THE ACCURACY OF FLOATING POINT SUMMATION*
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Abstract. The usual recursive summation technique is just one of several ways of computing the
sum of n floating point numbers. Five summation methods and their variations are analysed here.
The accuracy of the methods is compared using rounding error analysis and numerical experiments.
Four of the methods are shown to be special cases of a general class of methods, and an error analysis
is given for this class. No one method is uniformly more accurate than the others, but some guidelines
are given on the choice of method in particular cases.
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1. Introduction. Sums of floating point numbers are ubiquitous in scientific
computing. They occur when evaluating inner products, means, variances, norms,
and all kinds of nonlinear functions. Although, at first sight, summation might ap-
pear to offer little scope for algorithmic ingenuity, the usual “recursive summation”
(with various orderings) is just one of several possible techniques. Most of the other
techniques have been derived with the aim of achieving greater accuracy of the com-
puted sum, but pairwise summation has the advantage of being particularly well
suited to parallel computation.

In this paper we examine a variety of methods for floating point summation,
with the aim of answering the question “which methods achieve the best accuracy?”.
Several authors have used error analysis to compare summation methods (see, for
example, [1, 2, 33, 39]). Here we give a more comprehensive treatment that highlights
the relationships between different methods; in particular, we give an error analysis
for a general class of methods that includes most of the specific summation methods
as special cases.

This work was motivated by two applications in which the choice of summation
method has been found to have an important influence on the performance of a
numerical method.

(1) In [24], Lasdon et al. derive an algorithm for solving an optimization problem
that arises in the design of sonar arrays. The authors state [24, p. 145] that “The
objective gradient Vf in (4.1) is a sum of M terms. In problems with M = 284 and
n = 42, the GRG2 optimizer encountered difficulties which stem from inaccuracies in
Vf ... We hypothesized that this was due to roundoff error resulting from cancellation
of terms in V f of approximately equal magnitudes and opposite signs. These problems
were eliminated by accumulating separately positive and negative terms (for each
component of Vf) in the sum (4.1), adding them together only after all M terms had
been processed.”

(2) Dixon and Mills [7] applied a quasi-Newton method to the extended Rosen-
brock function

n/2
(1.1) Fzy, @2, ywn) = (100(ze; — 23, )" + (1= 2251)%).
i=1
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This function and its derivatives possesses certain symmetries; for example, F'(a, b, ¢,d) =
F(e,d,a,b) when n = 4. It is observed in [7] that expected symmetries in the search
direction and Hessian approximation are lost in practice, resulting in more iterations
for convergence of the quasi-Newton method than are predicted theoretically. Dixon
and Mills attribute the loss of symmetry to rounding errors in the evaluation of cer-
tain inner products, which can cause identities such as the one quoted above to fail
in floating point arithmetic. They restore symmetry (and thus reduce the number of
iterations) by using a special summation algorithm when evaluating inner products:
their algorithm evaluates >, z; by sorting the z;, dividing them into a list of neg-
ative numbers and a list of nonnegative numbers, and then repeatedly forming the
sum of the largest nonnegative and most negative elements and placing the sum into
the appropriate list, in order.

We return to these two applications in section 7.

The five main summation methods that we consider are defined and analysed in
sections 2 and 3. For the error analysis we will make use of the standard model of
floating point arithmetic, in which u is the unit roundoft:

(12) fl(mopy):(mopy)(1+r5), |6‘ <wu, 0p:+777*7/'

This model is violated by machines that lack a guard digit, so we explain in section 5
how our analysis has to be modified to accommodate such machines. We will assume
that no floating point underflows occur; how to modify error analyses to allow for
underflow is described by Demmel in [6]. An excellent tutorial on many aspects of
floating point arithmetic is given by Goldberg [9].

In section 4 we summarise some existing results on statistical estimates of accu-
racy of summation methods. Numerical experiments are presented in section 6 and
conclusions are given in section 7.

2. Orderings of Recursive Summation. Our task is to evaluate S,, = Y7 | z;,
where x1, ..., %, are real numbers. In this section we consider the standard recursive
summation technique in which S,, is evaluated according to
s=0
fori=1:n

s=Ss+x;
end

In general, each different ordering of the z; will yield a different computed sum
Sy, in floating point arithmetic, and it is of interest to determine how the ordering
affects the error

To begin, we make no assumption on the ordering and obtain a standard bound
for E,. By a direct application of the model (1.2) we have, with S; = Zf:] T,

(21) Sk = fU(Sk1 4 a1) = (Sk1 + z1) (1 + 0), 10k <u, k=2:n.

By repeated use of this relation it follows that

n n n

(2.2) So = (z1+m) [T +0) + > & [T +60).
k=i

k=2 i=3
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To simplify the product terms we use the result that if |§;] < u for i = 1:n then

n

H(l +d;)=1+6,, where 0, < LT Vn-
P 1—nu
Thus we rewrite (2.2) as
(2.3) Su= (@ +22)(L+000) + w1+ 6ni1),
i=3
which yields
(2.4) Bl = [(21 + 22)00 1 + Y 2ifn_is1]
i=3
(2.5) < (1| + 221 + Y 13il it
i=3

Note that x; and z, have the same factor v,_1, because they play identical roles
in the summation. The bound (2.5) is essentially the same as the one derived by
Wilkinson in [43, p. 323] and [44, p. 17]. As Wilkinson notes in [44, p. 17], the upper
bound in (2.5) depends on the order of summation, and the bound is minimized if the
x; are arranged in order of increasing absolute value. We emphasise that this ordering
minimizes an error bound and not necessarily the actual error (this is illustrated later
in this section, and by numerical examples in section 6). We can weaken (2.5) to
obtain the bound

(2.6) Bal < 7nt Y lil = (n— Du S Ja] + O(u?),
i=1 i=1

which is independent of the ordering. It is natural to regard satisfaction of (2.6) as
a minimal requirement of any summation method; in fact, all the methods we will
examine do satisfy this bound.

We can rewrite (2.6) as the relative error bound

|§n*sn‘ Z:l: |z;]
T < 7n711571" = Y1 Ry

In the special case where z; > 0 for all u, R,, = 1, and the relative error has a bound
of order nu, but if 37" | |z;| > | Y1, z;| we cannot guarantee that the relative error
is small. The quantity R, is easily seen to be the condition number of summation
when perturbations z; — z; + Az; are measured by max; |Az;|/|z;|.

Recursive summation by order of increasing absolute value can be improved upon
in two possible ways. First, a method may satisfy a bound of the form (2.6) but with
a constant smaller than v,_;. Second, a method may satisfy a bound that in the
worst case is no better than (2.6), but the method might be expected to yield a more
accurate computed sum for particular classes of {z;}. In the rest of this section we
consider two alternative orderings, which fall into the second category.

First, we derive a sharper error bound. From (2.1) we see that the error introduced
on the kth step of the summation is (§k,1 + xp)0p = §k6k/(1 + ). Summing these
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individual errors we find

UNPUR
(2.7) En=Y §—2~

k=2

1+6;°

which shows that, to first order, the overall error is the sum of the n — 1 relative
rounding errors weighted by the partial sums. We obtain the bound

~ u L
(2.8) |En| = |Sn = S| < m2|sk"
k=2
This bound involves the computed partial sums (excluding S, = x1) but not the

individual terms z;. If we weaken (2.8) by bounding |Sk| in terms of |z, |z2],
.., |k|, then we recover (2.5), to within O(u?).

The bound (2.8) suggests the strategy of ordering the x; so as to minimize
koo |Sk|. This is a combinatorial optimization problem that is too expensive to
solve in the context of summation. A reasonable compromise is to determine the
ordering sequentially by minimizing, in turn, |z;], [S2|, ..., |Sn—1|. This ordering
strategy, which we denote by Psum, can be implemented with O(nlogn) compar-
isons. The principal difference between the Psum and increasing orderings is that the
Psum ordering is influenced by the signs of the x;, while the increasing ordering is
independent of the signs. If all the x; have the same sign then the two orderings are
identical.

It is easy to show by example that the bounds (2.8), (2.5) and (2.6) are nearly
attainable. Following Wilkinson [44, p. 19] we assume u = 27, set n = 2" (r < t)
and define

z(1) =1,
z(2)=1-27"
z(3:4)=1-2"1
z(5:8) =121

(24120 =127

Then in the (i—1)st floating point addition the “2*~*” portion of z; does not propagate
into the sum®, thus there is an error of 2°=* and S; = i. The total error is

4" —1
27t(1+22+24+...+22(T*1)):24 —,
while the upper bound of (2.6) is
(n—1)u n gro—t .,
T 1 T < —————2"x 274",
(- 21 S T ,

which agrees with the actual error to within a factor 3; thus the smaller upper bounds
of (2.5) and (2.8) are also correct to within this factor. The example just quoted is, of

IWe assume in this example that the floating point arithmetic uses round to nearest with ties
broken by rounding to an even last bit or rounding away from zero.
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course, a very special one, and as Wilkinson [44, p. 20] explains, “in order to approach
the upper bound as closely as this, not only must each error take its maximum value,
but all the terms must be almost equal.”

Next, we consider ordering the x; by decreasing absolute value. For the summa-
tion of positive numbers this ordering has little to recommend it. The bound (2.8) is
no smaller, and potentially much larger, than for the increasing ordering (the same
is true for the weaker bound (2.5)). Furthermore, in a sum of positive terms that
vary widely in magnitude the decreasing ordering may not allow the smaller terms to
contribute to the sum (which is why >°"" | 1/i “converges” in floating point arithmetic
as n — 00). However, consider the example with n = 4 and

(2.9) z=[1, M, 2M, —3M],

where M is a power of the machine base and is so large that fI(1+ M) = M (thus
M > u~"). The three orderings considered so far produce the following results:

Increasing: Sp=fl(1+ M +2M — 3M) =0,
Psum: S, = fI(1+ M —3M +2M) =0,

)

Decreasing: Sp=fl(-3M +2M + M +1) =1.

Thus the decreasing ordering sustains no rounding errors and produces the exact
answer, while both the increasing and Psum orderings yield computed sums with
relative error 1. The reason why the decreasing ordering performs so well in this
example is that it adds the ‘1’ after the inevitable heavy cancellation has taken place,
rather than before, and so retains the important information in this term.

If we evaluate the term g = >, _, |Sk| in the error bound (2.8) for example (2.9)
we find

Increasing : p = 4M, Psum: u=3M, Decreasing : y=M + 1,

so (2.8) “predicts” that the decreasing ordering will produce the most accurate answer,
but the bound it provides is extremely pessimistic since there are no rounding errors in
this instance. This example illustrates the main weakness of bounds from a rounding
error analysis: they represent the worst case and so do not account for the possibility
that rounding errors may cancel or be smaller than expected.

Extrapolating from this example, we conclude that the decreasing ordering is
likely to yield greater accuracy than the increasing or Psum orderings whenever there
is heavy cancellation in the sum, that is, whenever | Y7 | 2;| < Y7 | |2;|. A numer-
ical example that illustrates this assertion is given in section 6 (see Table 6.1).

3. Other Methods. In this section we consider in detail four more summation
methods. The first three of these methods, together with recursive summation, have
the following general form: with Ty = zj, k = 1: n, they perform n — 1 additions

(31) Tk:Tk1+Tk27 ki <kys<k, k=n+1:2n-1,

yielding S, = To,—1. In recursive summation, k; < n in each instance of (3.1), but
for the other methods at least one addition involves two previously computed sums.
A useful expression for the error in this general class of summation methods can be
derived as follows. The computed quantities T}, satisfy

(3.2) Ty = (T, + Te,)(1+6), |6kl <u, k=n+1:2n—1.
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The local error introduced in forming Ty is (T, + Tk, )0k = Tkdi /(1 + 0x), so overall
we have

2n—1

. ~ 5
3.3 Sn— S, = T, .
(3.3) Z b 1+ 6
k=n+1
The smallest possible error bound is therefore
u 2n—1
. n| < — .
(3.49) Ba < == 3 |7
k=n+1

It is easy to see that \fk\ < 3 |zi| + O(u) for each k, and so we have also the
weaker bound

(3.5) |En| < (n— Du Y |zi| + O(u?).
i=1

Note that in the case of recursive summation (3.3)—(3.5) are the same as (2.6)—(2.8).
Finally, we note in passing that from (3.2) there follows a backward error result which
shows that S, is the exact sum of terms z;(1 + 6;), where |6;| = O(u).

The first method we consider is pairwise summation (also known as cascade sum-
mation), which was first discussed by McCracken and Dorn [29, pp. 61 63], Babuska
[1] and Linz [27]. In this method the z; are summed in pairs,

Yi = Toi 1+ 2o, i =1: 8] (ying1)/2) = Tn if nis odd),

and this pairwise summation process is repeated recursively on the y;, i = 1: [(n +
1)/2]. The sum is obtained in [log, n] stages. For n = 6, for example, pairwise
summation forms

Se = ((z1 + 22) + (z3 + 24)) + (25 + T6).

Pairwise summation is attractive in parallel settings, because each of the [log, n]
stages can be done in parallel [13, sec. 5.2.2]. Caprani [4] shows how to implement
the method on a serial machine using temporary storage of size [log, n]| (without
overwriting the ;).

The error expression (3.3) holds for pairwise summation, but it is easy to derive
a useful error bound independently. Assume for simplicity that n = 2". Unlike in
recursive summation each addend takes part in the same number of additions, log, n.
Therefore, analogously to (2.2), we have a relation of the form

n logy, n
So=>a [[a+6),  1B")<u,
i=1 k=1
which leads to the bound

i=1

This is a smaller bound than (2.6) for recursive summation, since it is proportional
to log, n rather than n. However, in special cases the bound (2.5) for recursive
summation can be smaller than (3.6). For example, if z; = 1/i3, the bound (3.6) is

(3.7) \E,| < 1.20log, nu + O(u?)
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(using 37| 7 & Y10y & &~ 1.20), while for the increasing ordering (2.5) becomes

n

|E,| <u ; m(n —i+1)+0W?) =u Z 212 + O(u?) = 1.64u + O(u?)

i=1

(using Yo7 | & & 30, & = %2 ~ 1.64), and so pairwise summation has the larger
error bound, by a factor ~ log, n. (Expression (3.3) does not enable us to improve
on the factor log, n in (3.7).)

In [36] an “insertion adder” is proposed for the summation of positive numbers.
This method can be applied equally well to arbitrary sums. First, the z; are sorted
by order of increasing magnitude. Then z; + x5 is formed, and the sum is inserted
into the list @o,...,z,, maintaining the increasing order. The process is repeated
recursively until the final sum is obtained. The motivation given in [36] for this
strategy is that it tends to encourage the additions to be between numbers of similar
magnitude. It can be argued that such additions are to be preferred, because they
retain more of the information in the addends (by comparison, “large” plus “small”
may lose many significant digits from “small”). A more convincing explanation of the
insertion strategy is that it attempts to minimize, one at a time, the absolute values

of the terms Ty41,...,To,—1 in the error expression (3.3). Indeed, if the x; are all
positive the insertion method minimizes the bound (3.4) over all methods of the form
(3.1).

In particular cases the insertion method reduces to earlier methods. For exam-
ple, if z; = 2*, the insertion method is equivalent to recursive summation, since the
insertion is always to the bottom of the list:

1248 —» 348 —+ 78 — 15

On the other hand, if 1 < z; < zy < ... < z, < 2, every insertion is to the end of
the list, and the method is equivalent to pairwise summation if n is a power of 2; for
example, if 0 < e < 1/2,

1, 14+€ 1+2, 14+3¢ — 142, 1436, 24+ — 2+¢€ 245 — 4+6e.

The next method we consider is the one used in [24], as quoted in the introduction.
This method can be derived by the following specious reasoning: “A major source of
inaccuracy in floating point summation is cancellation when numbers of nearly equal
magnitude and opposite sign are added. To minimize the amount of cancellation we
can accumulate the sum of the positive numbers, S, and the sum of the negative
numbers, S_, separately, and then form S, = Sy + S_.” There are two flaws in this
argument. First, this “+/—" method does not reduce the amount of cancellation it
simply concentrates all the cancellation into one step. Second, cancellation is not
a bad thing per se; the problem with cancellation is that it brings into prominence
any loss of significant digits suffered earlier in the calculation (and it also brings into
prominence any uncertainty in the data). Indeed, nearly equal floating point numbers
are always subtracted ezactly (assuming the presence of a guard digit) it is any
(relative) uncertainty in those numbers that is magnified. For an excellent and more
detailed discussion of cancellation we refer the reader to [35, pp. 25-29].

The +/— method is of the form (3.1) (assuming that Sy and S_ are computed
using one of the methods discussed so far) and it is easy to see that it maximizes
maxy, [Ty| over all methods of this form. Moreover, when Y i | |z;| > | Y"1 | ;| the
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FiG. 3.1. Recovering the rounding error.

(I‘ ay

[ e |
+b | h | b |
=35 ‘ a | as + by ‘
—a | b | 0 |
~b | — by | 0 = ¢

value of maxy, |T)| tends to be much larger for the +/— method than for the other
methods we have considered. For example, if n = 2m and the z; are the values
{-1,1,-2,2,...,—m,m} then

S4] = 18] = |Too| = 3k = m(m +1)/2,
i=1

whereas for recursive summation with the increasing ordering, |T%| < m for all k.
Despite this weakness, if S; and S_ are computed by recursive summation with the
increasing ordering then the +/— method satisfies a bound very similar to (2.5): if

Tp <Tp_1 < ... <21 <0< 2pp1 <. <1y

then it is straightforward to derive the bound

p n
(3.8) |En| <Y izl + > nigala] +

u -~
|Snl.

. . u

i=1 i=p+1

1—

In summary, the +/— method appears to have no advantages over the other methods
considered here, and in cases where there is heavy cancellation in the sum it can be
expected to be the least accurate method.

The final method that we examine has an interesting background. In 1951 Gill
[8] noticed that the rounding error in the sum of two numbers could be estimated by
subtracting one of the numbers from the sum, and he made use of this estimate in a
Runge-Kutta code in a program library for the EDSAC computer. Gill’s estimate is
valid for fixed point arithmetic only. Kahan [16] and Mgller [32] both extended the idea
to floating point arithmetic. Mgller shows how to estimate a+b— fl(a+b) in chopped
arithmetic, while Kahan uses a slightly simpler estimate to derive a “compensated
summation” method for computing Y., #;. The use of Kahan’s method with a
Runge-Kutta formula is described in [42] (see also the experiments in [26]).

The estimate used by Kahan is perhaps best explained with the aid of a diagram.
Let a and b be floating point numbers with |a| > |b], let § = fl(a + b), and consider
Figure 3.1, which uses boxes to represent the mantissas of @ and b. The figure suggests
that if we evaluate

e:—[((a—l—b)—a)—b] =(a—3)+b
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in floating point arithmetic, in the order indicated by the parentheses, then the com-
puted € will be a good estimate of the error (a + b) — §. In fact, for rounded floating
point arithmetic in base 2, we have

(3.9) a+b=5+8

that is, the computed € represents the error exactly. This result (which does not
hold for all bases) is proved by Dekker [5, Th. 4.7], Knuth [22, Th. C, p. 221] and
Linnainmaa [26, Th. 3]. Note that there is no point in computing fI(5+ €), since 5 is
already the best floating point representation of a + b!

Kahan’s compensated summation method employs the correction e on every step
of a recursive summation. After each partial sum is formed, the correction is computed
and immediately added to the next term z; before that term is added to the partial
sum. Thus the idea is to capture the rounding errors and feed them back into the
summation. The method may be written as follows.

s=0;e=0

fori =1:n
temp = s
y=ux;+e
s=temp+y
e=(temp—s)+y

end

The compensated summation method has two weaknesses: € is not necessarily the
exact correction, since (3.9) is based on the assumption that |a| > |b|, and the addition
y = x; + e is not performed exactly. Nevertheless, the use of the corrections brings a
benefit in the form of an improved error bound. Knuth [22, Ex. 19, pp. 229, 572 573]

shows that the computed sum §n satisfies

n

(3.10) S, = Z(l + i), | < 2u 4+ O(nu?)

i=1

3

which is an almost ideal backward error result (a more detailed version of Knuth’s
proof is given in [9]).

In [17, 18] Kahan describes a variation of compensated summation in which the
final sum is also corrected (thus ‘s = s + ¢’ is appended to the algorithm above).
Kahan states in [17] and proves in [18] that (3.10) holds with the stronger bound
i) < 2u+ O((n — i+ 1)u?); note that with this bound for |u;], (3.10) is essentially
(2.3) with the n dependency transferred from the u term to the u? term. The proofs
of (3.10) given by Knuth and Kahan are similar, and involve a subtle induction using
the model (1.2).

The forward error bound corresponding to (3.10) is

(3.11) E,| < (2u+ O(nu?)) Z |3

As long as nu < 1, the constant in this bound is independent of n, and so the bound
is a significant improvement over the bounds (2.6) for recursive summation and (3.6)
for pairwise summation. Note, however, that if Y"1 | |z;| > | Y| z;|, compensated
summation is not guaranteed to yield a small relative error.
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Another version of compensated summation is described in [14, 15, 21, 33, 34].
Here, instead of immediately feeding each correction back into the summation, the
corrections are accumulated by recursive summation and then the global correction is
added to the computed sum. For this version of compensated summation it is shown
n [21] and [33] that

(3.12) Sp = Z(l + pi)xi, li| < 2u 4+ n’u?,
i=1

provided nu < 0.1; this is weaker than (3.10) in that the second order term has an
extra factor n. If n?u < 0.1 then in (3.12), |u;| < 2.1u. In [14] it is shown that by
using a divide and conquer implementation of compensated summation the range of
n for which |u;| < cu holds in (3.12) can be extended, at the cost of a slight increase
in the size of the constant c.

Finally, we mention briefly two further classes of algorithms. The first builds the
sum in a series of accumulators, which are themselves added to give the sum. As
originally described in [45], each accumulator holds a partial sum lying in a different
interval. Each term z; is added to the lowest level accumulator; if that accumulator
overflows it is added to the next higher one and then reset to zero, and this cascade
continues until no overflow occurs. Modifications of Wolfe’s algorithm are presented
in [28, 37]. Malcolm [28] gives a detailed error analysis to show that his method
achieves a relative error of order u. A drawback of the algorithm is that it is strongly
machine dependent. An interesting and crucial feature of Malcolm’s algorithm is that
on the final step the accumulators are summed by recursive summation in order of
decreasing absolute value, which in this particular situation precludes severe loss of
significant digits and guarantees a small relative error.

Another class of algorithms, referred to as “distillation algorithms” by Kahan

[19], iteratively constructs floating point numbers mgk), . T;") such that 7 , Tfk) =

>, mi, terminating when ot approximates Y ., z; with relative error at most .
Kahan states that these algorithms appear to have average run times of order at least

nlogn. See [3], [19], [25] and [23] for further details and references.

3 3

4. Statistical Estimates of Accuracy. As we have noted, rounding error
bounds can be very pessimistic, because they account for the worst-case propagation
of errors. An alternative way to compare summation methods is through statistical
estimates of the error, which may be more representative of the average case. A statis-
tical analysis of three summation methods has been given by Robertazzi and Schwartz
[36] for the case of nonnegative x;. They assume that the relative errors in floating
point addition are statistically independent and have zero mean and finite variance
o2. Two distributions of nonnegative z; are considered: the uniform distribution on
[0,2u], and the exponential distribution with mean u. Making various simplifying
assumptions Robertazzi and Schwartz estimate the mean square error (that is, the
variance of the absolute error) of the computed sums from recursive summation with
random, increasing and decreasing orderings, and from insertion summation and pair-
wise summation. Their results for the summation of n numbers are given in Table 4.1.

The results show that for recursive summation the ordering affects only the con-
stant in the mean square error, with the increasing ordering having the smallest
constant and the decreasing ordering the largest; since the z; are nonnegative, this
is precisely the ranking given by the rounding error bound (2.8). The insertion and
pairwise summation methods have mean square errors proportional to n? rather than
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TABLE 4.1
Mean square errors

Distribution | Increasing Random Decreasing  Insertion Pairwise
Unif(0,2u) | 0.20u%n%0%  0.33u’n?0?  0.53p’n30?  2.6p’n’c?  2.7p°n’0?
Exp(u) 0.13u%n%0%  0.33u%n%0?  0.63u?n30?  2.6p’n0?  4.0pn202

n? for recursive summation, and the insertion method has a smaller constant than
pairwise summation. This is also consistent with the rounding error analysis, in which
for nonnegative x; the insertion method satisfies an error bound no larger than pair-
wise summation, and the latter method has an error bound with a smaller constant
than for recursive summation (log, n versus n).

5. No Guard Digit Model. The model (1.2) on which our error analysis is
based is not valid on machines that lack a guard digit in addition, notable examples
of which are Cray computers. On Cray computers subtracting any power of 2 from
the next smaller floating point number gives an answer that is either a factor of 2 too
large or is zero, so the expression fl(z+y) = (z +y)(1+J) holds with |§] = 1 but not
with |§] = O(u) [20]. For machines without a guard digit we have to use the weaker
model [44, p. 12]

(5.1) flz £ y) =2+ ) £y(1+4),  lal, |8l <u.

We now summarise the effect on the rounding error analysis of using (5.1) in
place of (1.2). The equality (2.4) remains valid provided we replace (z1 + z2)6,,_1 by
10,1 + x20),_,, so (2.5) and (2.6) are unchanged. The error expression (2.7) has to
be replaced by

n

(5.2) By =Y (S 10k + 2:B), k], 1Bkl < u,
k=2

and so the analogue of (2.8) is
(5.3) Bl <ud (18] + [axl),
k=2

which is bounded above by 3u 327, [Si| + O(u?). Notice that (5.3) contains the term
Sy = a1, which is not present in (2.8). The error expression (3.3) has to be replaced
by an expression analogous to (5.2), and in (3.5) the factor n — 1 has to be replaced
by n. The bound (3.6) for pairwise summation remains valid under the no guard digit
model, while in the bound (3.8) for the +/— method we have to replace u/(1 — u)|§n\
by u(|Sy| +|S_|), which is bounded by u 3", |zi| + O(u?).

Neither the correction formula (3.9) nor the result (3.10) for compensated sum-
mation holds under the no guard digit model. Indeed, Kahan [20] constructs an
example where compensated summation fails to achieve (3.11) on Cray machines, but
he states that such failure is extremely rare. In [17, 18] Kahan gives a modification of
the compensated summation algorithm in which the assignment ‘e = (temp — s) + ¢’
is replaced by
f=0
if sign(temp) = sign(y), f = (0.46 x s — s) + s, end
e=((temp—f)—(s—f) +y
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Kahan shows in [18] that the modified algorithm achieves (3.10) “on all North Amer-
ican machines with floating hardware” and explains that “The mysterious constant
0.46, which could perhaps be any number between 0.25 and 0.50, and the fact that the
proof requires a consideration of known machines designs, indicate that this algorithm
is not an advance in computer science.”

6. Numerical Experiments. In this section we describe some numerical ex-
periments that give further insight into the accuracy of summation methods. All
the experiments were done using MATLAB [30], which uses IEEE standard double
precision arithmetic with unit roundoff u ~ 1.1 x 10716,

First, we illustrate the behaviour of the methods on four classes of data {z;}
chosen a priori. In these tests we simulated single precision arithmetic of unit roundoff
usp = 2728 &~ 1.2 x 1077 by rounding the result of every arithmetic operation to 23
significant bits. We formed an approximation to the exact answer S, by summing
the single precision numbers z; in double precision by recursive summation; in each
case nuy ., |zi| < usp|Sy|, so (2.6) guarantees that this approximation is correct
to single precision. We give results for recursive summation with the original (Orig.),
increasing (Inc.), decreasing (Dec.) and Psum orderings, and for the insertion (Ins.)
method, the +/— method (with S; and S_ computed by recursive summation with
the increasing ordering), pairwise summation with the increasing ordering (Pair.) and
compensated summation (Comp.).

The numbers reported are the relative error |§n — S,1/|Snl, together with infor-
mation that indicates the sharpness of the bounds. In square brackets is the value

T= Zii;lﬂ |T%| in (3.4), for all methods except compensated summation. In paren-

theses is the ratio R = \§n — Spl/(usp i, |zi]), which, according to the error
analyses, is certainly bounded (to first order) by n for recursive summation and the
insertion and +/— methods, log, n for pairwise summation, and 2 for compensated
summation. The quantities 7' and R reveal how close the strongest and weakest of
the error bounds are to being equalities.

(1) In the first example, x; is the ith term in the Taylor series expansion of e™*
about the origin, with z = 27 (this series provides the classic example of “catastrophic
cancellation” [38]). Results for n = 64 are given in Table 6.1. In this example,
recursive summation with the decreasing ordering yields by far the best accuracy.
There is severe cancellation in the sum and the decreasing ordering allows the terms
of smallest modulus to contribute fully to the computed sum; in the other methods
the small terms are “swamped” by the large terms. The error bounds do not reflect
the merit of the decreasing ordering, because the T' terms (in square brackets in the
table) are of similar magnitude for the first four methods. Note also that compensated
summation produces no improvement over recursive summation with the original
ordering, and the +/— method yields one less correct significant figure than all the
other methods (as predicted by the T values).

(2) In this example the z; are random numbers from the Normal(0,1) distribution
and we report the results for n = 2048 and 4096 in Table 6.2. There is cancellation in
both sums although not as much as in the first example. Here the Psum ordering is
clearly the best and the +/— ordering the worst, and this is reflected in the T" values.

The next two tests involve positive z;, for which all the methods are guaranteed
to produce a relative error no larger than f(n)u, where f(n) < n depends on the
method. (Note that for positive z;, “Psum = +/— = Inc.”)

(3) We take x; = 1/i* and examine how the errors vary with n for recursive sum-
mation with the decreasing and increasing orderings. Results for n = 500, 1000, ..., 5000
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are given in Table 6.3. As would be expected in view of the error bounds of section 2,
the decreasing ordering provides much lower accuracy than the increasing ordering
when n is large.

(4) In this example the numbers z; are equally spaced on [1,2]. We tried various
n < 4096 and did not observe a great difference between the increasing and decreas-
ing orderings; this is to be expected since the z; vary little in magnitude. For the
fairly large n in Table 6.4 pairwise summation out-performs recursive summation (the
insertion method is equivalent to pairwise summation in this example). The errors
for compensated summation are zero for all the n we tried!

In the next set of tests we used a MATLAB implementation [12] of the multi-
directional search (MDS) method [40, 41] which attempts to locate a maximizer of
f :IR™ — R using function values only. We applied the maximizer to f defined as the
relative error of the sum computed in single precision by recursive summation with
the increasing ordering. With n = 3, starting with zg = [1/3, 2/3, 1], the maximizer
located the following set of data after 280 function evaluations:

x = [4.975087 —2.495094 —2.480894],  f(z) = 1.0,
Si=-95367x 1077,  S;=-4.7684x 1077,

where z and the S3 values are quoted to seven and five significant figures, respectively.
With f defined as the relative error for compensated summation, the MDS maximizer
made little progress with the same starting value. But starting with zqg = [—-1/3 0 2/3],
the maximizer found after 166 function evaluations the data

x =[—-0.8308306 —0.7626623 1.593493], f(z)=1.0,
Sy =2.3842 x 1077, Sy =1.1921 x 10~ 7.

(If x is reordered with the increasing ordering then f(z) = 1.0, but f(x) = 0 for the
decreasing ordering).

These two examples are typical using the maximizer it is straightforward to find
data for which any of the summation methods yields no correct significant figures in
the sum. The maximizer can also be used to compare two different methods, by
defining f as the ratio of the errors from the two methods. With n = 3 we compared
recursive summation (with the increasing ordering) with compensated summation.
For both ratios of errors (E(Inc.)/E(Comp.) and its reciprocal) with certain starting
values the maximizer was able to make the ratio arbitrarily large, by converging to
data for which the error forming the denominator of f is zero. We observed similar
behaviour when comparing other methods.

Next, we describe an experiment with the forward substitution algorithm for
solving a lower triangular system. We coded the inner product version of the algorithm
and provided an option to choose between eight summation methods when evaluating
the inner products. (The column oriented form of forward substitution is not amenable
to the use of different summation methods.) Lower triangular systems Tx = b were
solved in single precision and the forward error ||T — z||o/||Z||ec Was evaluated for
each of the eight summation options. We give results for T = U7 where PA = LU
is the LU factorization with partial pivoting of the 10 x 10 Vandermonde matrix
whose (i, ) element is ((j — 1)/(n — 1))""!. In Table 6.5 we report results for the
two systems with right-hand sides b; = Tz;, where z; has elements equally spaced
on the intervals [1,100] for ¢ = 1 and [0,100] for ¢ = 2. For this matrix k. (T) =
IT)|sol| T~ oo & 3% 107, and cond(T, z;) = cond(T, z5) ~ 7x10°, where cond(T, z) =
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T YT |%| ||so/]|%]|c0 < Koo(T) is the condition number that appears in a forward
error bound for the substitution algorithm [11]. The forward error varies over the
different summation methods by a factor 98 for b; and a factor 39 for by; these are
the largest variations we observed in tests with a variety of different matrices and
right-hand sides. Throughout the tests there was no pattern to which summation
method led to the smallest or largest forward error. This experiment shows that the
choice of summation method for inner product evaluation can significantly affect the
accuracy achieved by forward substitution, and this conclusion applies a fortiori to the
solution of a full system via LU factorization. However, since there appears to be no
straightforward way to predict which summation method will be the best for a given
linear system, there is little reason to use anything other than recursive summation
in the natural order when evaluating inner products within a general linear equation
solver.

We have also experimented with compensated summation with the data arranged
in order of decreasing magnitude. For all the problems we have tried, including those
described above, the relative errors are < ugp. Our attempts to use the MDS maxi-
mizer to find a set of z; for which the relative error exceeds usp have been unsuccessful.
It is therefore natural to ask whether a relative error bound of the form |E,| < cu|S,|
can be derived, where ¢ is a constant independent of the x;. The answer is no, because
E,, can be nonzero when S,, = 0. Even when n = 3 and S,, # 0 it appears to be
impossible to obtain such a bound. Nevertheless our (limited) experience suggests
that compensated summation with the decreasing ordering performs remarkably well
in practice, and it would be interesting to determine why this is so.

Further test results can be found in the literature, although none are exten-
sive. Linz [27] compares recursive summation with pairwise summation for uniform
random numbers on [0,1] with n = 2048, averaging the errors over 20 trials, and
Caprani [4] and Gregory [10] both conduct a similar experiment including compen-
sated summation as well. Linnainmaa [26] applies recursive summation and com-
pensated summation to series expansions, Simpson’s rule for quadrature and Gill’s
Runge-Kutta method. Robertazzi and Schwartz [36] evaluate average mean square
errors for recursive summation (with increasing, decreasing and random orderings),
pairwise summation and the insertion method, for the uniform [0, 1] and exponential
(1 = 0.5) distributions with n < 4096.
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TABLE 6.1
x; from e~ 2" expansion.

| S0 @]/ SO0 x| = 3.48¢-6.
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n | Orig. Inc. Dec. Psum Pair. Ins. +/—- Comp.
64 | 5.11e-4 2.27e-3 1.85e-7 2.27e-3 1.41le-4 2.27e-3 1.86e-2 5.1le-4
[2.68¢2 2.97e2 2.97e¢2 2.85e2 8.68¢1 2.97e2 1.34e3]
(1.49e-2 6.64e-2 5.40e-6 6.64e-2 4.13e-3 6.64e-2 5.44e-1 1.49e-2)
TABLE 6.2
x; from Normal(0,1) distribution.
S|/ Y @] = 8.08e-3 (n = 2048), 3.48e-3 (n = 4096).
n Orig. Inc. Dec. Psum Pair. Ins. +/—- Comp.
2048 | 7.47e-6 3.32e-6 7.17e-6 6.82e-8 6.60e-7 5.12e-7 1.20e-4  2.28e-7
[3.06e4 1.53e4 2.65e4 8.26e2 2.87e3  2.32e3  4.80e5]
(5.06e-1 2.25e-1 4.86e-1 4.62e-3 4.47e-2 3.47e-2 8.15e0 1.54e-2)
4096 | 8.06e-6 1.04e-5 1.84e-6 2.66e-8 1.38e-7 6.87e-7 3.68e-4 1.92e-7
[6.69e4  4.74e4  4.28¢4 1.68¢3  5.70e3  5.38e3  2.02e6]
(2.35e-1  3.04e-1 5.38e-2 7.76e-4 4.04e-3 2.00e-2 1.07el  5.59e-3)
TABLE 6.3
z; = 1/i.
n | 500 1000 2000 3000 4000 5000
Inc. | 1.04e-7 1.0le-7 1.74e-8 5.22e-8 1.36e-7 3.90e-8
Dec. | 3.31e-7 6.24e-7 5.64e-6 2.30e-5 2.77e-5 5.81le-5
TABLE 6.4
x; equispaced on [1,2].
n Inc. Dec. Pair. Comp.
2048 | 2.86e-6 3.86e-5 1.59e-7 0.00
[2.80e6  3.50e6  3.38e4]
(2.40el  3.24e2  1.33e0 0.00)
4096 | 3.35e-5 2.18e-5 1.59e-7 0.00
[1.12e7 1.40e7 7.37e4]
(2.81e2 1.83e2  1.33e0 0.00)
TABLE 6.5
Forward substitution with a 10 x 10 matriz.
Orig. Inc. Dec. Psum Pair. Ins. +/— Comp.
by | 3.0le-4 1.18e-2 7.70e-3 1.18e-2 2.94e-2 1.18e-2 4.0le-3 7.70e-3
by | 1.31e-2  2.64e-2 4.63e-3 2.64e-2 6.8le-4 1.06e-2 2.64e-2 2.04e-2
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7. Concluding Remarks. No summation method from among those considered
here can be regarded as superior to the rest from the point of view of accuracy, since
for each method the error can vary greatly with the data, within the freedom afforded
by the error bounds. However, some specific conclusions can be drawn.

1. For all but two of the methods the errors are, in the worst case, proportional
to n. If n is very large, pairwise summation (error constant log, n) and
compensated summation (error constant of order 1) are attractive.

2. If the x; all have the same sign then all the methods yield a relative error
of at most nu, and compensated summation guarantees perfect relative ac-
curacy (as long as nu < 1). For recursive summation of one-signed data the
increasing ordering is preferable to the decreasing ordering (and it is equiva-
lent to the Psum ordering); however, the insertion method has the smallest
bound (3.4) over all the methods considered here (excluding compensated
summation).

3. For sums with heavy cancellation (., |z;| > | >, #;]) recursive summa-
tion with the decreasing ordering is attractive (see Table 6.1), although it
cannot, be guaranteed to achieve the best accuracy (see Table 6.2).

Considerations of computational cost and the way in which the data are generated
may rule out some of the methods. Recursive summation in the natural order, pairwise
summation and compensated summation can be implemented in O(n) operations for
general z;, but the other methods are more expensive since they require searching or
sorting. Furthermore, in an application such as the numerical solution of ordinary
differential equations where the x; are generated sequentially, and z; may depend
on Zi.:ll x;, sorting and searching may be impossible. One way to achieve higher
accuracy that we have not mentioned is simply to implement recursive summation in
higher precision; if this is feasible it may be less expensive (and more accurate) than
using one of the alternative methods in working precision.

Finally, we return to the two practical applications mentioned in the introduction.
In [24] the +/— method was found to cure some problems with inaccurate gradients
in an optimization method. This is a little surprising since we have found the +/—
method to be unattractive. It appears that there is some feature of this application,
not apparent from [24], that encourages the +/— method to perform better than re-
cursive summation with the natural ordering. The loss of symmetry in a quasi-Newton
method that was observed in [7] is easier to understand. For example, symmetries in
F in (1.1) can be preserved by using any summation method whose computed answer
does not depend on the given order of the data—such as recursive summation with
the increasing ordering and with elements of equal magnitude ordered by sign.
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