE 4321/5321, Ali Sharifara, UTA 30

CSE_UTA Code Chunk

found := FALSE;

i = 1;
while (not (found)) and (i <= x) do begin // x is the length
if a[i] = c¢ then
found := TRUE
else
i :=1+ 1
end
if (found)

print (“Character %c appears at position %i”);
else
print (“Character is not present in the string”);

end

CSE 4321/5321, Ali Sharifara, UTA 31

CSECUTA Mutation Testing Example: Test Set 1

Input

Response

Expected Output
(oracle)

25

The input integer
should be between 1
and 20

found

Character x appears at
position 1

not found

Character is not present
in the string

CSE 4321/5321, Ali Sharifara, UTA

32

Mutation Testing Example: Mutant 1

CSE_UTA
(for Test Set 1)

 Replace Found := FALSE; with Found := TRUE;
e Re-run original test data set

* Note: It is better in Mutation Testing to make only one
small change at a time to avoid the danger of introduced
faults with interfering effects (masking)

 Failure: “character a appears at position 1” instead of
saying “character Is not present in the string”

e Mutant 1 is killed (since Output <> Oracle)

| found := FELSET TRUE:; ‘
I =17

while (not (found)) and (i <= x) do begin
if a[i] = e then
found := TRUE
aelse
i=4i+1
and
if (found)
print (“Character %c appears at position %i") ;
alse
print (“Character is not present in the string”);
and

CSE 4321/5321, Ali Sharifara, UTA 33

Mutation Testing Example: Mutant 2

CSE_UTA
(for Test Set 1)

 Replace i:=1; with x:=1;
« Will our original test data (test set 1) reveal the fault?

— No, our original test data set fails to reveal the fault (because the x value was 1 in the
second test case of test set 1)

» As a result of the fault, only position 1 in string will be searched for. So
what should we do?

* In our test set, we need to increase our input string length and search
for a character further along it

 We modify the test set 1 and create a new test set 2 (next) so as
— To preserve the effect of earlier tests
— To make sure the live mutant (#2) is killed

Int i=1;

found := FALSE:
i=1; = :=1;
while (not(found)) and (i <= x) do begin
if a[i] = ¢ then
found := TRUE
alse
i=4i+1

end
if (found)

print (“Character %c appears at position %i");
alse

print (“Character is not present in the string”):

and 34

CSECUTA Mutation Testing Example: Test Set 2

Input Expected
b4 a c Actual Output
output
Respon
se
25 Input Integer
between 1 and
20
1 X X found Character x
appears at
position 1
1 X a not Character does
found not occur in
string
3 XCv v Not Character v
found appears at
position 3
(this test case will kill
the mutant in the
previous slide)

CSE 4321/5321, Ali Sharifara, UTA

35

CSE UTA

Mutation Testing Example: Mutant 3
(for Test Set 2)

e |:=1+1;Isreplaced with ;=1 +2;

Again, our test data (test set 2) fails to kill the mutant

We must augment the test set 2 and create a new test set 3
(next) to search for a character in the middle of the string

With the new test set, mutant 3 can be killed

Many other changes could be made on this short piece of code,
e.g., changing array reference, changing the <= relational
operator

found := FALSE;

i :=1;

while (not(found)) and (i <= x) do begin
if a[i] = c then

found := TRUE
e
TB::=1+1—2
end
if (found)

print (“Character %c appears at position %i”);
else

print (“Character is not present in the string”);
end

CSE 4321/5321, Ali Sharifara, UTA 36

CSECUTA Mutation Testing Example: Test Set 3

Input

Response

Expected Output

25

Input Integer between 1
and 20

found

Character x appears at
position 1

not found

Character does not occur
in string

xCv

Found

Character v appears at
position 3

xCv

Not found

Character C appears at
position 2
(this test case will kill the

mutant in the previous
slide)

CSE 4321/5321, Ali Sharifara, UTA

37

CSE UTA

Example

boolean isEven (int x) {
if (x <0)
X =0 -x; // change to x = 0;
if (float) (x / 2) == ((float) x) / 2.0
return true;
else
return false;

Reachability: x <0
Infection: x!=0
Propagation: x must be odd

CSE 4321, Jeff Lei, UTA

38

CSEUTA Mutation Testing Process
Program P
— | Inputtest | __ | Create . Run

program mutants equivalence
heuristic
Generate Run tests on P
test cases and mutants

Define Threshold Eliminate

threshold reached? ineffective TCs

No
Fix P k P correct?

CSE 4321/5321, Ali Sharifara, UTA

39

CSE_UTA Kinds of Mutation

Value Mutations: These mutations involve changing the values
of constants or parameters (by adding or subtracting values etc),

e.g. loop bounds — being one out on the start or finish is a very
common error.

Decision Mutations: These involves modifying conditions to
reflect potential slips and errors in the coding of conditions in
programs. E.g. a typical mutation might be replacing a > by a <
In a comparison.

Statement Mutations: These might involve deleting certain
lines to reflect omissions in coding or swapping the order of
lines of code. There are other operations, e.g. changing
operations in arithmetic expressions. A typical omission might
be to omit the increment on some variable in a while loop.

A wide range of mutation operators is possible...

CSE 4321/5321, Ali Sharifara, UTA 40

csevta Examples: Value Mutation

public int Segment (int t[], int 1, int u){
// Assumes t is in ascending order, and l<u,
// counts the length of the segment
// of t with each element 1l<t[i]<u
int k = 0

; \I Mutating to k=1 causes miscounting

i<t.length && t[i]l<u; i++){

A Nt J=
if(tfi

}

} turn (k) . | Here we might mutate the code to read i=1,
\ e i a test that would kill this would have t
length 1 and have | < t[0] < u, then the

program would fail to count t[0] and return
O rather than 1 as a result

CSE 4321/5321, Ali Sharifara, UTA 41

csewta Examples: Decision Mutation

public int Segment (int t[], int 1, int u) {
// Assumes t is in ascending order, and l<u,
// counts the length of the segment
// of t with each element 1l<t[i]<u
int k = 0;

Mutating to t[i]>u will cause miscounting
.
for (int i=0; i<t.length && t[i]l<u; i++) {

if(t[i]>1){
K++;
}
J

return (k) ;

We can model “one-off” errors in the loop bound by changing
this condition to i<=t.length - provided array bounds are
checked exactly this will provoke an error on every execution.

CSE 4321/5321, Ali Sharifara, UTA 42

cseuta Examples: Statement Mutation

public int Segment (int t[], int 1, int u){
// Assumes t is in ascending order, and l<u,
// counts the length of the segment
// of t with each element 1l<t[i]<u
int k = 0;

for (int i1=0; i<t.length && t[il<u; 1i++){

if (t[1]1>1) {
K++;
}
}

return (k

Here we might consider deleting this statement (then count
would be zero for all inputs, we might also duplicate this line in
which case all counts would be doubled.

CSE 4321/5321, Ali Sharifara, UTA 43

CSE_UTA Steps of mutation testing

e Mutation testing has three main steps:
1. Mutant generation

2. Mutant execution
3. Result analysis

CSE 4321/5321, Ali Sharifara, UTA

44

CSEUTA Mutant generation

« Almost each executable instruction of the
original program can be mutated with several
mutation operators

* Therefore, the number of mutants generated
for a normal program may be huge

 The cost of compilation of all mutants may be
also significant

CSE 4321/5321, Ali Sharifara, UTA 45

Mutant generation: the MuJava
tool

CSEOUTA

| Mutants Generator | Traditional Mutants Viewer | Class Mutants Viewer |

M Utants (and Select a class : !PHFEI.TI'BHIIIET]I‘PE i bt |
Dperﬂtﬂrﬁ) Select amethed : |Allmethod -
mois_1 - _
A0IS_2 (line 3T) v=>=+ :-
‘:I'MS_S = Original
IAOIS 4 37 =¥ =
ADIL_1 = | 3R]
Lol_2 30
ADIS_5 40 public void setd{ inty)
Number of et " .
ot o 7 2 =, Fault introduced H
JADIU_2
operator { 45 publicvold seti intv)
|a0IS_10 47 k=¥
|a0IS_11 8)
|aoIs_12 10
lAois_ 9 50 public vold calculaleTyped
Total: 262 TE, 51 | -
i] o (12
|aois_107 = _ . =
Number o OIS 108 ii public static final int SCALENE = 1; MOdlﬁEd SEﬂtEﬂCE_—
mutants |aois_109 25 public static final int ISOSCELES = 2
|aoIs_110 26
AOIS_115 27 public static final int EQUILATERAL = 3; H
ADIS_116 28 i
ADIS_117 23 public static final int MO_TRIANGLE =8¢
|acis_118 30 o
;AOIS-_HQ g; JJIJNIE TriangleTyped
|A0IS_120 5 A4
AOIS_121 34
|AOIS_122 35 public void 5
|ADIS_123 kR |
ADIS_124 E 37 =4y 1]

CSE 4321/5321, Ali Sharifara, UTA 46

CSECUTA

Mutant generation: the MuJava
tool

* In general, a parser is required to generate
mutants:

e a+tb is translated into a-b, a*b, a/b
 Then, these program versions are compiled

e MuJdava uses “Mutant Schemata Generation”

— With some operators, it substitutes (at bytecode
level) a+b by a OPERATOR b

— Then, all the program versions are directly
generated with no need of compiling

47

CSE_UTA Mutant execution

* In this case, the problem is the huge number
of test cases that must be executed: each
case Is executed against the original program
and the mutants.

« For testing a simple BankingAccount class,
with 96 mutants and 300 test cases,
96*300=28,800 executions are required (with
at least 28,800 accesses to the database,
etc.)

CSE 4321/5321, Ali Sharifara, UTA 48

CSE_UTA Mutant execution

 All the outputs must be compared to detect
which mutants are killed:

— In the BankingAccount example, the

outputs of t
original and

— Actually, kil

ne 300 test cases with the
the 96 mutants

ed mutants can be removed for

further com

narisons

CSE 4321/5321, Ali Sharifara, UTA 49

CSE UTA

Mutant execution: MuJava

Mutants

| TestCase Runner _| Traditional Mutants Viewer | Class Mutants Viewer

_ Execute only class mutanis

) Execute only traditional mutants

® Execute all mutanis

Class

Clags ;paper.'lllangﬂyps

Method :/All method

TestCase: !I.'Iﬂmmannleupa_!

e,

Time-Out ; |3 seconds

Total : 262 Total: 6

Traditional Mutants Result

Class Mutam's Resuli

Live Mutants# | 32 Live Mutants # (]
Killed Mutants # | 230 Killed Mutanis# | 2
Total Mutants # | 262 Total Mutants # | &
“WulantScore | B7.0% Mulant Score | 33.0% |

Live Hilled Live Killed

ADIS_3 - nois_1 '~ |lJsD_1 100_1

ADIS_4 ROIS_2 - JSI1_1 JSI4

AOIS_T ROIJ_1 = JSI 2

noIS_8 Lol_2 Jsi_3

nois_11 ROIS 5

nois_12 ADIS_6

AOIS_153 ACIU_2

ROIS_154 || LOI4

nOIS_23 ADIS_10

hoOIS_24 ADIS_9

nols_3s AOIU_3

OIS _36 LOL &

nOIS_47 AOIS_107

AOIS_ 48 | | AOIS_108

AOMI_14 ROIS_109

A _4 ROIS_110

AOI_5 ROIS_115

now_7 ROIS_116

no_g AOIS_117

COR_4 AOIS_118

LOI_?3 < RoIS_119 |

under test

"l-__--_
Test suite

Results

area

CSE 4321/5321, Ali Sharifara, UTA

50

CSE_UTA Mutant execution: testooj

e testooj Is a relatively user-friendly research
tool

e Generates test cases in several formats and
according to several generation strategies

* EXecutes test cases against versions and
gives some additional results

CSE 4321/5321, Ali Sharifara, UTA

51

« The major difficulties appear with the detection of

Result analysis

functionally equivalent mutants

A program and four mutants

Vemion Code

ut s a, mt b
P (onginal) retuma + b,

i

it s &, B |
Mutad 1 rebama- by

} 4

imt s ivd &, ot b {
Mhatant 2 mtuma*h;

} t

it s ot a, mt b {
Mutant 3 rebama /b,

i 4

irt sundind & ot b) 4
Mutat 4 1'n=_-l'l:|.':‘rl.a+'I:n+;‘-iI

}

Test duta (a,b)
4D | 0,0 | LD | ¢L-D
2 0 -1 -2
0 0 -1 0
1 0 0 1
1 Emor | Emor 1
2 0 -1 -2

CSE 4321/5321, Ali Sharifara, UTA

52

CSECUTA Result analysis

« A functionally equivalent mutant is a mutant which
never will be killed

« Actually, the “fault” introduced is not a fault, but a
code de-optimization

Version Code Tect data (a b’
int sam(int 3, imtb) { L, | (o, 1, 1,-1
P (otigiral) rbama + b: LD | 0.0 | (1,0 | ¢1,-1)
} F 2 0 -1 -2
mt sam(int a, mth) {
Mutant 4 retama + b++ LIt 2 0 -1 -2
H

CSE 4321/5321, Ali Sharifara, UTA

53

CSECUTA Result analysis

 The example is an occurrence of the AOIS operator

Version Code Tect data (a b))
ot st 3, ot b) { (LD | (0,0 | (1,00 | (-1,-D
P (onginal) retama + b
} P 2 0 -1 2
int sumf(irt a, inth){
Mutant 4 retarma + b+, LIt 2 0 -1 22
}

CSE 4321/5321, Ali Sharifara, UTA

CSE UTA Result analysis

e Other strategies rely on weak mutation:

— “Strong” mutation has three conditions:
e Reachability (the instruction must be reached)

* Necessity (once the sentences has been reached,
the test case must cause an erroneous state on the
mutant)

« Sufficiency (the erroneous state must be
propagated to the output)

* Instead of observing the output of each test case, the
iIdea of weak mutation is to detect changes in
Intermediate states (reachability + necessity)

CSE 4321/5321, Ali Sharifara, UTA 55

CSE UTA Mutation Testing: Discussion

* It measures the quality of test cases
 Atool's slogan: “Jester - the JUnit test tester”.
» |t provides the tester with a clear target (mutants to Kill)

* Mutation testing can also show that certain kinds of faults are
unlikely (those specified by the fault model), since the
corresponding test case will not fail

* |t does force the programmer to inspect the code and think of
the test data that will expose certain kinds of faults

» |tis computationally intensive, a possibly very large number of
mutants is generated: random sampling, selective mutation
operators (Offutt)

 Equivalent mutants are a practical problem: It is in general an
undecidable problem

* Probably most useful at unit testing level

CSE 4321/5321, Ali Sharifara, UTA 56

CSE UTA

Mutation Testing Tools

e Tools — MuClipse: perhaps the
e best tool out there...

¥ brectories) NUIM] %, Classpath | =4 e | B Source | P Environment | T Common

Traditional Cperators
I aorB [AORS
F oo F aols
[aoou T &0DS
Croe T coR
[cop: [cot
[Csor T Lom
Wl [oo
" Ases

[~Class-Lewvel Operators

Cm Cwmo T ice

[1op [R [151

CmEp Cipc C e ——
[FMp I ppo [pcr | | Al Traditionsl
" pcc T ipcp T opev imrradnw
omr I oMo [oan I.ﬂllclnﬂ-lwd
Cm [C'xn s |H:|-Clersts~lc1.rd
@ [['oc |
" eon T EoC [T Eam

[v EMM

— Jester: A Mutation Testing tool in Java (Open Source)
— Pester: A Mutation Testing tool in Python (Open Source)
— Nester: A Mutation Testing tool in C# (Open Source)

CSE 4321/5321, Ali Sharifara, UTA

57

CSE UTA

Offutt’s Mutations for Inter-Class

Testing

Language Feature | Operator Description
Access Control AMC Access modifier change
[HD Hiding variable deletion
[HI Hiding variable insertion
10D Overriding method deletion
Inheritance 10P overriding method calling position change
I0R Overriding method rename
ISK super keyword deletion
IPC Explicit call of a parent’s constructor deletion
PNC new method call with child class type
PMD Instance variable declaration with parent class type
Polymorphism PPD Parameter variable declaration with child class type
PRV Reference assignment with other comparable type
OMR Overloading method contents change
Overloading OMD Overloading method deletion
OAO Argument order change
OAN Argument number change
JTD this keyword deletion
Java-Specific JSC static modifier change
Features JID Member variable initialization deletion
JDC Java-supported default constructor creation
EOA Reference assignment and content assignment replacement
Common EOC Reference comparison and content comparison replacement
Programming Mistakes EAM Accessor method change
EMNM Modifier method change

CSE 4321/5321, Ali Sharifara, UTA

58

CSE_UTA Conclusions

e Mutation is an excellent testing technique

e Mutation testing can be a useful addition to
the test process.

 From the point of view of research, it is
mature

e From the industry point of view, user friendly
tools are required

e Mutation is also applied at other levels: black-
box, components, web services, models...

59

	
	Mutation Testing
	What is Mutation Testing ?
	The Goal of Mutation Testing
	Mutation Testing - Example
	A program and four mutants - Example
	Mutation Coverage
	Different types of Mutants
	Example of an Equivalent mutant
	Basic Ideas (I)
	Basic Ideas (II)
	Some Mutation Operators
	Example of Mutation Operators(I)
	Example of Mutation Operators(II)
	Absolute Value Insertion
	Arithmetic Operator Replacement
	Relational Operator Replacement
	Conditional Operator Replacement
	Shift Operator Replacement
	Logical Operator Replacement
	Assignment Operator
	Unary Operator Insertion
	Unary Operator Deletion
	Scalar Variable Replacement
	Bomb Statement Replacement
	A Simple Example
	Discussion of the Example
	Strong Mutation Coverage
	Assumptions
	Another Example
	Code Chunk
	Mutation Testing Example: Test Set 1
	Mutation Testing Example: Mutant 1 (for Test Set 1)
	Mutation Testing Example: Mutant 2 (for Test Set 1)
	Mutation Testing Example: Test Set 2
	Mutation Testing Example: Mutant 3 (for Test Set 2)
	Mutation Testing Example: Test Set 3
	Example
	Mutation Testing Process
	Kinds of Mutation
	Examples: Value Mutation
	Examples: Decision Mutation
	Examples: Statement Mutation
	Steps of mutation testing
	Mutant generation
	Mutant generation: the MuJava tool
	Mutant generation: the MuJava tool
	Mutant execution
	Mutant execution
	Mutant execution: MuJava
	Mutant execution: testooj
	Result analysis
	Result analysis
	Result analysis
	Result analysis
	Mutation Testing: Discussion
	Mutation Testing Tools
	Offutt’s Mutations for Inter-Class Testing
	Conclusions

