
NICE FUNCTIONS

GILBERT STRANG

I. Linear Differential Equations

In teaching differential equations, we constantly meet exponentials
and polynomials and products like (t+ 1)e2t. Sines and cosines are in-
cluded, coming from complex exponentials eiωt. These functions appear
everywhere we look—as solutions y(t), as right hand sides f(t), and as
inverse Laplace transforms. The equations themselves are linear with
constant coefficients:

aN
dNy

dtN
+ · · ·+ a1

dy

dt
+ a0y = f(t) (1)

Then the nice functions appear in all the crucial places:

1. They solve the homogeneous equation (with f(t) = 0).

2. They are the successful functions f(t) in the method of undeter-
mined coefficients: Look for y(t) in a finite-dimensional space
that contains f(t), and match the left side of equation (1) to
f(t) within that space.

For f(t) = est, the space contains the multiples y(t) = Aest.
In this one-dimensional space, the equation gives

(aNs
N + · · ·+ a1s+ a0)Ae

st = est (2)

If s is not a root of that characteristic polynomial C(s), the
number A is determined:

y(t) = Aest, A = transfer function =
1

C(s)
.

When s is an m-fold root of C(s), we find y(t) in the space
spanned by est, test, . . . , tmest. A crucial property is that the
function space is invariant under differentiation. Then the
method of undetermined coefficients can succeed. We will iden-
tify all such spaces.
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3. The Laplace transform of (1) is

C(s)Y (s)− (polynomial Q(s)) = F (s) (3)

Y (s) and F (s) are the transforms of y(t) and f(t), and Q(s)
has degree less than N. Q comes from the initial conditions on
y, dy/dt, . . . , dN−1y/dtN−1.

When F ≡ 0, the transform Y (s) is a rational function Q/C
with Y (∞) = 0. This is the homogeneous case 1 above.

When F (s) is a rational function with F (∞) = 0, the same
is true of Y (s). This will be the inhomogeneous case 2.

When f(t) is the delta function δ(t), its transform is F (s) =
1. Again Y (s) is rational with Y (∞) = 0. Then the inverse
transform—which will be the fundamental solution, the Green’s
function, the impulse response—is again a nice function. We
now describe those functions, and the spaces invariant under
differentiation.

II. Finite-dimensional spaces of nice functions

Each complex exponent r and polynomial degree m− 1 = 0, 1, 2, . . .
produce an m-dimensional space of polynomials times ert :

N(r,m) =
{

(cm−1t
m−1 + · · ·+ c1t+ c0)e

rt
}
. (4)

Key point: The derivative of a function in N(r,m) is also in N(r,m).
The theorem we want (proved below and probably not original) is
that the direct sums of these subspaces N(r,m) produce all the finite-
dimensional function spaces invariant under differentiation.

A function is “nice” if it is a combination of polynomials times ex-
ponentials. Thus it is a sum z1 + · · ·+ zj with zi in N(ri,mi).

The homogeneous equation. The N -dimensional subspace of ho-
mogeneous solutions is the sum of subspaces

H = N(r1,m1)⊕ · · · ⊕N(rk,mk)

where r1, . . . , rk are the roots of the characteristic polynomial C(s) with
multiplicities m1, . . . ,mk adding to N. Thus all homogeneous solutions
are nice functions. We take this as known.
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The inhomogeneous equation. Suppose f(t) is in a space of nice
functions: a sum of polynomials times exponentials es1t, . . . , esjt :

L = N(s1, n1)⊕ · · · ⊕N(sj, nj). (5)

In most cases we look for a particular solution y(t) in the same
space L. The “undetermined coefficients” described in class are the
coefficients of y(t) in the natural polynomial-exponential basis for L :

y(t) =

n1−1∑
i=0

bi1t
ies1t + · · ·+

nj−1∑
i=0

bijt
iesjt. (6)

Substitute this y(t) into the differential equation (1). With a similar
expression for f(t) on the right hand side, match terms to determine
the coefficients b.

In case an exponent s in f(t) coincides with a root r of the charac-
teristic polynomial, this is “resonance.” The system of linear equations
for the coefficients b will be singular. To reach a nonsingular system,
increase the polynomial degrees for that exponent s by its multiplicity
m as a root of C(s). An extreme example of resonance will make the
point:

dNy

dtN
= 1 + t (7)

The characteristic polynomial is C(s) = sN with root r = 0 and mul-
tiplicity N. The right side 1 + t has the same exponent 0. So we add
N to the degrees:

Look for y = b0t
N + b1t

N+1. Find y =
1

N !
tN +

1

(N + 1)!
tN+1.

This method of undetermined coefficients gives students a direct ap-
proach to the solution y(t).

In applying the method to nice functions in L, are we overlooking
anyone? Is there another finite dimensional space invariant under dif-
ferentiation? If so, the same method would solve the inhomogeneous
equation (1) by a function y(t) in that space.

Our small result is that no spaces other than L can succeed. The
method applies only to nice functions f(t). That limitation (found in
all textbooks) is correct. A broad hint by Mike Artin suggested the
proof we give here.

Theorem. The only finite-dimensional spaces invariant under differ-
entiation are spaces of nice functions.
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Proof. If y(t) lies in such a space of dimension d, then its derivatives
y′(t), y′′(t), . . . , y(d)(t) also lie in the space. These d+ 1 functions must
be linearly dependent. So y(t) solves a homogeneous linear equation of
order d with constant coefficients. Therefore y(t) is a nice function. �

For the operation of differentiation on the space L in (5), the eigen-
vectors are the exponentials est. If L also includes test, this is a “gen-
eralized eigenvector” with eigenvalue λ = s. Then est, test, . . . , tn−1est

is a chain corresponding to a block of size n in the Jordan form for the
operation of differentiation on L. The entire Jordan form is a direct
sum of blocks with eigenvalues s1, . . . , sj and block sizes n1, . . . , nj.

III. The Laplace transforms of nice functions

The transform of an exponential eat is 1/(s − a). The transform of
tneat is ∫ ∞

0

tneate−stdt =
n!

(s− a)n+1
(8)

Then the transform of the nice function y(t) in (6) is

Y (s) =

n1−1∑
i=0

bi1
i!

(s− s1)i+1
+ · · ·+

nj−1∑
i=0

bij
i!

(s− sj)i+1
. (9)

This is the partial fraction representation of Y (s). It is a rational func-
tion of s and it approaches Y (∞) = 0 as |s| → ∞.

Our observation (in no way new) is that the Laplace transform maps
the space L into the space of rational functions with poles s1, . . . , sj of
orders n1, . . . , nj :

Y (s) =
polynomial of degree n1 + · · ·+ nj − 1

(s− s1)n1 . . . (s− sj)nj
. (10)

Thus the Laplace transforms of nice functions are rational functions
with Y (∞) = 0.

Our small point is that the fundamental solution g(t) of a constant
coefficient linear equation is “piecewise nice”. It is zero for t < 0 and
it solves

aN
dNg

dtN
+ · · ·+ a1

dg

dt
+ a0g = δ(t). (11)
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The Laplace transform is (aNs
N + · · · + a1s + a0)G = 1. So G(s) =

1/C(s) is a rational function and the Green’s function g(t) is nice.

For second order equations this is G(s) = 1/a2(s− r1)(s− r2). The
inverse transform is

g(t) =
1

a2(r1 − r2)
(er1t − er2t).

This same Green’s function g(t) also solves the homogeneous equation
with g(0) = 0 and g′(0) = 1/a2.

Our new textbook [1] emphasizes that g(t) leads to a particular so-
lution of equation (1) for any right side f(t) :

y(t) =

∫ t

0

g(t− T ) f(T ) dT. (12)

In engineering, δ(t) is an impulse and g(t) is the impulse response.
Its importance could hardly be overestimated.
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