
Math 726: L-functions and modular forms Fall 2011

Lecture 3: Fourier transforms and Poisson summation

Instructor: Henri Darmon Notes written by: Luca Candelori

In the last lecture we showed how to derive the functional equation of the Riemann ζ
function, by letting

Λ(s) := π−s/2Γ(s/2)ζ(s)

and then by showing
Λ(s) = Λ(1− s).

There are two key steps in this proof:

(I) Express Λ(s) as a Mellin transform Λ(s) = M(ω)(s), where

ω(t) =
∞�

n=1

e−πn2t

and t ∈ R>0, to obtain an integral representation of Λ(s).

(II) Exploit the identity

θ

�
1

x

�
=

√
x · θ(x) , x ∈ R>0 (1)

where
θ(x) :=

�

n∈Z

e−πn2x = 2ω(x) + 1

The first step was proved in the previous lecture, whereas this lecture will be concerned
with the proof of the identity (1).

We first need to recall some notions from Fourier analysis. Let f : R → C be an integrable
(i.e. L2) function.

Definition 1. The Fourier transform of f is the function �f : R → C given by

�f(s) =
�

R

e−2πistf(t) dt.

Remark 2. The notion of a Fourier transform makes sense for any locally compact topo-
logical group G. If �G is the space of characters χ : G → S1, then the Fourier transform can
be seen as a map L2(G) → L2( �G) by sending f �→ �f(χ) =

�
G χ(t)f(t) dt. When G = R, all

the characters of G are of the form χs(t) = e2πist for s ∈ G.
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Although we can define Fourier transforms for any function f ∈ L2(R), we would like to
restrict our attention to a special class of integrable functions on which the process of taking
Fourier transforms can be iterated.

Definition 3 (Schwartz function). f is a Schwartz function if f is smooth (i.e. C∞) and
if it is of rapid decay (i.e. |f(x)| � |x|−N as x → ∞ for all N).

A Schwartz function is clearly integrable, so we can take its Fourier transform.

Lemma 4. The Fourier transform preserves the space of Schwartz functions. Moreover:

(a)
ˆ̂f = f(−t).

(b) �f ∗ g (s) = �f(s) ∗ �g(s) where f ∗ g (t) =
�∞
−∞ f(x)g(t − x) dx is the convolution of f

and g.

(c) �f(λt)(s) = 1
λ
�f
�
s
λ

�
for any λ ∈ R.

In particular, we will use property (c), which we prove below.

Proof of (c).

�f(λt)(s) =

�

R

e−2πistf(tλ) dt

=

�

R

e−2πisu/λf(u)
du

λ
(use u = tλ)

=
1

λ
· �f

� s

λ

�

We will also make use of the following important theorem.

Theorem 5 (Poisson summation formula). Let f : R → C be a Schwartz function.

Then �

n∈Z

f(n) =
�

n∈Z

�f(n).

Proof. Consider the function F (x) =
�

n∈Z f(x + n). This is a periodic function of period
1, therefore we can take its Fourier series expansion:

F (x) =
�

n∈Z

ane
2πinx
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where

an =

� 1

0

F (x)e−2πinx dx =

� 1

0

�

m∈Z

f(x+m)e−2πinx

=
�

m∈Z

� 1

0

f(x+m)e−2πinx dx

=
�

m∈Z

� 1

0

f(x+m)e−2πin(x+m) d(x+m)

=

� ∞

−∞
f(t)e−2πint dt = �f(n).

Therefore: �

n∈Z

f(x+ n) = F (x) =
�

n∈Z

�f(n)e2πinx

and the result follows by evaluating at x = 0.

Going back to the proof of identity (1), consider now the Gaussian e−πt2 .

Proposition 6. The Schwartz function g(t) = e−πt2
is its own Fourier transform.

Proof.

�g(s) =
�

R

e−2πixs · e−πx2
dx

=

�

R

e−π(x2+2ixs) dx

=

�

R

e−π((x+is)2+s2) dx (complete the square)

= e−πs2 ·
�

R

e−π(x+is)2 dx

= e−πs2 ·
�

z=is+R

e−πz2 dz

We claim that the integral
�
is+R

e−πz2 dz, which is over the line is+R parallel to the real

line in the complex plane, is the same as
�
R
e−πx2

dx. This follows by integrating e−πz2 along
the sides of rectangles of base 2M on the real axis and height s: the integral along the whole
perimeter is zero by Cauchy’s Theorem, but the integral on the vertical sides tends to zero
as M → ∞ (see Figure 1).

Therefore �

is+R

e−πz2 dz =

�

R

e−πx2
dx.
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Figure 1: The integral of e−πz2 along the vertical lines tends to 0 as M → ∞.

To conclude the proof, we need to show that
�
R
e−πx2

dx = 1. But this follows from:
�

R

e−πx2
dx = 2

� ∞

0

e−πx2
dx

= 2

�� ∞

0

e−πx2 dx ·
� ∞

0

e−πy2 dy

= 2

�� ∞

r=0

� π/2

θ=0

e−πr2r dθ dr

= 2

�
π

2

�
− 1

2π
e−πr2

�∞

0

= 2

�
π

2

1

2π
= 1

Corollary 7. Let ft(x) = e−πx2t
. Then

�ft(s) =
1√
t
e−πs2/t.

Proof. Note that ft(x) = f1(
√
tx). By part (c) of Lemma 4 we must have:

�ft(s) = �f1(
√
tx)(s) =

1√
t
�f1
�

s√
t

�
.

But f1(x) is the Gaussian of Proposition 6, therefore �f1(s) = f1(s) = e−πs2 .

We are now ready to prove the identity (1):

θ

�
1

x

�
=

√
x · θ(x).
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Proof of identity (1). Let ft(x) = e−πx2t and apply Poisson summation:

θ(t) =
�

n∈Z

ft(n) =
�

n∈Z

�ft(n)

=
1√
t

�

n∈Z

e−πn2/t

=
1√
t

�

n∈Z

θ

�
1

t

�

In particular, the proof of this identity concludes the proof of the functional equation of
the ζ function.

Remark 8. We have defined θ(t) as a function of t ∈ R>0 but there is nothing to prevent
us from extending its domain to the complex right half-plane {z ∈ C : �[z] > 0}. As it is
customary in this game, we actually rotate the domain by 90 degrees and define:

�θ(z) := θ(−iz) =
�

n∈Z

eπin
2z

where z is now a variable in the upper half-plane H = {z ∈ C : �[z] > 0}. The function �θ(z)
then satisfies the two remarkable transformation properties:

• �θ(z + 2) = �θ(z) (by definition)

• �θ
�
−1

z

�
=

√
−iz · �θ(z) (by (1))

corresponding, respectively, to the Möbius tranformations z �→ z + 2 and z �→ −1/z acting
on H. These transformation propeties are typical of modular forms. In particular, we say
that �θ(z) is a modular form of weight 1/2 on the group

Γ(2) :=

��
a b
c d

�
∈ SL2(Z) : b, c ≡ 0 mod 2 and a, d ≡ 1 mod 2

�

of determinant 1 integer matrices which reduce to the identity modulo 2. We will see in the
near future that the function:

Λ(s) =

� ∞

0

�ω(it)ts dt
t

has a functional equation analogous to the Riemann ζ function, and a similar construction
will apply to general modular forms as well.
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Going back to our general philosophy that L-functions corresponds to Galois representa-
tions, recall that the Riemann ζ function is the L-function associated to the trivial Galois
representation:

ρtriv : GQ −→ C
×

and it can therefore be regarded as the ‘simplest’ L-function. Next, we will analyze those
L-functions that come from 1-dimensional representations

χ : GQ −→ C
×.

By the class field theory of Q (i.e. Kronecker-Weber Theorem) these representations corre-
spond to Dirichlet characters. The attached L-functions are called Dirichlet L-functions.
Just as we did with the Riemann ζ function, we will try and understand the poles, zeroes
and critical values of these new types of L-functions.
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