NICE FUNCTIONS

GILBERT STRANG

I. LINEAR DIFFERENTIAL EQUATIONS

In teaching differential equations, we constantly meet exponentials
and polynomials and products like (¢ + 1)e?*. Sines and cosines are in-
cluded, coming from complex exponentials €. These functions appear
everywhere we look—as solutions y(t), as right hand sides f(¢), and as
inverse Laplace transforms. The equations themselves are linear with
constant coefficients:
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Then the nice functions appear in all the crucial places:

1. They solve the homogeneous equation (with f(t) = 0).

2. They are the successful functions f(t) in the method of undeter-
mined coefficients: Look for y(¢) in a finite-dimensional space
that contains f(¢), and match the left side of equation (1) to
f(t) within that space.

For f(t) = e, the space contains the multiples y(t) = Ae
In this one-dimensional space, the equation gives
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If s is not a root of that characteristic polynomial C(s), the
number A is determined:

st : 1
y(t) = Ae*, A= transfer function = o)

When s is an m-fold root of C(s), we find y(t) in the space
spanned by et tes, ... t™e*. A crucial property is that the
function space s invariant under differentiation. Then the
method of undetermined coefficients can succeed. We will iden-
tify all such spaces.



3. The Laplace transform of is
C(s)Y (s) — (polynomial Q(s)) = F(s) (3)

Y (s) and F(s) are the transforms of y(t) and f(t), and Q(s)
has degree less than N. () comes from the initial conditions on
y,dy/dt, ... d"N"ty/dtN L,

When F' = 0, the transform Y'(s) is a rational function Q)/C
with Y (co) = 0. This is the homogeneous case 1 above.

When F(s) is a rational function with F'(co) = 0, the same
is true of Y (s). This will be the inhomogeneous case 2.

When f(t) is the delta function 6(t), its transform is F'(s) =
1. Again Y(s) is rational with Y (co) = 0. Then the inverse
transform—which will be the fundamental solution, the Green’s
function, the impulse response—is again a nice function. We
now describe those functions, and the spaces invariant under
differentiation.

II. FINITE-DIMENSIONAL SPACES OF NICE FUNCTIONS

Each complex exponent r and polynomial degree m —1=0,1,2,...
produce an m-dimensional space of polynomials times e :

N(r,m) = {(cmat™ "+ + 1t +co)e™ } . (4)

Key point: The derivative of a function in N(r,m) is also in N(r,m).
The theorem we want (proved below and probably not original) is
that the direct sums of these subspaces N (r,m) produce all the finite-
dimensional function spaces invariant under differentiation.

A function is “nice” if it is a combination of polynomials times ex-
ponentials. Thus it is a sum 2y + - - - + z; with z; in N(r;, m;).

The homogeneous equation. The N-dimensional subspace of ho-
mogeneous solutions is the sum of subspaces

H = N(ri,m) @@ N(rg, my)

where rq, . .., rg are the roots of the characteristic polynomial C'(s) with
multiplicities myq, ..., m; adding to N. Thus all homogeneous solutions

are nice functions. We take this as known.
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The inhomogeneous equation. Suppose f(t) is in a space of nice

functions: a sum of polynomials times exponentials e, ..., %" :

L= N(s1,n1)@® - & N(sj,n;). (5)

In most cases we look for a particular solution y(¢) in the same
space L. The “undetermined coefficients” described in class are the
coefficients of y(t) in the natural polynomial-exponential basis for L :

nyi—1 nj*1

y(t) = Z bit'e™ + - + Z bijt'e®’. (6)
=0 1=0

Substitute this y(¢) into the differential equation (I). With a similar
expression for f(t) on the right hand side, match terms to determine
the coefficients b.

In case an exponent s in f(t) coincides with a root r of the charac-
teristic polynomial, this is “resonance.” The system of linear equations
for the coefficients b will be singular. To reach a nonsingular system,
increase the polynomial degrees for that exponent s by its multiplicity
m as a root of C(s). An extreme example of resonance will make the

point:
N
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The characteristic polynomial is C(s) = sV with root r = 0 and mul-

tiplicity N. The right side 1 + ¢ has the same exponent 0. So we add
N to the degrees:

1 1
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Look for y = bot™ + byt ™. Find y = N!t + (N—i—l)!t .

This method of undetermined coefficients gives students a direct ap-

proach to the solution y(?).

In applying the method to nice functions in L, are we overlooking
anyone? Is there another finite dimensional space invariant under dif-
ferentiation? If so, the same method would solve the inhomogeneous
equation by a function y(¢) in that space.

Our small result is that no spaces other than L can succeed. The
method applies only to nice functions f(¢). That limitation (found in
all textbooks) is correct. A broad hint by Mike Artin suggested the
proof we give here.

Theorem. The only finite-dimensional spaces invariant under differ-
entiation are spaces of nice functions.
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Proof. 1If y(t) lies in such a space of dimension d, then its derivatives
y'(t),y"(t),...,y D (t) also lie in the space. These d + 1 functions must
be linearly dependent. So y(t) solves a homogeneous linear equation of
order d with constant coefficients. Therefore y(t) is a nice function. [

For the operation of differentiation on the space L in , the eigen-
vectors are the exponentials e*t. If L also includes te®!, this is a “gen-
eralized eigenvector” with eigenvalue A = s. Then e, te®, ... "1
is a chain corresponding to a block of size n in the Jordan form for the
operation of differentiation on L. The entire Jordan form is a direct
sum of blocks with eigenvalues sy, ..., s; and block sizes ny,...,n;.

III. THE LAPLACE TRANSFORMS OF NICE FUNCTIONS

The transform of an exponential e* is 1/(s — a). The transform of
t"e is

/Oo thee St dt = o (8)
0 (s —a)"*t
Then the transform of the nice function y(t) in @ is

ni—1 nj—1

ZO il ———— = z+1 -+ Z b” — (9)

This is the partial fraction representation of Y'(s). It is a rational func-
tion of s and it approaches Y (o0) = 0 as |s| — oo.

Our observation (in no way new) is that the Laplace transform maps
the space L into the space of rational functions with poles s1,. .., s; of
orders ny,...,n;:

polynomial of degree n; 4+ ---+mn; — 1

(s—s1)™...(s—s5)™ '
Thus the Laplace transforms of nice functions are rational functions
with Y (oc0) = 0.

Our small point is that the fundamental solution g(t) of a constant
coefficient linear equation is “piecewise nice”. It is zero for t < 0 and
it solves

Y(s) = (10)

N

g dg
dtN + - +aia+aog=5(t). (11)



The Laplace transform is (axs™ + -+ + a1s + a9)G = 1. So G(s) =
1/C(s) is a rational function and the Green’s function g(t) is nice.

For second order equations this is G(s) = 1/aa(s — r1)(s — r2). The
inverse transform is
1
g(t) = ——(e
(t) P P TQ)(
This same Green’s function g(t) also solves the homogeneous equation
with ¢(0) = 0 and ¢'(0) = 1/as.

Our new textbook [1] emphasizes that g(¢) leads to a particular so-
lution of equation for any right side f(¢) :

o0 = | gt —T) £(T)dT. (12)

rit e’r‘zt) )

In engineering, §(t) is an impulse and g(t) is the impulse response.
Its importance could hardly be overestimated.
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