
THE ACCURACY OF FLOATING POINT SUMMATION�NICHOLAS J. HIGHAMyAbstract. The usual recursive summation technique is just one of several ways of computing thesum of n 
oating point numbers. Five summation methods and their variations are analysed here.The accuracy of the methods is compared using rounding error analysis and numerical experiments.Four of the methods are shown to be special cases of a general class of methods, and an error analysisis given for this class. No one method is uniformly more accurate than the others, but some guidelinesare given on the choice of method in particular cases.Key words. 
oating point summation, rounding error analysis, orderings.AMS subject classi�cations. primary 65G05, secondary 65B10.1. Introduction. Sums of 
oating point numbers are ubiquitous in scienti�ccomputing. They occur when evaluating inner products, means, variances, norms,and all kinds of nonlinear functions. Although, at �rst sight, summation might ap-pear to o�er little scope for algorithmic ingenuity, the usual \recursive summation"(with various orderings) is just one of several possible techniques. Most of the othertechniques have been derived with the aim of achieving greater accuracy of the com-puted sum, but pairwise summation has the advantage of being particularly wellsuited to parallel computation.In this paper we examine a variety of methods for 
oating point summation,with the aim of answering the question \which methods achieve the best accuracy?".Several authors have used error analysis to compare summation methods (see, forexample, [1, 2, 33, 39]). Here we give a more comprehensive treatment that highlightsthe relationships between di�erent methods; in particular, we give an error analysisfor a general class of methods that includes most of the speci�c summation methodsas special cases.This work was motivated by two applications in which the choice of summationmethod has been found to have an important in
uence on the performance of anumerical method.(1) In [24], Lasdon et al. derive an algorithm for solving an optimization problemthat arises in the design of sonar arrays. The authors state [24, p. 145] that \Theobjective gradient rf in (4.1) is a sum of M terms. In problems with M = 284 andn = 42, the GRG2 optimizer encountered di�culties which stem from inaccuracies inrf . . .We hypothesized that this was due to roundo� error resulting from cancellationof terms inrf of approximately equal magnitudes and opposite signs. These problemswere eliminated by accumulating separately positive and negative terms (for eachcomponent of rf) in the sum (4.1), adding them together only after all M terms hadbeen processed."(2) Dixon and Mills [7] applied a quasi-Newton method to the extended Rosen-brock functionF (x1; x2; : : : ; xn) = n=2Xi=1�100(x2i � x22i�1)2 + (1� x2i�1)2�:(1.1)�In SIAM J. Sci. Comput., 14(4):783{799, July 1993.yDepartment of Mathematics, University of Manchester, Manchester, M13 9PL, UK.na.nhigham@na-net.ornl.gov 1



2 FLOATING POINT SUMMATIONThis function and its derivatives possesses certain symmetries; for example, F (a; b; c; d) =F (c; d; a; b) when n = 4. It is observed in [7] that expected symmetries in the searchdirection and Hessian approximation are lost in practice, resulting in more iterationsfor convergence of the quasi-Newton method than are predicted theoretically. Dixonand Mills attribute the loss of symmetry to rounding errors in the evaluation of cer-tain inner products, which can cause identities such as the one quoted above to failin 
oating point arithmetic. They restore symmetry (and thus reduce the number ofiterations) by using a special summation algorithm when evaluating inner products:their algorithm evaluates Pni=1 xi by sorting the xi, dividing them into a list of neg-ative numbers and a list of nonnegative numbers, and then repeatedly forming thesum of the largest nonnegative and most negative elements and placing the sum intothe appropriate list, in order.We return to these two applications in section 7.The �ve main summation methods that we consider are de�ned and analysed insections 2 and 3. For the error analysis we will make use of the standard model of
oating point arithmetic, in which u is the unit roundo�:fl(x op y) = (x op y)(1 + �); j�j � u; op = +;�; �; =:(1.2)This model is violated by machines that lack a guard digit, so we explain in section 5how our analysis has to be modi�ed to accommodate such machines. We will assumethat no 
oating point under
ows occur; how to modify error analyses to allow forunder
ow is described by Demmel in [6]. An excellent tutorial on many aspects of
oating point arithmetic is given by Goldberg [9].In section 4 we summarise some existing results on statistical estimates of accu-racy of summation methods. Numerical experiments are presented in section 6 andconclusions are given in section 7.2. Orderings of Recursive Summation. Our task is to evaluate Sn =Pni=1 xi,where x1; : : : ; xn are real numbers. In this section we consider the standard recursivesummation technique in which Sn is evaluated according tos = 0for i = 1:ns = s+ xiend In general, each di�erent ordering of the xi will yield a di�erent computed sumbSn in 
oating point arithmetic, and it is of interest to determine how the orderinga�ects the error En = bSn � Sn:To begin, we make no assumption on the ordering and obtain a standard boundfor En. By a direct application of the model (1.2) we have, with Sk =Pki=1 xi,bSk = fl(bSk�1 + xk) = (bSk�1 + xk)(1 + �k); j�kj � u; k = 2:n:(2.1)By repeated use of this relation it follows thatbSn = (x1 + x2) nYk=2(1 + �k) + nXi=3 xi nYk=i(1 + �k):(2.2)



N. J. HIGHAM 3To simplify the product terms we use the result that if j�ij � u for i = 1:n thennYi=1(1 + �i) = 1 + �n; where �n � nu1� nu � 
n:Thus we rewrite (2.2) asbSn = (x1 + x2)(1 + �n�1) + nXi=3 xi(1 + �n�i+1);(2.3)which yields jEnj = j(x1 + x2)�n�1 + nXi=3 xi�n�i+1j(2.4) � (jx1j+ jx2j)
n�1 + nXi=3 jxij
n�i+1:(2.5)Note that x1 and x2 have the same factor 
n�1, because they play identical rolesin the summation. The bound (2.5) is essentially the same as the one derived byWilkinson in [43, p. 323] and [44, p. 17]. As Wilkinson notes in [44, p. 17], the upperbound in (2.5) depends on the order of summation, and the bound is minimized if thexi are arranged in order of increasing absolute value. We emphasise that this orderingminimizes an error bound and not necessarily the actual error (this is illustrated laterin this section, and by numerical examples in section 6). We can weaken (2.5) toobtain the bound jEnj � 
n�1 nXi=1 jxij = (n� 1)u nXi=1 jxij+O(u2);(2.6)which is independent of the ordering. It is natural to regard satisfaction of (2.6) asa minimal requirement of any summation method; in fact, all the methods we willexamine do satisfy this bound.We can rewrite (2.6) as the relative error boundjbSn � SnjjSnj � 
n�1Pni=1 jxijjSnj � 
n�1Rn:In the special case where xi � 0 for all u, Rn � 1, and the relative error has a boundof order nu, but ifPni=1 jxij � jPni=1 xij we cannot guarantee that the relative erroris small. The quantity Rn is easily seen to be the condition number of summationwhen perturbations xi ! xi +�xi are measured by maxi j�xij=jxij.Recursive summation by order of increasing absolute value can be improved uponin two possible ways. First, a method may satisfy a bound of the form (2.6) but witha constant smaller than 
n�1. Second, a method may satisfy a bound that in theworst case is no better than (2.6), but the method might be expected to yield a moreaccurate computed sum for particular classes of fxig. In the rest of this section weconsider two alternative orderings, which fall into the second category.First, we derive a sharper error bound. From (2.1) we see that the error introducedon the kth step of the summation is (bSk�1 + xk)�k = bSk�k=(1 + �k). Summing these



4 FLOATING POINT SUMMATIONindividual errors we �nd En = nXk=2 bSk �k1 + �k ;(2.7)which shows that, to �rst order, the overall error is the sum of the n � 1 relativerounding errors weighted by the partial sums. We obtain the boundjEnj = jbSn � Snj � u1� u nXk=2 jbSkj:(2.8)This bound involves the computed partial sums (excluding bS1 = x1) but not theindividual terms xi. If we weaken (2.8) by bounding jbSkj in terms of jx1j, jx2j,. . . , jxk j, then we recover (2.5), to within O(u2).The bound (2.8) suggests the strategy of ordering the xi so as to minimizePnk=2 jbSkj. This is a combinatorial optimization problem that is too expensive tosolve in the context of summation. A reasonable compromise is to determine theordering sequentially by minimizing, in turn, jx1j, jbS2j, . . . , jbSn�1j. This orderingstrategy, which we denote by Psum, can be implemented with O(n logn) compar-isons. The principal di�erence between the Psum and increasing orderings is that thePsum ordering is in
uenced by the signs of the xi, while the increasing ordering isindependent of the signs. If all the xi have the same sign then the two orderings areidentical.It is easy to show by example that the bounds (2.8), (2.5) and (2.6) are nearlyattainable. Following Wilkinson [44, p. 19] we assume u = 2�t, set n = 2r (r � t),and de�ne x(1) = 1;x(2) = 1� 2�t;x(3: 4) = 1� 21�t;x(5: 8) = 1� 22�t;...x(2r�1 + 1: 2r) = 1� 2r�1�t:Then in the (i�1)st 
oating point addition the \2k�t" portion of xi does not propagateinto the sum1, thus there is an error of 2k�t and bSi = i. The total error is2�t(1 + 22 + 24 + � � �+ 22(r�1)) = 2�t 4r � 13 ;while the upper bound of (2.6) is(n� 1)u1� (n� 1)u nXi=1 jxij � 2r2�t1� 2r2�t 2r � 2�t4r;which agrees with the actual error to within a factor 3; thus the smaller upper boundsof (2.5) and (2.8) are also correct to within this factor. The example just quoted is, of1We assume in this example that the 
oating point arithmetic uses round to nearest with tiesbroken by rounding to an even last bit or rounding away from zero.



N. J. HIGHAM 5course, a very special one, and as Wilkinson [44, p. 20] explains, \in order to approachthe upper bound as closely as this, not only must each error take its maximum value,but all the terms must be almost equal."Next, we consider ordering the xi by decreasing absolute value. For the summa-tion of positive numbers this ordering has little to recommend it. The bound (2.8) isno smaller, and potentially much larger, than for the increasing ordering (the sameis true for the weaker bound (2.5)). Furthermore, in a sum of positive terms thatvary widely in magnitude the decreasing ordering may not allow the smaller terms tocontribute to the sum (which is whyPni=1 1=i \converges" in 
oating point arithmeticas n!1). However, consider the example with n = 4 andx = [ 1; M; 2M; �3M ] ;(2.9)where M is a power of the machine base and is so large that fl(1 +M) = M (thusM > u�1). The three orderings considered so far produce the following results:Increasing: bSn = fl(1 +M + 2M � 3M) = 0;Psum: bSn = fl(1 +M � 3M + 2M) = 0;Decreasing: bSn = fl(�3M + 2M +M + 1) = 1:Thus the decreasing ordering sustains no rounding errors and produces the exactanswer, while both the increasing and Psum orderings yield computed sums withrelative error 1. The reason why the decreasing ordering performs so well in thisexample is that it adds the `1' after the inevitable heavy cancellation has taken place,rather than before, and so retains the important information in this term.If we evaluate the term � =Pnk=2 jbSkj in the error bound (2.8) for example (2.9)we �ndIncreasing : � = 4M; Psum : � = 3M; Decreasing : � =M + 1;so (2.8) \predicts" that the decreasing ordering will produce the most accurate answer,but the bound it provides is extremely pessimistic since there are no rounding errors inthis instance. This example illustrates the main weakness of bounds from a roundingerror analysis: they represent the worst case and so do not account for the possibilitythat rounding errors may cancel or be smaller than expected.Extrapolating from this example, we conclude that the decreasing ordering islikely to yield greater accuracy than the increasing or Psum orderings whenever thereis heavy cancellation in the sum, that is, whenever jPni=1 xij �Pni=1 jxij. A numer-ical example that illustrates this assertion is given in section 6 (see Table 6.1).3. Other Methods. In this section we consider in detail four more summationmethods. The �rst three of these methods, together with recursive summation, havethe following general form: with Tk � xk , k = 1:n, they perform n� 1 additionsTk = Tk1 + Tk2 ; k1 < k2 < k; k = n+ 1: 2n� 1;(3.1)yielding Sn = T2n�1. In recursive summation, k1 � n in each instance of (3.1), butfor the other methods at least one addition involves two previously computed sums.A useful expression for the error in this general class of summation methods can bederived as follows. The computed quantities bTk satisfybTk = ( bTk1 + bTk2)(1 + �k); j�kj � u; k = n+ 1: 2n� 1:(3.2)



6 FLOATING POINT SUMMATIONThe local error introduced in forming bTk is ( bTk1 + bTk2)�k = bTk�k=(1 + �k), so overallwe have bSn � Sn = 2n�1Xk=n+1 bTk �k1 + �k :(3.3)The smallest possible error bound is thereforejEnj � u1� u 2n�1Xk=n+1 j bTkj:(3.4)It is easy to see that j bTkj � Pni=1 jxij + O(u) for each k, and so we have also theweaker bound jEnj � (n� 1)u nXi=1 jxij+O(u2):(3.5)Note that in the case of recursive summation (3.3){(3.5) are the same as (2.6){(2.8).Finally, we note in passing that from (3.2) there follows a backward error result whichshows that bSn is the exact sum of terms xi(1 + �i), where j�ij = O(u).The �rst method we consider is pairwise summation (also known as cascade sum-mation), which was �rst discussed by McCracken and Dorn [29, pp. 61{63], Babu�ska[1] and Linz [27]. In this method the xi are summed in pairs,yi = x2i�1 + x2i; i = 1 : �n2 � (y[(n+1)=2] = xn if n is odd);and this pairwise summation process is repeated recursively on the yi, i = 1 : [(n +1)=2]. The sum is obtained in dlog2 ne stages. For n = 6, for example, pairwisesummation forms S6 = �(x1 + x2) + (x3 + x4)�+ (x5 + x6):Pairwise summation is attractive in parallel settings, because each of the dlog2 nestages can be done in parallel [13, sec. 5.2.2]. Caprani [4] shows how to implementthe method on a serial machine using temporary storage of size dlog2 ne (withoutoverwriting the xi).The error expression (3.3) holds for pairwise summation, but it is easy to derivea useful error bound independently. Assume for simplicity that n = 2r. Unlike inrecursive summation each addend takes part in the same number of additions, log2 n.Therefore, analogously to (2.2), we have a relation of the formbSn = nXi=1 xi log2 nYk=1 (1 + �(i)k ); j�(i)k )j � u;which leads to the bound jEnj � 
log2 n nXi=1 jxij:(3.6)This is a smaller bound than (2.6) for recursive summation, since it is proportionalto log2 n rather than n. However, in special cases the bound (2.5) for recursivesummation can be smaller than (3.6). For example, if xi = 1=i3, the bound (3.6) isjEnj � 1:20 log2 nu+O(u2)(3.7)



N. J. HIGHAM 7(using Pni=1 1i3 �P1i=1 1i3 � 1:20), while for the increasing ordering (2.5) becomesjEnj � u nXi=1 1(n� i+ 1)3 (n� i+ 1) +O(u2) = u nXi=1 1i2 +O(u2) � 1:64u+O(u2)(using Pni=1 1i2 � P1i=1 1i2 = �26 � 1:64), and so pairwise summation has the largererror bound, by a factor � log2 n. (Expression (3.3) does not enable us to improveon the factor log2 n in (3.7).)In [36] an \insertion adder" is proposed for the summation of positive numbers.This method can be applied equally well to arbitrary sums. First, the xi are sortedby order of increasing magnitude. Then x1 + x2 is formed, and the sum is insertedinto the list x2; : : : ; xn, maintaining the increasing order. The process is repeatedrecursively until the �nal sum is obtained. The motivation given in [36] for thisstrategy is that it tends to encourage the additions to be between numbers of similarmagnitude. It can be argued that such additions are to be preferred, because theyretain more of the information in the addends (by comparison, \large" plus \small"may lose many signi�cant digits from \small"). A more convincing explanation of theinsertion strategy is that it attempts to minimize, one at a time, the absolute valuesof the terms bTn+1; : : : ; bT2n�1 in the error expression (3.3). Indeed, if the xi are allpositive the insertion method minimizes the bound (3.4) over all methods of the form(3.1).In particular cases the insertion method reduces to earlier methods. For exam-ple, if xi = 2i, the insertion method is equivalent to recursive summation, since theinsertion is always to the bottom of the list:1 2 4 8 ! 3 4 8 ! 7 8 ! 15:On the other hand, if 1 � x1 < x2 < : : : < xn � 2, every insertion is to the end ofthe list, and the method is equivalent to pairwise summation if n is a power of 2; forexample, if 0 < � < 1=2,1; 1+ �; 1+2�; 1+3� ! 1+2�; 1+3�; 2 + � ! 2+ �; 2 + 5� ! 4+6�:The next method we consider is the one used in [24], as quoted in the introduction.This method can be derived by the following specious reasoning: \A major source ofinaccuracy in 
oating point summation is cancellation when numbers of nearly equalmagnitude and opposite sign are added. To minimize the amount of cancellation wecan accumulate the sum of the positive numbers, S+, and the sum of the negativenumbers, S�, separately, and then form Sn = S+ + S�." There are two 
aws in thisargument. First, this \+=�" method does not reduce the amount of cancellation|itsimply concentrates all the cancellation into one step. Second, cancellation is nota bad thing per se; the problem with cancellation is that it brings into prominenceany loss of signi�cant digits su�ered earlier in the calculation (and it also brings intoprominence any uncertainty in the data). Indeed, nearly equal 
oating point numbersare always subtracted exactly (assuming the presence of a guard digit)|it is any(relative) uncertainty in those numbers that is magni�ed. For an excellent and moredetailed discussion of cancellation we refer the reader to [35, pp. 25{29].The +=� method is of the form (3.1) (assuming that S+ and S� are computedusing one of the methods discussed so far) and it is easy to see that it maximizesmaxk jTkj over all methods of this form. Moreover, when Pni=1 jxij � jPni=1 xij the



8 FLOATING POINT SUMMATIONFig. 3.1. Recovering the rounding error.a a1 a2+b b1 b2= bs a1 a2 + b1�a b1 0�b � b2 0 � �evalue of maxk jTkj tends to be much larger for the +=� method than for the othermethods we have considered. For example, if n = 2m and the xi are the valuesf�1; 1;�2; 2; : : : ;�m;mg thenjS+j = jS�j = jT2n�2j = mXi=1 k = m(m+ 1)=2;whereas for recursive summation with the increasing ordering, jTkj � m for all k.Despite this weakness, if S+ and S� are computed by recursive summation with theincreasing ordering then the +=� method satis�es a bound very similar to (2.5): ifxp � xp�1 � : : : � x1 < 0 � xp+1 � : : : � xnthen it is straightforward to derive the boundjEnj � pXi=1 
p�i+1jxij+ nXi=p+1 
n�i+1jxij+ u1� u jbSnj:(3.8)In summary, the +=� method appears to have no advantages over the other methodsconsidered here, and in cases where there is heavy cancellation in the sum it can beexpected to be the least accurate method.The �nal method that we examine has an interesting background. In 1951 Gill[8] noticed that the rounding error in the sum of two numbers could be estimated bysubtracting one of the numbers from the sum, and he made use of this estimate in aRunge-Kutta code in a program library for the EDSAC computer. Gill's estimate isvalid for �xed point arithmetic only. Kahan [16] and M�ller [32] both extended the ideato 
oating point arithmetic. M�ller shows how to estimate a+b�fl(a+b) in choppedarithmetic, while Kahan uses a slightly simpler estimate to derive a \compensatedsummation" method for computing Pni=1 xi. The use of Kahan's method with aRunge-Kutta formula is described in [42] (see also the experiments in [26]).The estimate used by Kahan is perhaps best explained with the aid of a diagram.Let a and b be 
oating point numbers with jaj � jbj, let bs = fl(a+ b), and considerFigure 3.1, which uses boxes to represent the mantissas of a and b. The �gure suggeststhat if we evaluate e = ���(a+ b)� a�� b� = (a� bs) + b



N. J. HIGHAM 9in 
oating point arithmetic, in the order indicated by the parentheses, then the com-puted be will be a good estimate of the error (a+ b)� bs. In fact, for rounded 
oatingpoint arithmetic in base 2, we havea+ b = bs+ be;(3.9)that is, the computed be represents the error exactly. This result (which does nothold for all bases) is proved by Dekker [5, Th. 4.7], Knuth [22, Th. C, p. 221] andLinnainmaa [26, Th. 3]. Note that there is no point in computing fl(bs+ be), since bs isalready the best 
oating point representation of a+ b!Kahan's compensated summation method employs the correction e on every stepof a recursive summation. After each partial sum is formed, the correction is computedand immediately added to the next term xi before that term is added to the partialsum. Thus the idea is to capture the rounding errors and feed them back into thesummation. The method may be written as follows.s = 0; e = 0for i = 1:ntemp = sy = xi + es = temp+ ye = (temp� s) + yend The compensated summation method has two weaknesses: be is not necessarily theexact correction, since (3.9) is based on the assumption that jaj � jbj, and the additiony = xi + e is not performed exactly. Nevertheless, the use of the corrections brings abene�t in the form of an improved error bound. Knuth [22, Ex. 19, pp. 229, 572{573]shows that the computed sum bSn satis�esbSn = nXi=1(1 + �i)xi; j�ij � 2u+O(nu2);(3.10)which is an almost ideal backward error result (a more detailed version of Knuth'sproof is given in [9]).In [17, 18] Kahan describes a variation of compensated summation in which the�nal sum is also corrected (thus `s = s + e' is appended to the algorithm above).Kahan states in [17] and proves in [18] that (3.10) holds with the stronger boundj�ij � 2u+O�(n� i+ 1)u2�; note that with this bound for j�ij, (3.10) is essentially(2.3) with the n dependency transferred from the u term to the u2 term. The proofsof (3.10) given by Knuth and Kahan are similar, and involve a subtle induction usingthe model (1.2).The forward error bound corresponding to (3.10) isjEnj � �2u+O(nu2)� nXi=1 jxij:(3.11)As long as nu � 1, the constant in this bound is independent of n, and so the boundis a signi�cant improvement over the bounds (2.6) for recursive summation and (3.6)for pairwise summation. Note, however, that if Pni=1 jxij � jPni=1 xij, compensatedsummation is not guaranteed to yield a small relative error.



10 FLOATING POINT SUMMATIONAnother version of compensated summation is described in [14, 15, 21, 33, 34].Here, instead of immediately feeding each correction back into the summation, thecorrections are accumulated by recursive summation and then the global correction isadded to the computed sum. For this version of compensated summation it is shownin [21] and [33] that bSn = nXi=1(1 + �i)xi; j�ij � 2u+ n2u2;(3.12)provided nu � 0:1; this is weaker than (3.10) in that the second order term has anextra factor n. If n2u � 0:1 then in (3.12), j�ij � 2:1u. In [14] it is shown that byusing a divide and conquer implementation of compensated summation the range ofn for which j�ij � cu holds in (3.12) can be extended, at the cost of a slight increasein the size of the constant c.Finally, we mention brie
y two further classes of algorithms. The �rst builds thesum in a series of accumulators, which are themselves added to give the sum. Asoriginally described in [45], each accumulator holds a partial sum lying in a di�erentinterval. Each term xi is added to the lowest level accumulator; if that accumulatorover
ows it is added to the next higher one and then reset to zero, and this cascadecontinues until no over
ow occurs. Modi�cations of Wolfe's algorithm are presentedin [28, 37]. Malcolm [28] gives a detailed error analysis to show that his methodachieves a relative error of order u. A drawback of the algorithm is that it is stronglymachine dependent. An interesting and crucial feature of Malcolm's algorithm is thaton the �nal step the accumulators are summed by recursive summation in order ofdecreasing absolute value, which in this particular situation precludes severe loss ofsigni�cant digits and guarantees a small relative error.Another class of algorithms, referred to as \distillation algorithms" by Kahan[19], iteratively constructs 
oating point numbers x(k)1 ; : : : x(k)n such thatPni=1 x(k)i =Pni=1 xi, terminating when x(k)n approximates Pni=1 xi with relative error at most u.Kahan states that these algorithms appear to have average run times of order at leastn logn. See [3], [19], [25] and [23] for further details and references.4. Statistical Estimates of Accuracy. As we have noted, rounding errorbounds can be very pessimistic, because they account for the worst-case propagationof errors. An alternative way to compare summation methods is through statisticalestimates of the error, which may be more representative of the average case. A statis-tical analysis of three summation methods has been given by Robertazzi and Schwartz[36] for the case of nonnegative xi. They assume that the relative errors in 
oatingpoint addition are statistically independent and have zero mean and �nite variance�2. Two distributions of nonnegative xi are considered: the uniform distribution on[0; 2�], and the exponential distribution with mean �. Making various simplifyingassumptions Robertazzi and Schwartz estimate the mean square error (that is, thevariance of the absolute error) of the computed sums from recursive summation withrandom, increasing and decreasing orderings, and from insertion summation and pair-wise summation. Their results for the summation of n numbers are given in Table 4.1.The results show that for recursive summation the ordering a�ects only the con-stant in the mean square error, with the increasing ordering having the smallestconstant and the decreasing ordering the largest; since the xi are nonnegative, thisis precisely the ranking given by the rounding error bound (2.8). The insertion andpairwise summation methods have mean square errors proportional to n2 rather than



N. J. HIGHAM 11Table 4.1Mean square errorsDistribution Increasing Random Decreasing Insertion PairwiseUnif(0; 2�) 0:20�2n3�2 0:33�2n3�2 0:53�2n3�2 2:6�2n2�2 2:7�2n2�2Exp(�) 0:13�2n3�2 0:33�2n3�2 0:63�2n3�2 2:6�2n2�2 4:0�2n2�2n3 for recursive summation, and the insertion method has a smaller constant thanpairwise summation. This is also consistent with the rounding error analysis, in whichfor nonnegative xi the insertion method satis�es an error bound no larger than pair-wise summation, and the latter method has an error bound with a smaller constantthan for recursive summation (log2 n versus n).5. No Guard Digit Model. The model (1.2) on which our error analysis isbased is not valid on machines that lack a guard digit in addition, notable examplesof which are Cray computers. On Cray computers subtracting any power of 2 fromthe next smaller 
oating point number gives an answer that is either a factor of 2 toolarge or is zero, so the expression fl(x+y) = (x+y)(1+ �) holds with j�j = 1 but notwith j�j = O(u) [20]. For machines without a guard digit we have to use the weakermodel [44, p. 12] fl(x � y) = x(1 + �)� y(1 + �); j�j; j�j � u:(5.1)We now summarise the e�ect on the rounding error analysis of using (5.1) inplace of (1.2). The equality (2.4) remains valid provided we replace (x1 + x2)�n�1 byx1�n�1+ x2�0n�1, so (2.5) and (2.6) are unchanged. The error expression (2.7) has tobe replaced by En = nXk=2(bSk�1�k + xi�k); j�kj; j�kj � u;(5.2)and so the analogue of (2.8) isjEnj � u nXk=2(jbSk�1j+ jxkj);(5.3)which is bounded above by 3uPnk=1 jbSkj+O(u2). Notice that (5.3) contains the termbS1 = x1, which is not present in (2.8). The error expression (3.3) has to be replacedby an expression analogous to (5.2), and in (3.5) the factor n� 1 has to be replacedby n. The bound (3.6) for pairwise summation remains valid under the no guard digitmodel, while in the bound (3.8) for the +=� method we have to replace u=(1�u)jbSnjby u(jbS+j+ jbS�j), which is bounded by uPni=1 jxij+O(u2).Neither the correction formula (3.9) nor the result (3.10) for compensated sum-mation holds under the no guard digit model. Indeed, Kahan [20] constructs anexample where compensated summation fails to achieve (3.11) on Cray machines, buthe states that such failure is extremely rare. In [17, 18] Kahan gives a modi�cation ofthe compensated summation algorithm in which the assignment `e = (temp� s) + y'is replaced byf = 0if sign(temp) = sign(y), f = (0:46 � s� s) + s, ende = ((temp� f)� (s� f)) + y



12 FLOATING POINT SUMMATIONKahan shows in [18] that the modi�ed algorithm achieves (3.10) \on all North Amer-ican machines with 
oating hardware" and explains that \The mysterious constant0:46, which could perhaps be any number between 0:25 and 0:50, and the fact that theproof requires a consideration of known machines designs, indicate that this algorithmis not an advance in computer science."6. Numerical Experiments. In this section we describe some numerical ex-periments that give further insight into the accuracy of summation methods. Allthe experiments were done using MATLAB [30], which uses IEEE standard doubleprecision arithmetic with unit roundo� u � 1:1� 10�16.First, we illustrate the behaviour of the methods on four classes of data fxigchosen a priori. In these tests we simulated single precision arithmetic of unit roundo�uSP = 2�23 � 1:2� 10�7 by rounding the result of every arithmetic operation to 23signi�cant bits. We formed an approximation to the exact answer Sn by summingthe single precision numbers xi in double precision by recursive summation; in eachcase nuPni=1 jxij < uSP jSnj, so (2.6) guarantees that this approximation is correctto single precision. We give results for recursive summation with the original (Orig.),increasing (Inc.), decreasing (Dec.) and Psum orderings, and for the insertion (Ins.)method, the +=� method (with S+ and S� computed by recursive summation withthe increasing ordering), pairwise summation with the increasing ordering (Pair.) andcompensated summation (Comp.).The numbers reported are the relative error jbSn � Snj=jSnj, together with infor-mation that indicates the sharpness of the bounds. In square brackets is the valueT =P2n�1k=n+1 j bTkj in (3.4), for all methods except compensated summation. In paren-theses is the ratio R = jbSn � Snj=(uSP Pni=1 jxij), which, according to the erroranalyses, is certainly bounded (to �rst order) by n for recursive summation and theinsertion and +=� methods, log2 n for pairwise summation, and 2 for compensatedsummation. The quantities T and R reveal how close the strongest and weakest ofthe error bounds are to being equalities.(1) In the �rst example, xi is the ith term in the Taylor series expansion of e�xabout the origin, with x = 2� (this series provides the classic example of \catastrophiccancellation" [38]). Results for n = 64 are given in Table 6.1. In this example,recursive summation with the decreasing ordering yields by far the best accuracy.There is severe cancellation in the sum and the decreasing ordering allows the termsof smallest modulus to contribute fully to the computed sum; in the other methodsthe small terms are \swamped" by the large terms. The error bounds do not re
ectthe merit of the decreasing ordering, because the T terms (in square brackets in thetable) are of similar magnitude for the �rst four methods. Note also that compensatedsummation produces no improvement over recursive summation with the originalordering, and the +=� method yields one less correct signi�cant �gure than all theother methods (as predicted by the T values).(2) In this example the xi are random numbers from the Normal(0,1) distributionand we report the results for n = 2048 and 4096 in Table 6.2. There is cancellation inboth sums although not as much as in the �rst example. Here the Psum ordering isclearly the best and the +=� ordering the worst, and this is re
ected in the T values.The next two tests involve positive xi, for which all the methods are guaranteedto produce a relative error no larger than f(n)u, where f(n) � n depends on themethod. (Note that for positive xi, \Psum � +=� � Inc:")(3) We take xi = 1=i2 and examine how the errors vary with n for recursive sum-mation with the decreasing and increasing orderings. Results for n = 500; 1000; : : : ; 5000



N. J. HIGHAM 13are given in Table 6.3. As would be expected in view of the error bounds of section 2,the decreasing ordering provides much lower accuracy than the increasing orderingwhen n is large.(4) In this example the numbers xi are equally spaced on [1; 2]. We tried variousn � 4096 and did not observe a great di�erence between the increasing and decreas-ing orderings; this is to be expected since the xi vary little in magnitude. For thefairly large n in Table 6.4 pairwise summation out-performs recursive summation (theinsertion method is equivalent to pairwise summation in this example). The errorsfor compensated summation are zero for all the n we tried!In the next set of tests we used a MATLAB implementation [12] of the multi-directional search (MDS) method [40, 41] which attempts to locate a maximizer off : IRn ! IR using function values only. We applied the maximizer to f de�ned as therelative error of the sum computed in single precision by recursive summation withthe increasing ordering. With n = 3, starting with x0 = [1=3; 2=3; 1], the maximizerlocated the following set of data after 280 function evaluations:x = [ 4:975987 �2:495094 �2:480894 ] ; f(x) = 1:0;bS3 = �9:5367� 10�7; S3 = �4:7684� 10�7;where x and the S3 values are quoted to seven and �ve signi�cant �gures, respectively.With f de�ned as the relative error for compensated summation, the MDS maximizermade little progress with the same starting value. But starting with x0 = [�1=3 0 2=3],the maximizer found after 166 function evaluations the datax = [�0:8308306 �0:7626623 1:593493 ] ; f(x) = 1:0;bS3 = 2:3842� 10�7; S3 = 1:1921� 10�7:(If x is reordered with the increasing ordering then f(x) = 1:0, but f(x) = 0 for thedecreasing ordering).These two examples are typical|using the maximizer it is straightforward to �nddata for which any of the summation methods yields no correct signi�cant �gures inthe sum. The maximizer can also be used to compare two di�erent methods, byde�ning f as the ratio of the errors from the two methods. With n = 3 we comparedrecursive summation (with the increasing ordering) with compensated summation.For both ratios of errors (E(Inc:)=E(Comp:) and its reciprocal) with certain startingvalues the maximizer was able to make the ratio arbitrarily large, by converging todata for which the error forming the denominator of f is zero. We observed similarbehaviour when comparing other methods.Next, we describe an experiment with the forward substitution algorithm forsolving a lower triangular system. We coded the inner product version of the algorithmand provided an option to choose between eight summation methods when evaluatingthe inner products. (The column oriented form of forward substitution is not amenableto the use of di�erent summation methods.) Lower triangular systems Tx = b weresolved in single precision and the forward error kbx � xk1=kxk1 was evaluated foreach of the eight summation options. We give results for T = UT where PA = LUis the LU factorization with partial pivoting of the 10 � 10 Vandermonde matrixwhose (i; j) element is ((j � 1)=(n � 1))i�1. In Table 6.5 we report results for thetwo systems with right-hand sides bi = Txi, where xi has elements equally spacedon the intervals [1; 100] for i = 1 and [0; 100] for i = 2. For this matrix �1(T ) =kTk1kT�1k1 � 3�107, and cond(T; x1) � cond(T; x2) � 7�105, where cond(T; x) =



14 FLOATING POINT SUMMATIONk jT�1jjT jjxj k1=kxk1 � �1(T ) is the condition number that appears in a forwarderror bound for the substitution algorithm [11]. The forward error varies over thedi�erent summation methods by a factor 98 for b1 and a factor 39 for b2; these arethe largest variations we observed in tests with a variety of di�erent matrices andright-hand sides. Throughout the tests there was no pattern to which summationmethod led to the smallest or largest forward error. This experiment shows that thechoice of summation method for inner product evaluation can signi�cantly a�ect theaccuracy achieved by forward substitution, and this conclusion applies a fortiori to thesolution of a full system via LU factorization. However, since there appears to be nostraightforward way to predict which summation method will be the best for a givenlinear system, there is little reason to use anything other than recursive summationin the natural order when evaluating inner products within a general linear equationsolver.We have also experimented with compensated summation with the data arrangedin order of decreasing magnitude. For all the problems we have tried, including thosedescribed above, the relative errors are � uSP . Our attempts to use the MDS maxi-mizer to �nd a set of xi for which the relative error exceeds uSP have been unsuccessful.It is therefore natural to ask whether a relative error bound of the form jEnj � cujSnjcan be derived, where c is a constant independent of the xi. The answer is no, becauseEn can be nonzero when Sn = 0. Even when n = 3 and Sn 6= 0 it appears to beimpossible to obtain such a bound. Nevertheless our (limited) experience suggeststhat compensated summation with the decreasing ordering performs remarkably wellin practice, and it would be interesting to determine why this is so.Further test results can be found in the literature, although none are exten-sive. Linz [27] compares recursive summation with pairwise summation for uniformrandom numbers on [0; 1] with n = 2048, averaging the errors over 20 trials, andCaprani [4] and Gregory [10] both conduct a similar experiment including compen-sated summation as well. Linnainmaa [26] applies recursive summation and com-pensated summation to series expansions, Simpson's rule for quadrature and Gill'sRunge-Kutta method. Robertazzi and Schwartz [36] evaluate average mean squareerrors for recursive summation (with increasing, decreasing and random orderings),pairwise summation and the insertion method, for the uniform [0; 1] and exponential(� = 0:5) distributions with n � 4096.



N. J. HIGHAM 15Table 6.1xi from e�2� expansion.jPni=1 xij=Pni=1 jxij = 3.48e-6.n Orig. Inc. Dec. Psum Pair. Ins. +=� Comp.64 5.11e-4 2.27e-3 1.85e-7 2.27e-3 1.41e-4 2.27e-3 1.86e-2 5.11e-4[2.68e2 2.97e2 2.97e2 2.85e2 8.68e1 2.97e2 1.34e3](1.49e-2 6.64e-2 5.40e-6 6.64e-2 4.13e-3 6.64e-2 5.44e-1 1.49e-2)Table 6.2xi from Normal(0,1) distribution.jPni=1 xij=Pni=1 jxij = 8.08e-3 (n = 2048), 3.48e-3 (n = 4096).n Orig. Inc. Dec. Psum Pair. Ins. +=� Comp.2048 7.47e-6 3.32e-6 7.17e-6 6.82e-8 6.60e-7 5.12e-7 1.20e-4 2.28e-7[3.06e4 1.53e4 2.65e4 8.26e2 2.87e3 2.32e3 4.80e5](5.06e-1 2.25e-1 4.86e-1 4.62e-3 4.47e-2 3.47e-2 8.15e0 1.54e-2)4096 8.06e-6 1.04e-5 1.84e-6 2.66e-8 1.38e-7 6.87e-7 3.68e-4 1.92e-7[6.69e4 4.74e4 4.28e4 1.68e3 5.70e3 5.38e3 2.02e6](2.35e-1 3.04e-1 5.38e-2 7.76e-4 4.04e-3 2.00e-2 1.07e1 5.59e-3)Table 6.3xi = 1=i2.n 500 1000 2000 3000 4000 5000Inc. 1.04e-7 1.01e-7 1.74e-8 5.22e-8 1.36e-7 3.90e-8Dec. 3.31e-7 6.24e-7 5.64e-6 2.30e-5 2.77e-5 5.81e-5Table 6.4xi equispaced on [1; 2].n Inc. Dec. Pair. Comp.2048 2.86e-6 3.86e-5 1.59e-7 0.00[2.80e6 3.50e6 3.38e4](2.40e1 3.24e2 1.33e0 0.00)4096 3.35e-5 2.18e-5 1.59e-7 0.00[1.12e7 1.40e7 7.37e4](2.81e2 1.83e2 1.33e0 0.00)Table 6.5Forward substitution with a 10� 10 matrix.Orig. Inc. Dec. Psum Pair. Ins. +=� Comp.b1 3.01e-4 1.18e-2 7.70e-3 1.18e-2 2.94e-2 1.18e-2 4.01e-3 7.70e-3b2 1.31e-2 2.64e-2 4.63e-3 2.64e-2 6.81e-4 1.06e-2 2.64e-2 2.04e-2



16 FLOATING POINT SUMMATION7. Concluding Remarks. No summation method from among those consideredhere can be regarded as superior to the rest from the point of view of accuracy, sincefor each method the error can vary greatly with the data, within the freedom a�ordedby the error bounds. However, some speci�c conclusions can be drawn.1. For all but two of the methods the errors are, in the worst case, proportionalto n. If n is very large, pairwise summation (error constant log2 n) andcompensated summation (error constant of order 1) are attractive.2. If the xi all have the same sign then all the methods yield a relative errorof at most nu, and compensated summation guarantees perfect relative ac-curacy (as long as nu � 1). For recursive summation of one-signed data theincreasing ordering is preferable to the decreasing ordering (and it is equiva-lent to the Psum ordering); however, the insertion method has the smallestbound (3.4) over all the methods considered here (excluding compensatedsummation).3. For sums with heavy cancellation (Pni=1 jxij � jPni=1 xij) recursive summa-tion with the decreasing ordering is attractive (see Table 6.1), although itcannot be guaranteed to achieve the best accuracy (see Table 6.2).Considerations of computational cost and the way in which the data are generatedmay rule out some of the methods. Recursive summation in the natural order, pairwisesummation and compensated summation can be implemented in O(n) operations forgeneral xi, but the other methods are more expensive since they require searching orsorting. Furthermore, in an application such as the numerical solution of ordinarydi�erential equations where the xi are generated sequentially, and xk may dependon Pk�1i=1 xi, sorting and searching may be impossible. One way to achieve higheraccuracy that we have not mentioned is simply to implement recursive summation inhigher precision; if this is feasible it may be less expensive (and more accurate) thanusing one of the alternative methods in working precision.Finally, we return to the two practical applications mentioned in the introduction.In [24] the +=� method was found to cure some problems with inaccurate gradientsin an optimization method. This is a little surprising since we have found the +=�method to be unattractive. It appears that there is some feature of this application,not apparent from [24], that encourages the +=� method to perform better than re-cursive summation with the natural ordering. The loss of symmetry in a quasi-Newtonmethod that was observed in [7] is easier to understand. For example, symmetries inF in (1.1) can be preserved by using any summation method whose computed answerdoes not depend on the given order of the data|such as recursive summation withthe increasing ordering and with elements of equal magnitude ordered by sign.Acknowledgements. I thank Jeremy Du Croz and Philip Gill for providingsome of the references, and Des Higham, Nick Trefethen and the referee for suggestingimprovements to the manuscript.
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