
15-150 Lectures 12 and 13 and 14:

Regular Expression Matching; Staging

Lectures by Ian Voysey

6—8 June 2012

In these lectures, we will discuss regular expression matching. In the process, we will encounter
three broader programming techniques that you should take away from this example:

• Proof-oriented programming: Programming and proving correctness simultaneously can
help you write your code. You can debug your code by attempting to prove it correct and
failing: the proof attempt will reveal a bug.

• Continuations and backtracking: using higher-order functions, you can explicitly repre-
sent “what to do next,” which is useful for backtracking algorithms.

• Staging: Using curried functions, you can stage a multi-argument function so that it does
some work when it gets one input, and the rest of the work when it gets another.

1 What are Regular Expressions?

Regular expressions describe patterns that match strings. Suppose you have a homework directory
with files hwA.sml, hwB.sml, hwC.sml, In your Linux shell, you can type

a2ps hwA.sml

a2ps hw{A,B}.sml

a2ps hw*.sml

which will print your solutions to (1) Homework A, (2) Homeworks A and B, and (3) every home-
work. The reason is that the regular expression hw{A,B}.sml matches both the string hwA.sml and
the string hwB.sml, while the regular expression hw*.sml matches hwA.sml, hwB.sml,

1.1 First Definition: Intuition

More formally, regular expressions are made up of
Regular Expression Matches
1 the empty string
0 nothing
c the character c
r1 · r2 (also written r1r2) the concatenation of a string matching r1 followed by a string matching r2
r1 + r2 either a string matching r1 or a string matching r2
r∗ a string made up of any number of substrings, each of which match r

1

For example, hwA.sml would be written h ·w ·A · . ·s ·m · l, or just hwA.sml. hw{A,B}.sml would
be written hw(A+B).sml. hw*.sml would be written hw(A+B +C +D . . .+Z)∗.sml—note that
the Linux ∗ matches any sequence of any character, whereas what we just defined only matches
strings of the form hw<letters>.sml.

1.2 Second Definition: Formal Languages

To be more precise, we can formally define the language of a regular expression, which is the set of
strings that it matches. We write L(r) for the language of r:

L(0) = ∅
L(1) = {“”}
L(c) = {“c”}
L(r1 + r2) = {s | s ∈ L(r1) or s ∈ L(r2)}
L(r1r2) = {s | s = s1s2 where s1 ∈ L(r1) and s2 ∈ L(r2)}
L(r∗) = the least set such that

(1) “” ∈ L(r∗), and
(2) if s = s1s2 where s1 ∈ L(r) and s2 ∈ L(r∗) then s ∈ L(r∗)

Implicitly here, all the characters c come from some fixed finite alphabet Σ.
The last case, where we define L(r∗) to be the least set closed under some conditions, which

themselves refer to L(r∗), is an inductive definition. This is analogous to a datatype definition in
SML. To show that s is in L(r∗), you show that it satisfies one of the two conditions. To reason
from the fact that a string is in L(r∗), you use an induction principle:

To show L(r∗) ⊆ S, it suffices to show (1) ”” ∈ S and (2) if s = s1s2 where s1 ∈ L(r)
and s2 ∈ S then s ∈ S

That is, because we have defined L(r∗) to be the least set satisfying some conditions, any other
set satisfying the same conditions is necessarily a superset of it.1

1.3 Representation Choices

1.3.1 Representation of Strings

For convenience, we’ll work with lists of characters—e.g. values of type char list—instead of the
built-in strings. This amounts to picking Σ to be the SML type char. There is a pair of functions
explode : string -> char list and implode : char list -> string that justify this choice.
This will let us avoid a lot of syntactic noise about substrings of length one. It also meshes well
with our representation of regular expressions below, and we’ll use it fluidly for the rest of this
discussion.

Literals of type char are written like #"a" for the character “a”. The only other operation on
characters that we will use is comparing them for equality, chareq(c,c’).

1.3.2 Representation of Regular Expressions

We can directly transcribe the inductively defined syntax of regular expressions into an SML
datatype as follows:

1Exercise: show that aaaab ∈ L(a∗ab).

2

datatype regexp =

Zero

| One

| Char of char

| Times of regexp * regexp

| Plus of regexp * regexp

| Star of regexp

1.4 Third Definition: With char list

Here is the definition of the language of a regular expresison, rephrased in terms of character lists
to match the representation above.

L(0) = ∅
L(1) = {[]}
L(c) = {[c]}
L(r1 + r2) = {cs | cs ∈ L(r1) or cs ∈ L(r2)}
L(r1r2) = {cs | ∃p, s such that p@s ∼= cs where p ∈ L(r1) and s ∈ L(r2)}
L(r∗) = the least set such that

(1) ”” ∈ L(r∗), and
(2) if ∃p, s.p@s ∼= cs where p ∈ L(r) and s ∈ L(r∗) then cs ∈ L(r∗)

This is the definition that will be most useful to us for the remainder of this discussion.

2 Writing a Regular Expression Matcher

This representation is only half the story. It well-models the left column of the definition, but not
the right: we need to bring it to life. Our goal, then, is to write a matcher that either accepts
or rejects strings with respect to the language of a regular expression defined and represented as
above:

(* accepts r s == true iff s is in L(r) *)

fun accepts (r : regexp) (s : string) : bool = ...

This is a subtle problem: when matching the string aaaab against the regexp a*ab, how do you
know how many a’s you match against the a* before moving on? In this case it’s 3, but you only
know that if you know that ab is coming. The algorithm will work by backtracking : trying the
possible ways of matching the first part of the string against a*, until one of them leaves something
that matches ab.

2.1 First Attempt: Structural Recursion

Let’s just try to implement it. We have an inductively defined argument of interest; we should be
able to use the structural recursion pattern on this type and get pretty far!

(* Spec: match r cs == true iff cs is in L(r) *)

fun match (r : regexp) (cs : char list) =

case r of

Zero => false

3

| One => (case cs of [] => true | _ => false)

| Char c => (case cs of

[c’] => chareq(c,c’)

| _ => false)

| Plus (r1,r2) => match r1 cs orelse match r2 cs

| Times (r1,r2) => ???

The first few cases go very smoothly:

• In the Zero case, we return false, because no strings are in the language of 0.

• In the One case, we check that the string is empty, because that’s the only string in L(1).

• In the Char case we check that the string is exactly the character c, because that’s the only
string in L(c).

• In the Plus case: we want to check that cs is in L(r1 + r2). By definition, this means that it
must either be in L(r1) or L(r2). Inductively, match r1 cs determines whether it is in the
language of r1, and match r2 cs determines whether it is in the language of r2, so we can
orelse them together.

Now that you have a few weeks’ experience doing proofs, we want you to start doing proof-
oriented programming : do the proofs as you write the code, so the spec tells you what code to
write!

For the Times case, maybe we do something similar:

| Times (r1,r2) => match r1 cs andalso match r2 cs

Inductively, match r1 cs and match r2 cs determine whether cs is in the language of r1 and r2,
so we andalso them together, which checks that it is in the language of both, and fortunately our
definition of L(r1 · r2) is that the string is both in L(r1) and L(r2).

Oh wait, it’s not!

· does not mean intersection, it means that the string splits into two halves, one of which matches r1
and the other matches r2. So this is not the right piece of code! What we just did is proof-directed
debugging : we found a bug in very likely looking code by thinking through the corresponding proof.

One option at this point is write a little loop to try all possible splittings of the input, but this
is silly. It doesn’t use any information from the input to guide the split, and it’s not what we said
we’d do in the definition of the language. A better idea is to try matching some prefix of the string
against r1, and then match whatever is left against r2.

2.2 Second Attempt: Continuations

To do this, we will generalize the problem, so that we keep track of what is required of the remainder
of the string, after we have matched a prefix of it against the regexp. Then, the · case, we can first
match a prefix against r1, and then match the suffix against r2.

That is, we generalize the problem to:

4

(* match r cs k == true iff exists p,s. p@s == cs, p \in L(r), k s == true *)

fun match (r : regexp) (cs : char list) (k : char list -> bool) = ...

where match r cs k returns true iff r matches some prefix of s and the function k returns true on
whatever is leftover. This will give us an explicit handle on what to do with the suffix resultant
from a recursive call, which should get us out of our jam.

k is a continuation—it is a function argument that tells you what to do in the future, after
you have matched some prefix of s against r. We will assume that k correctly matches the suffix
that results from matching a prefix for the current regular expression against any enclosing regular
expression.

Note that we can recover our original accepts function easily from an implementation of match
that meets this spec:

fun accepts (r : regexp) (s : string) : bool =

match r (String.explode s) (fn [] => true | _ => false)

This matches precisely with the mathematical definition we gave for the languages of the regular
expressions.

Once again, we will do the code and proof simultaneously.

2.2.1 The Spec For match

How can our matcher go wrong? It might be too easy : that is, it might says “yes” for a string that
is not really in the language (according to the mathematical definition). Or, it might be too strict :
it might not say yes for a string that is really in the language. This motivates:

Soundness If the matcher code says yes, the string is in the language.

Completeness If the string is in the langauge, the matcher says yes.

A violation of soundness means the matcher is too easy; a violation of completeness means the
matcher is too strict.2

These definitions aren’t precise enough to admit proofs, so we need to be a little more careful.
Note that the “the string is in the language” isn’t quite precise, because the continuation spec for
the matcher really checks that there is some prefix that is in the language, such that the continuation
accepts the suffix. Thus, for all r, we have that:

2Here “sound” in “soundness” is like “sound” in “sound of mind.” It’s saying that the matcher doesn’t say
anything crazy. It’s useful to think about some extreme cases to see what these two conditions mean. For example

fun match r cs k = false

is sound but not complete: it never says true on anything, so it can’t possibly say true on a string that’s not in the
language. Dually,

fun match r cs k = true

is complete but not sound. Termination is a completeness issue, not a soundness issue:

fun match r cs k = match r cs k

is sound because it never says “yes” when it shouldn’t; it’s not complete because it never says anything at all so it
also never says “yes”.

5

Soundness For all cs, k, if match r cs k ∼= true then there exist p, s such that p@s ∼= cs and p ∈ L(r) and
k s ∼= true.

Completeness For all cs, k, if (there exist p, s such that p@s ∼= cs and p ∈ L(r) and k s ∼= true) then
match r cs k ∼= true.

We prove these simultaneously by structural induction on the regular expression r. This has the
following template, derived immediately from the definition of the type as usual:

To show ∀r : regexp, P (r), it suffices to show:

Case for Zero: To show: P (Zero)

Case for One: To show: P (One)

Case for Char c: To show: P (Char c)

Case for Plus(r1,r2): IH: P (r1) and P (r2). To show: P (Plus(r1,r2))

Case for Times(r1,r2): IH: P (r1) and P (r2). To show: P (Times(r1,r2))

Case for Star(r): IH: P (r). To show: P (Star(r))

In this case, we take P to be the whole statement both of soundness and completeness above.

2.2.2 Programming And Proving

We will write the cases of the matcher for each constructor at the same time as working through
the proof. Each informs the other.

We assume the following lemma about @ in the rest of this discussion. Each case of the lemma
is quite easy to prove by structural induction, so the proof is left as an exercise to the reader.

Lemma 1 ((’a list, @) is a monoid).

1. For all valuable l1:’a list, l2:’a list, l3:’a list,

(l1 @ l2) @ l3 ∼= l1 @ (l2 @ l3)

2. For all valuable l:’a list, [] @ l ∼= l

3. For all valuable l:’a list, l @ [] ∼= l

Zero

fun match r cs k =

case r of

Zero => false

| ...

6

The completeness of this case is suspicious: it says that the matcher returns true, but this
always returns false. What gives?

Sound Assume k, cs such that match Zero cs k ∼= true. We need to show that ∃p, s such that p@s ∼= cs
with p ∈ L(Zero) and k s ∼= true

We can calculate that match Zero cs k ∼= false in two steps. Thus, by transitivity with the
assumption, true ∼= false. This is a contradiction, so the result is vacuously true.

Complete Assume k, cs and assume ∃p, s such that p@s ∼= cs with p ∈ L(Zero) and k s ∼= true. We
need to show that match Zero s k ∼= true. But it doesn’t—it always returns false! So clearly
we cannot establish the conclusion directly.

What saves us is that the assumption p ∈ L(Zero) is contradictory, because no strings are in
the language of Zero, which is the empty set. So the result is vacuously true.

One

fun match r cs k =

case r of

...

| One => k cs

| ...

For any k,cs, observe that match One cs k ∼= k cs by stepping.
Let’s check soundness here. Soundness says that we need to peel off some prefix that matches

the regexp, but we didn’t peel anything off here. Why does that make sense?

Sound Assume k,cs such that match One cs k ∼= true. We need to show that ∃p, s such that p@s ∼= cs
with p ∈ L(One) and k s ∼= true.

By transitivity, k cs ∼= true as well. So, we can take p to be [] and s to be cs, in which case
[]@cs ∼= cs, and [] is in the language of One, and k cs ∼= true, which establishes the three
things we needed to show.

That is, we want to peel off the empty string, which is in the language of One, and leaves the
suffix unchanged.

Complete Assume k,cs and assume ∃p@s such that p@s ∼= cs with p ∈ L(One) and k s ∼= true. We need
to show that match One cs k ∼= true.

The assumption p ∈ L(One) entails that p is the empty string, because that is the only string
in the language of One. Thus, s is all of cs: []@s ∼= cs (by assumption) and []@s ∼= s (by
stepping) so s ∼= cs. By assumption, k s ∼= true, so k cs ∼= true, so match One cs k ∼= true as
well.

Char

7

fun match (r : regexp) (cs : char list) (k : char list -> bool) : bool =

case r of

...

| Char c => (case cs of

[] => false

| c’ :: cs’ => chareq(c,c’) andalso k cs’)

...

In the case for Char, we check that the first character is c, and then feed the remainder to the
continuation.

Thus, we know that, for any k, cs, match (Char c) cs k steps to

case cs of [] => false | c’ :: cs’ => chareq(c,c’) andalso k cs’

Sound Assume k,cs such that match (Char c) cs k ∼= true. We need to show that ∃p, s such that
p@s ∼= cs with p ∈ L(Char c) and k s ∼= true.

By transitivity, on the assumption that match (Char c) cs k ∼= true and the calculation for
the LHS above,

(case cs of [] => false | c’ :: cs’ => chareq(c,c’) andalso k cs’) ∼= true

cs is either [] or c’::s’, so we have two cases to consider:

– In the first case, case [] of [] => false | ... ∼= false, so by transitivity false ∼=
true, which is a contradiction.

– In the second case, the case steps to chareq(c,c’) andalso k s’ so by transitivity
this andalso evalaute to true.

We use inversion for analso: if e1 andalso e2 ∼= true then e1 ∼= true and e2 ∼= true.
By inversion for andalso, this means that k cs ∼= true and chareq(c,c’) ∼= true. So
we take p to be [c] and s to be s′, in which case [c]@s′ ∼= c′::s′ by stepping, and c is in
L(Char c) by definition, and k s ∼= true.

Complete Assume k,cs such that ∃p, s such that p@s ∼= cs with p ∈ L(Char c) and k s ∼= true. We need
to show that match (Char c) cs k ∼= true

The assumption p ∈ L(Char c) entails that p is the string [c], because that is the only string
in the language of Char c. Moreover, [c]@s ∼= c :: s, and [c]@s ∼= cs by assumption, so
cs ∼= c :: s by transitivity. Thus, the case on cs steps to the second branch:

case c::s of [] => false | c’ :: cs’ => chareq(c,c’) andalso k cs’

== chareq(c,c) andalso k s

The equality test chareq(c,c) returns true (we assume that chareq is implemented cor-
rectly). By assumption, k s ∼= true, so the whole andalso evaluates to true.

8

Plus

fun match (r : regexp) (cs : char list) (k : char list -> bool) : bool =

case r of

...

| Plus (r1,r2) => match r1 cs k orelse match r2 cs k

...

Sound Assume cs, k such that match (Plus (r1, r2)) cs k ∼= true. We need to show that ∃p, s such
that p@s ∼= cs with p ∈ L(Plus(r1, r2)) and k s ∼= true.

By transitivity, match r1 cs k orelse match r2 cs k ∼= true. By inversion for orelse, this
means that either the left-hand side evaluates to true, or it evaluates to false and the right-
hand side evaluates to true.

In the former case, we know that match r1 cs k ∼= true. Thus, by the soundness IH on r1, ∃p, s
such that p@s ∼= cs with p ∈ L(r1) and k s ∼= true. By definition, p is also in L(Plus(r1, r2)).
So we have shown what we needed to show.

In the latter, the soundness IH on r2 gives that ∃p, s such that p@s ∼= cs with p ∈ L(r2) and
k s ∼= true. p is also in L(Plus(r1, r2)), so we have shown what we needed to show.

Complete Assume k, cs and that ∃p, s such that p@s ∼= cs with p ∈ L(Plus(r1, r2)) and k s ∼= true. We
need to write some code such that match (Plus (r1, r2)) cs k ∼= true.

By definition, either p ∈ L(r1) or p ∈ L(r2). In the former case, we now know that p@s ∼= cs
with p ∈ L(r1) and k s ∼= true. Our inductive hypothesis tells us that soundness and
completeness hold for r1, so in particular completeness holds. We have just established the
premise of completenesss, so we may conclude that match r1 cs k ∼= true. By analogous
reasoning, in the other case match r2 cs k ∼= true.

We need to find something that returns true in either of these cases. (Moreover, thinking
through soundness, we need to find something that returns true in exactly these cases, because
the prefix must either be in L(r1) or L(r2) to be in L(r1 + r2)).

Thus, we define Observe that

match (Plus(r1,r2)) cs k ∼= match r1 cs k orelse match r2 cs k

When match r1 cs k ∼= true, the whole orelse evaluates to true: orelse short-circuits, and
ignores the second disjunct if the first disjunct returns true.

When match r2 cs k ∼= true, the orelse evaluates to true as long as the first disjunct termi-
nates. For this, we need to prove that the matcher terminates. We will come back to this
below.

9

Times We generalized the problem to the continuation-based matcher to make times work as
follows:

fun match (r : regexp) (cs : char list) (k : char list -> bool) : bool =

case r of

...

| Times (r1,r2) => match r1 cs (fn cs’ => match r2 cs’ k)

| ...

To match cs against Times(r1,r2), we first match some prefix of cs against r1, with a continuation
(fn cs’ => match r2 cs’ k). When whatever is leftover after matching r1 gets plugged in for
cs’, this continuation will match some prefix of it against r2 and then feed the remainder to k.
Thus, we will have peeled off part of the string that matches r1, then part that matches r2, and
then fed the rest to k.

Observe that for all k, cs,

match (Times(r1, r2)) cs k ∼= match r1 cs (fn cs′ => match r2 cs
′ k)

Sound Assume cs, k such that match (Times (r1, r2)) cs k ∼= true. We need to show that ∃p, s such
that p@s ∼= cs with p ∈ L(Times(r1, r2)) and k s ∼= true.

By transitivity,
match r1 cs (fn cs′ => match r2 cs

′ k) ∼= true

Thus, we can apply the soundness part of the IH on r1, taking the continuation to be
(fn cs′ => match r2 cs

′ k). Thus, we learn that there exist p1, s1 such that p1@s1 ∼= cs and
p1 ∈ L(r1) and

(fn cs′ => match r2 cs
′ k)s1 ∼= true

Observe that (fn cs′ => match r2 cs
′ k)s1 7→ match r2 s1 k, so

match r2 s1 k ∼= true

Thus, we can apply the soundness part of the IH again, taking the string to be s1, and
concluding that there exist p2, s2 such that p2@s2 ∼= s1 and p2 ∈ L(r2) and ks2 ∼= true.

Thus, the two inductive calls first divide cs into p1@s1, and then s1 into p2@s2, peeling off
first a prefix p1 ∈ L(r1), and then a prefix of the suffix p2 ∈ L(r2). Putting these facts
together shows that p1@(p2@s2) ∼= cs.

We use (without proof) a lemma that append is associative, which means that (p1@p2)@s2 ∼=
cs. Thus, we can think of the division of cs as a prefix (p1@p2) and a suffix s2.

By definition, (p1@p2) ∈ L(Times(r1, r2)), because the specified split is a division such that
p1 ∈ L(r1) and p2 ∈ L(r2).

Moreover, we have concluded from the second IH that ks2 ∼= true.

Thus, we can take p to be (p1@p2) and s to be s2 to establish the conclusion.

10

Complete Assume cs, k and that ∃p, s such that p@s ∼= cs with p ∈ L(Times(r1, r2)) and k s ∼= true.
We need to show that match (Times (r1, r2)) cs k ∼= true. To show this, it suffices to show
that match r1 cs (fn cs′ => match r2 cs

′ k) ∼= true.

Thus, we will apply the completeness IH on r1 to show that match r1 cs (fncs′=>matchr2cs
′k) ∼=

true. To satisfy the premise of the IH, we need to show three things:

First, we show that p1@(p2@s) ∼= cs. By definition, there exist p1, p2 such that p1@p2 ∼= p
where p1 ∈ L(r1) and p2 ∈ L(r2). Since (p1@p2)@s ∼= cs by assumption, (p1@p2)@s ∼= cs by
associativity.

Second, we know that p1 ∈ L(r1).

Third, we need to show that the continuation accepts (p2@s):

(fn cs′ => match r2 cs
′ k)(p2@s) ∼= true

This steps to match r2 (p2@s) k (note that @ is total, so (p2@s) is valuable). So it suffices to
show that match r2 (p2@s)k ∼= true. To do so, we apply the completeness IH on r2, observing
that p2@s ∼= p2@s, that p2 ∈ L(r2), and that k s ∼= true was assumed above. Thus, the IH
shows that match r2 (p2@s) k ∼= true.

Star (attempted) As with plus, let’s start thinking through completeness to see how to write
the code. We assume cs, k such that ∃p, s such that p@s ∼= cs with p ∈ L(Star(r)) and k s ∼= true.
We want to show that match (Star r) cs k ∼= true.

What does it mean for p ∈ L(Star r). Expanding the definition, there are exactly two possibil-
ities: either p is the empty string, or p splits as p1@p2 where p1 ∈ L(r) and p2 ∈ L(Star r). We
need the matcher to return true in either of these two cases, which suggests the code will involve
an orelse as in the case for Plus. Moreover, this definition says that to check that something is
in the language of r∗, we need to check that something (else) is in the language of r∗—recursively!
So we will define a recursive helper function for this case:

fun match (r : regexp) (cs : char list) (k : char list -> bool) : bool =

case r of

...

| Star r’ =>

let fun matchstar cs’ = k cs’ orelse match r’ cs’ matchstar

in

matchstar cs

end

We write a local, recursive, helper function matchstar. Note that this helper function mentions
the r and k bound in the arguments to match, which is why it is helpful to define it inside of match,
rather than in a local block before it (if you wanted to do this, you could parametrize matchstar

by r and k and pass them in).
The idea with matchstar is this: to account for the empty prefix, we check k on the whole

string, just like for One. Otherwise, to check that cs′ has a prefix that matches r and a suffix
that matches r∗, we make a recurisve recursive call to match r, using the local helper function

11

matchstar itself as the continuation. This way, the continuation also checks the empty prefix, and
then tries peeling off something matching r, . . . , and so on.

It’s important to wrap your head around the idea that you can define a recursive function that
passes itself as an argument to another function. There is no way to do this with a for-loop or a
while-loop, where the structure of the loop has to be explicit in the code. Here, match is inside the
“body” of the loop defined by matchstar, as match may eventually call the continuation, which
will take you back to the “top” of the loop defined by matchstar. In this way, recursion with
higher-order functions enables more general patterns of control flow than loops do.

Let’s work on proving that this code is correct.

Sound Soundness of matchstar is expressed by the following lemma: If matchstar cs ∼= true then
∃p@s ∼= cs with p ∈ L(Star r) and k s ∼= true.

Proof: Suppose matchstar cs ∼= true. By inversion for orelse, we have two cases:

If k cs ∼= true, then we can choose p to be empty, and s to be cs, and observe additionally
that []@cs ∼= cs and [] ∈ L(Star r).

Otherwise, we have that match r csmatchstar ∼= true. By the IH on r, this means that there
exists p@s ∼= cs, such that p ∈ L(r) and matchstar s ∼= true.

If we had an inductive hypothesis for matchstar applied to cs, we could finish the proof: this
would say that we can split s into a prefix s1 ∈ L(Star r) and a suffix s2 accepted by k,
and then as in the Times case we could choose the prefix to be p@s1 and the suffix to be s2.
However, it’s not clear what justifies this inductive call!

So we got stuck. There’s something going on here that’s a little fishy and stopping the soundness
proof from going through, even though the code makes sense with respect to the definition. Let’s
switch streams and think about completeness for a while and see if that sheds any light on to
things.

Summary The complete matcher is in Figure 1.
Using match, we write accepts by passing the function that accepts only the empty list as the

initial continuation. Thus, match checks that ∃p′, s′ such that p′@s′ ∼= explode s where p′ ∈ L(r)
and s′ is the empty list. However, if the suffix is the empty list, then the prefix is the whole list, so
this show that explode s is in the language of r. Thus, assuming match is correct, accepts r s
∼= true iff s ∈ L(r).

The proof of soundness and completeness given above has gone pretty well, but the clever
pattern of recursion in the Star case led the proof to break down. We don’t understand enough
about how the code works to proceed. Upon reflection, this pattern of recursion is odd enough that
it’s not even clear why this code terminates, and we’ve been ignoring that entirely!

2.2.3 Termination and Proof-Directed Debugging

It happens to be the case that the above matcher has a termination bug. It’s very near to where the
soundness proof broke down, but we didn’t find it because termination is an issue of completeness,
not soundness. You could try to find it by testing, or pouring over the code and being really clever.

However, here is a systematic way to find the bug: try to prove the matcher terminates, and
see where the proof breaks down. We will find a counterexample to the proof, which will turn out
to be an input that violates the specification.

12

fun match (r : regexp) (cs : char list) (k : char list -> bool) : bool =

case r of

Zero => false

| One => k cs

| Char c => (case cs of

[] => false

| c’ :: cs’ => chareq(c,c’) andalso k cs’)

| Plus (r1,r2) => match r1 cs k orelse match r2 cs k

| Times (r1,r2) => match r1 cs (fn cs’ => match r2 cs’ k)

| Star r =>

let fun matchstar cs’ = k cs’ orelse match r cs’ matchstar

in

matchstar cs

end

fun accepts (r : regexp) (s : string) =

match r (String.explode s) (fn l => case l of [] => true | _ => false)

Figure 1: Regular Expression Matcher

First Try

Theorem 1 (Termination, Take 1). For all r : regexp, cs : char list, k : char list → bool,
match r cs k is valuable.

Attempted proof. Let’s try the Star case first, since, as we discussed above, that’s the one that
isn’t structurally recursive and has been causing trouble.

Case for Star r’: Let r’ be any regular expression.

To show: match (Star r′) cs k is valuable.

IH: For all cs′,k′, match r′ cs′ k′ is valuable.

Proof: Assume k, cs. Observe that

match (Star r) cs k

== let fun matchstar cs’ = k cs’ orelse match r cs’ matchstar

in matchstar cs end

== matchstar cs

== k cs orelse match r cs matchstar

To show that this is valuable, the first thing we need to do is show that k cs is valuable.
But we haven’t assumed anything about k! In particular, k might be

fn _ => <infinite loop>

So this theorem of termination is absolutely not true but mostly because we stated it näıvely.
However, this a bug in the spec, not the code: we only care about the behavior of the matcher on
terminating continuations. So we can revise the spec to assume that k is total.

13

Second Try

Theorem 2 (Termination, Take 2). For all r : regexp, cs : char list, k : char list→ bool, if
k is total then match r cs k is valuable.

Let’s return to the

Attempted proof. Case for Star r: As above, it suffices to show that

k cs orelse match r cs matchstar

is valuable. Because k is total, k cs is valuable. So it suffices to show that match r cs matchstar is
valuable.

This follows from the IH on r, right? No! Given the revision to the spec, the IH now says that
if k′ is total, then match r cs′ k′ is valuable. So to use the IH to conclude that match r csmatchstar
is valuable, we need to show that matchstar is total. But that’s exactly what we’re trying to show
in this case!

Third Try It’s possible that the theorem is true and we just haven’t found the right proof yet.
One thing we can try is to prove matchstar total by an inner induction on cs: inside of the “outer”
induction on the regular expression, we do an induction on the string.

Lemma 2. For all cs, matchstar cs is valuable.

Attempted proof. Structural induction on cs. For this to work, it needs to be the case that whenever
matchstar is called recursively, the call is made on a smaller string. However, the recursive calls
are not readily apparent: they happen whenever match r cs’ matchstar calls its continuation
argument. Thus, we need to look at the calls to k in match to see where the recursive calls happen.

Maybe it is the case that

Whenever match r cs k calls k cs’, cs’ is a strict suffix of cs.

We can prove this by inspecting the code. For example, in the One case. . . uh oh! In this case
match One cs k calls k cs directly, so the string is not smaller.

Counterexample This failure suggests a concrete counterexample: consider the behavior of
matchstar when r is the regular expression Star One. It is easy to verify that for any string cs not
accepted by k, matchstar cs diverges (goes into an infinite loop)!

matchstar cs

== k cs orelse match One cs matchstar

== match One cs matchstar [because k cs is false]

== matchstar cs

So, in fact, matchstar is not total after all! And therefore match does not terminate. Termina-
tion is false, and by attempting the proof, we found the bug: the Star case loops when it attempts
to continually peel off the empty string and recursively match the rest.

14

2.3 Solution 1: Checks

What to do? The theorem is false, so it is no wonder that the proof attempt breaks down! But
what now? Following Imré Lakatos, we observe that the proof attempt proves something, just not
the theorem we stated. So what does the proof prove? To ensure that matchstar is total, it is
enough to ensure that each match of r consumes some non-empty portion of its input. For then the
subsequent calls to matchstar are indeed on shorter strings, and we may use an inner induction
on the length of the input to show that matchstar is total.

There are at least two ways to do this. The obvious method is to insist in the definition of
matchstar that r must match some non-empty initial segment of the input, by explicitly checking
that the final segment passed to matchstar is, in fact, a proper suffix. We do this by inserting a
run-time check:

fun matchstar cs’ =

k cs’ orelse

match r cs’ (fn cs’’ => suffix cs’’ cs’ andalso matchstar cs’’)

The function suffix checks that its first argument is a proper suffix of the second. Recall from a
few lectures ago: the purpose of a run-time check is to establish a spec. The spec tells us what to
check to do termination.

Now, we can prove, by an inner induction, that:

Lemma 3. For all cs, matchstar cs is valuable

Proof. By complete induction on cs:
IH: For all strict suffices cs′ of cs, matchstar cs′ is valuable.
TS: matchstar cs is valuable.

As above,

match (Star r) cs k

== k cs orelse match r cs (fn cs’’ => suffix cs’’ cs andalso matchstar cs’’)

Because k is assumed to be total, the k cs is valuable.
To show that

match r cs (fn cs’’ => suffix cs’’ cs andalso matchstar cs’’)

is valuable, we can appeal to the outer inductive hypothesis on r, provided that the continuation
is total. Thus, we assume some cs’’ and show that

suffix cs’’ cs andalso matchstar cs’’

is valuable. The spec for suffix is that it is total, and that it returns true iff cs’’ is in fact a
strict suffix of cs. Thus, the first conjunct is valuable, we only run the second conjunct when cs’’

is a suffix of cs. Our inner IH says that matchstar is valuable on all suffices of cs, so it is valuable
on cs’’. Thus, the continuation is total.

15

However, this solution has some drawbacks: First of all, why is it complete? It could potentially
be necessary to pull off an empty prefix sometimes. It turns out that it is complete, because the
initial check for whether the continuation accepts the whole string is sufficient to catch the case
where r may accept the empty string as well. But this is harder to show.

The second drawback of this method is that it imposes an additional run-time check during
matching.

2.4 Solution 2: Specs

A less obvious approach is to change the spec, to preclude cases cases where the matcher might
peel off an empty prefix. This is called monster-baring : change the statement of the theorem to
rule out the counterexamples.

Specifically, we can impose the requirement that the regular expression be in standard form,
which means that whenever Star(r1) occurs within it, the regular expression r1 must not accept
the empty string. So, in particular, the counterexample Star(One) is not in standard form. More-
over, there is no loss of generality in imposing this restriction, because every regular expression is
equivalent to one in standard form, in the sense that they accept the same language. (We will not
give a proof of this fact here.)

Termination

You need to set up the theorem statement up carefully to allow this proof to go through. We write
s < cs to means s is a strict suffix of cs, and s ≤ cs to mean s is a suffix or equal to cs.

Lemma 4 (Termination, Inductively). For all r : regexp, if r is standard, then:

1. For all cs : char list, k : char list → bool, if (for all cs′ ≤ cs, k cs′ is valuable) then
match r cs k is valuable.

2. For all cs : char list, k : char list → bool, if [] /∈ L(r) and (for all cs′ < cs, k cs′ is
valuable) then match r cs k is valuable.

The first clause that the matcher is valuable when given a continuation that may be applied to cs
or any suffix. The second says that the matcher is valuable when given any continuation that can
be applied only to a strict suffix, provided that r does not accept the empty string. We sometimes
say “f is valuable on ¡certain lists¿” to mean that f l is valuable for each of those lists.

Proof. We sketch the easy cases and then show the interesting ones in detail.

Zero match Zero cs k ∼= false independently of the assumptions, so both (1) and (2) hold.

One 1. Observe that match One cs k ∼= k cs, and that cs ≤ cs, so the assumption about k tells
us that k cs is valuable.

2. We cannot apply the assumption about k in this case, because cs is not a strict suffix
of itself. Forunately, the assumption that [] /∈ L(1) is contradictory, so the case holds
vacuously.

Char c Observe that, for any k, cs, match (Char c) cs k steps to

16

case cs of [] => false | c’ :: cs’ => chareq(c,c’) andalso k cs’

cs must be either [], in which case false is valuable, or a cons, in which case we step
to chareq(c,c’) andalso k cs’. chareq is valuable, so it suffices to show that k cs′ is
valuable. In both (1) and (2), the assumption about the continuation says that it is valuable
on strict suffices, and cs′ < (c :: cs′), so the assumption gives the result.

Plus (r1, r2) Observe that

match (Plus(r1,r2)) cs k == match r1 cs k orelse match r2 cs k

Thus, it suffices to show that both disjuncts are valuable. Moreover, Plus (r1, r2) is standard,
so r1 and r2 are.

1. Assume that k is valuable on cs and its suffices. To use IH part 1 for r1 to prove that
match r1 cs k is valuable, it suffices to show that r1 is standard (which we concluded
above) and that k is valuable on cs and its suffices (which is exactly the assumption).
Analogously, the IH Part 1 for r2 says that the other disjunct is valuable.

2. Assume that [] /∈ L(Plus(r1, r2)) and that k is valuable on strict suffices of cs. By
definition of L(+), [] /∈ L(r1) and [] /∈ L(r2). Thus, we can appeal to the IH part 2 in
for both r1 and r2 to get the results.

Times (r1, r2) Observe that for all k, cs,

match (Times(r1, r2)) cs k 7→∗ match r1 cs (fn cs′ => match r2 cs
′ k)

Moreover, Times (r1, r2) is standard, so r1 and r2 are.

This one is slightly tricky:

1. Assume cs, k and that (for all cs′ ≤ cs, k cs′ is valuable).
Suffices to show: match r1 cs (fn s => match r2 s k) is valuable.
We will use the IH Part 1 on r1 to give the result. So we must show that r1 is standard
(check) and that

∀cs′ ≤ cs, (fn s => match r2 s k) cs′ is valuable

So assume some cs′ ≤ cs.

(fn s => match r2 s k) cs′ ∼= match r2 cs
′ k

so it suffices to show that match r2 cs
′ k is valuable.

We will use the IH Part 1 on r2 to prove this. So we must show that r2 is standard
(check) and that

∀cs′′ ≤ cs′, k cs′′ is valuable

We know that k is valuable on cs and its suffices. Moreover, we know that cs′ ≤ cs, so
any cs′′ ≤ cs′ is also ≤ cs. Thus, the assumption that k is valuable on cs and its suffices
suffices to justify the appeal to the IH.

17

2. Assume cs, k, that [] /∈ L(Times(r1, r2)), and that (for all cs′ < cs, k cs′ is valuable).
Suffices to show: match r1 cs (fn s => match r2 s k) is valuable.

[] /∈ L(Times(r1, r2)), we have two cases: either [] /∈ L(r1) or [] /∈ L(r2). (because
if it was in the language of both, it would also be in the language of Times, because
[]@[] ∼= Empty).

Case 1: Suppose [] /∈ L(r1). Then we will use the IH Part 2, observing that r1 is
standard, and that

∀cs′ < cs, (fn s => match r2 s k) cs′ is valuable

Assume some cs′ < cs. As above, it suffices to show that match r2 cs
′ k is valuable. To

do this, we need to use IH Part 1, because we don’t know that [] /∈ L(r2). So, we observe
that r2 is standard, and that

∀cs′′ ≤ cs′, k cs′′ is valuable

We only know that k is valuable on strict suffices of cs, but forunately cs′ is a strict
suffix, so any cs′′ ≤ cs′ is also < cs. Thus, the assumption is sufficient for the call to the
IH.

Case 2: Suppose [] /∈ L(r2). Then we will use the IH Part 1, observing that r1 is
standard, and that

∀cs′ ≤ cs, (fn s => match r2 s k) cs′ is valuable

Assume some cs′ ≤ cs. As above, it suffices to show that match r2 cs
′ k is valuable. To

do this, we may use IH Part 2, because we know that [] /∈ L(r2). So, we observe that r2
is standard, and that

∀cs′′ < cs′, k cs′′ is valuable

We know that k is valuable on strict suffices of cs, but forunately cs′′ is a strict suffix of
cs′, and that cs′ ≤ cs, so cs′′ < cs. Thus, the assumption is sufficient for the call to the
IH.

At a high level, in this case, we know that k is valuable on strict suffices. We know that
the empty string is not in the language of one of the two regexps. So by the time the
code calls k, one of them has consumed a non-empty prefix—but we don’t know whether
it’s r1 or r2. The two cases above consider both possibilities.

Star r Part 2 is vacuously true, because the assumption that [] /∈ L(Star r) is contradictory. So it
remains to prove Part 1.

Outer IH: termination holds for r.
Assume cs and k such that (for all cs′ ≤ cs, k cs′ is valuable).
To show: match (Star r) cs k is valuable.

It suffices to prove that matchstar cs is valuable, which we do using the following lemma:

For all cs′ ≤ cs, matchstar cs′ is valuable.

18

The proof is by complete induction on cs′: this means we assume the theorem for all strict suffices
of cs′, and prove it for cs′.

Assume some cs′ ≤ cs.
Inner IH: For all cs′′ < cs′, if cs′′ ≤ cs then matchstar cs′′ is valuable.
To show: matchstar cs′ is valuable.
Proof: By calculation, it suffices to show that

k cs’ orelse match r cs’ matchstar

is valuable. We have assumed that k is valuable on cs and its suffices, so it is valuable on cs′. Thus,
it suffices to show that match r cs′ matchstar is valuable.

To do so, we use the IH Part 2: because Starr is assumed to be standard, r is standard, and
moreover [] /∈ L(r). This is exactly the inner IH! Well, almost exactly: the premise that cs′′ ≤ cs
is unnecessary because cs′′ < cs′ ≤ cs by transitivity. So the outer IH Part 2 gives the result.

Note the similarities between the proof and the program: Just as the code passes matchstar

as the continuation, the proof uses the inner IH to justify termination of the continuation!

Whew, hard work. As a corollary, we obtain a more readable statement of termination:

Theorem 3 (Termination). For all r, cs, k, if r is standard and k is total, then match r cs k is
valuable.

Now that we have established termination, we should go back and formally check soundness
and completeness:

2.4.1 Soundness

Theorem 4 (Soundness). For all r, cs, k, if r is standard, then if match r cs k ∼= true then there
exist p, s such that p@s ∼= cs and p ∈ L(r) and k s ∼= true.

Proof. The above cases for One, Zero, Char, Plus, and Times are easily adapted to this theorem
statement. In each case, we assume that r is standard, and must prove that the subjects of the
recursive calls are standard, to satisfy the premise of the IH. But any subexpression of a standard
regular expression is standard, so this is possible.

We show that case for Star r:
Outer IH: For all cs, k, if r is standard, then if match r cs k ∼= true

then there exist p, s such that p@s ∼= cs and p ∈ L(r) and k s ∼= true.
Assume cs, k, that Star r is standard, and that match r cs k ∼= true.
To show: there exist p, s such that p@s ∼= cs and p ∈ L(Star r) and k s ∼= true.
Observe that match r cs k ∼= matchstar cs, so so matchstar cs ∼= true.
We prove a lemma about matchstar:

For all cs′, if matchstar cs′ ∼= true, then there exist p, s such that p@s ∼= cs′ and
p ∈ L(Star r) and k s ∼= true.

Proof of lemma. The proof is by well-founded induction on cs’ : this means we assume the theorem
for all strict suffices of cs′, and prove it for cs′:

19

Inner IH: For all cs′′ < cs′, if matchstar cs′′ ∼= true,
then there exist p, s such that p@s ∼= cs and p ∈ L(Star r) and k s ∼= true.
Proof: Assume cs′ such that matchstar cs′ ∼= true.
To show: there exist p, s such that p@s ∼= cs′ and p ∈ L(Star r) and k s ∼= true.
Observe that matchstar cs′ ∼= k cs′ orelse match r cs′ matchstar, so this evaluates to true. By
inversion, we have two cases two consider.

In the first, k cs′ ∼= true. In this case, we take p to be [], s to be cs′, and observe that
[]@cs′ ∼= cs′, [] ∈ L(Star r), and k cs′ ∼= true.

In the second, match r cs′ matchstar ∼= true. Note that r is standard because Star r was
assumed to be. Thus, by the outer IH on r, there exist p1, s1 such that p1@s1 ∼= cs′ and p1 ∈ L(r)
and matchstar s1 ∼= true.

Because Starr is standard, [] /∈ L(r). Thus p1 is not empty, and since p1@s1 ∼= cs′, s1 is a strict
suffix of cs′. Therefore, we can appeal to the inner IH on the fact that matchstar s1 ∼= true. to
conclude that there exist p2, s2 such that p2@s2 ∼= s1 and p2 ∈ L(Star r) and k s2 ∼= true.

Thus, we take p to be p1@p2 and s to be s2, and observe that (p1@p2)@s2 ∼= cs′ (using associa-
tivity, as in the times case), that p1@p2 ∈ L(Star r) (because p1 ∈ L(r) and p2 ∈ L(Star r)), and
that k s2 ∼= true (as a result of the inner IH).

Because matchstar cs ∼= true, the lemma immediately implies what we need to show to finish the
case.

2.4.2 Completeness

Theorem 5 (Completeness). For all r, cs, k, if r is standard and k is total, then if (there exist p, s
such that p@s ∼= cs and p ∈ L(r) and k s ∼= true) then match r cs k ∼= true.

Proof. The theorem statement has not changed very much from above: we have added the pre-
conditions that r be standard and k be total. As we have seen, it is easy to satisfy the obligation
that r be standard at each recursive call, because subexpressions of a standard regexp are stan-
dard. Similarly, because we have proved termination, we can prove that the continuations passed
in in each recursive call remain total. For example, in the times case, we need to show that
fn cs’ => match r2 cs’ k is total, under the assumption that k is total. This follows from
termination of match.

Thus, we just show the r∗ case:
Outer IH: For all cs, k, if r is standard and k is total, then
if there exist p, s such that p@s ∼= cs and p ∈ L(r) and k s ∼= true

then match r cs k ∼= true.

Assume cs, k and that Star r is standard and k is total and
there exist p, s such that p@s ∼= cs and p ∈ L(Star r) and k s ∼= true.

To show: match (Star r) cs k ∼= true.
It suffices to show that matchstar cs ∼= true, which is a consequence of the following lemma:

For all p, s, cs, if p@s ∼= cs and p ∈ L(r∗) and k s ∼= true then matchstar cs ∼= true.

20

Proof of lemma. Assume p, s, cs such that p@s ∼= cs and k s ∼= true. The proof uses an inner
induction on the fact that p ∈ L(r∗) (recall that this was defined inductively). We have two cases:

In the first case, p is [], so s is cs, so k cs ∼= true, and therefore

matchstar cs

== k cs orelse match r cs matchstar

== true

In the second case, there exists p1@p2 ∼= p, where p1 ∈ L(r), and p2 ∈ L(Starr), and we have
an inner inductive hypothesis about the fact that p2 ∈ L(Starr).

We use the outer IH on r to prove that match r csmatchstar ∼= true, which, because k is total,
implies the result.

To use the IH we prove that (1) r is standard: it is, because Starr is assumed to be standard.
(2) matchstar is total: because k is total, this follows from termination. (3) p1@(p2@s) ∼= cs: this is
a consequence of associativity. (4) p1 ∈ L(r): assumed for this case. (5) matchstar (p2@s) ∼= true:
the inner inductive hypothesis gives the result.

3 Introduction to Staging

Suppose you want to write a function to raise a base to a fixed power, because you plan to raise
many numbers to the same power. If you were writing them by hand, you would write:

val square = fn b => b * b

val cube = fn b => b * b * b

Can we define square and cube using the exponentation function we defined earlier in the
semester? Let’s curry it:

fun exp (e : int) : int -> int = fn b =>

case e of

0 => 1

| _ => b * (exp (e-1) b)

Because it is curried, we can partially apply exp to an exponent, which generates a function
that raises any base to that power.

E.g.

val square : int -> int = exp 2

However, what is the value of square?

exp 2

|-> fn b =>

case 2 of

0 => 1

| _ => b * (exp (2-1) b)

Because functions are values, it’s done evaluating. Notice that there is some interpretive overheaded
in exp 2 that was not present when we defined square directly: the value of exp 2 still has to do
the recursion to determine how many multiplications to do, whereas square does not.

21

The difference between evaluation and equivalence. Note that exp 2 ∼= fn b => b * b.
The reason is that equivalence can proceed into a function, whereas evaluation does not:

Function extensionality: If (for all v, f v ∼= g v) then f ∼= g.

This reinforces the point that equivalence says nothing about running-time: equivalent expressions
behave the same in terms of what they do, but not how long they take to do it.

So to show

fn b =>

case 2 of

0 => 1

| _ => b * (exp (2-1) b)

== fn b => b * b

It suffices to show that for all b

case 2 of

0 => 1

| _ => b * (exp (2-1) b)

== b * exp (2 - 1) b [step]

== b * exp 1 b [step]

...

== b * b [...analogously...]

== b * b

Staging To make pancakes, you mix the dry ingredients (flour, sugar, baking powder, salt), then
mix the wet ingredients (oil, egg, milk), and then mix the two together. This means that if someone
gives you just the dry ingredients, you can do useful work, mixing the dry stuff, before you ever
get the wet ingredients. A multi-staged function does useful work when applied to only some of
its arguments. Applying to these arguments specializes a multi-staged function, generating code
specific to those arguments. This can improve efficiency when the specialized function is used many
times. Staging is the programming technique of writing multi-staged functions.

One application of staging is reducing interpretative overhead. We can write a staged expo-
nentiation function that no longer needs to recur on 2 every time it is called. The idea is to delay
asking for the base until we have entirely processed the exponent:

fun staged_exp (e : int) : int -> int =

case e of

0 => (fn _ => 1)

| _ => let val oneless = staged_exp (e-1)

in

fn b => b * oneless b

end

Then, letting f stand for the expression fn b => b * (oneless b).

22

staged_exp 2

|->* let val oneless = (staged_exp (2-1)) in fn b => b * oneless b end

|->* let val oneless = (let val oneless = staged_exp (1-1) in f end) in f end

|->* let val oneless = (let val oneless = (fn _ => 1) in f end) in f end

|-> let val oneless = (fn b => b * ((fn _ => 1) b)) in f end

|-> fn b => b * ((fn b => b * ((fn _ => 1) b)) b)

There is no interpretative overhead left! A smart compiler might optimize this, using contextual
equivalence, to

fn b => b * b

by reducing a known function applied to a variable. Thus, we’d get out exactly the code we wanted,
which directly does the specfied number of multiplications.

You can think of the exponent as a program—do e multiplications, and of staging as compiling
the program to an ML function. The compiled version no longer needs to recursively traverse the
input program.

Subtlety: The compiler is free to apply any equivalences as optimizations, without changing the
meaning of your program, so in principle it could transform the original exp 2 into this form as well.
Why don’t you want it to do this? For one, it’s good to have a predictable cost model, and letting
the compiler do arbitrary things makes it hard to predict performance. Secondly, optimizations
that require expanding recursive calls are tricky to apply, because there is a termination worry:
when do you stop optimizing? Additionally, there’s a tradeoff, because by unrolling the recursion,
you’re increasing the size of the code. The nice thing about staging is that it lets you express the
optimization yourself, modulo some harmless optimizations like applying a function to a variable.

4 Kleene Algebra Homomorphisms

There is a nice way to rewrite the regular expression matcher, to draw out a pattern in the struc-
ture of the code. By definining a helper function for each case, we see that what we’re doing is
interpreting the syntax of regular expressions as operations on matchers:

fun match (r : regexp) : matcher =

case r of

Zero => FAIL

| One => NULL

| Char c => LITERALLY c

| Plus (r1,r2) => match r1 OR match r2

| Times (r1,r2) => match r1 THEN match r2

| Star r => REPEATEDLY (match r)

This is a Kleene algebra homomorphism—“Kleene algebra” is the name for an algebraic struc-
ture with plus, times, and star satisfying the properties you expect for regexps. The role of this
function is to interpret the syntax of regular expressions as corresponding operations on matchers:
FAIL corresponds to Zero, OR to Plus, etc.

The hard work gets moved to defining matchers, which is just moving the above code into helper
functions:

23

type matcher = char list -> (char list -> bool) -> bool

val FAIL : matcher = fn _ => fn _ => false

val NULL : matcher = fn cs => fn k => k cs

fun LITERALLY (c : char) : matcher =

fn cs => fn k => (case cs of

[] => false

| c’ :: cs’ => c = c’ andalso k cs’)

infixr 8 OR

infixr 9 THEN

fun m1 OR m2 = fn cs => fn k => m1 cs k orelse m2 cs k

fun m1 THEN m2 = fn cs => fn k => m1 cs (fn cs’ => m2 cs’ k)

fun REPEATEDLY m = fn cs => fn k =>

let fun repeat cs’ = k cs’ orelse m cs’ repeat

in

repeat cs

end

(Note that these definitions must of course come before the definition of match in your SML file.)
There are a couple of advantages of this way of writing the code. First, it makes it clear to the

reader that the outer loop is a homomorphism, which helps you understand the code—you know
that you can consider each clause independently.

Second, the type matcher and the helper functions constitute what is called a combinator
library—a collection of higher-order functions for solving problems in a particular domain. For
example, you could ignore the syntax of regexps and just write your regular expressions down as
combinators: e.g. REPEATEDLY (CHAR #’’a’’ THEN CHAR #’’b’’) for (ab)∗. An advantage of the
combinators is that they are open-ended : you can add new ones after the fact and mix them in
with the old ones. On the other hand, the advantage of the syntax of regexps is that they are
closed-ended: if you want to define transformations on regexps, like standardization, it is necessary
to know what all of them are.

A third advantage of this code is that it is staged. For example, suppose you are going to match
many strings against the same regular expression. It would be nice to process the regular expression
once, and generate the code that you would have written if you were matching against a specific
regular expression by hand, so that there is no interpretive overhead left.

For example, for Star(Char #’’a’’), you might write

fun matchastar cs k =

let fun matchstar cs = k cs orelse

(case cs of [] => false

| c’ :: cs’ => #’’a’’ = c’ andalso matchstar cs’)

in

matchstar cs

end

to match any number of occurrences of a.
However, if you try taking the first version of match and applying it only to a regexp r, it gets

stuck:

24

match (Star(Char #’’a’’))

|-> fn cs => fn k => case (Star(Char #’’a’’)) of ...

Because we do not continue computing under functions, we do not reduce the case until a string
is given, even though we have enough information to do so right here.

However, the combinator version of the matcher is well-staged: it processes the regexp entirely
before a string is given. This is obvious from the code: in ML, you evaluate the arguments to a
function before applying a function, and r only gets used in recursive calls to match, which appear
in the arguments to functions like OR and THEN.

25

For example:

match (Star(Char #"a"))

|-> REPEATEDLY (match (Char #"a"))

|-> REPEATEDLY (LITERALLY #"a")

|-> REPEATEDLY (fn cs => fn k =>

(case cs of [] => false

| c’ :: cs’ => #"a" = c’ andalso k cs’))

|-> fn cs => fn k =>

let fun repeat cs’ = k cs’ orelse

(fn cs => fn k =>

(case cs of [] => false

| c’ :: cs’ => #"a" = c’ andalso k cs’))

cs’ repeat

in

repeat cs

end

==

fn cs => fn k =>

let fun repeat cs’ = k cs’ orelse

(case cs’ of [] => false

| c’ :: cs’ => #"a" = c’ andalso repeat cs’)

in

repeat cs

end

The final step involves applying a known function to variables, which is an optimization that is
safe for your compiler to perform, though it is not required. If it does, we get exactly the code we
would have written by hand! We can specialize the general solution to specific instances without
any performance cost whatsoever.

Note that staging depends crucially on Currying: if you write a multi-argument function using
tuples, such as

fun match (r : regexp, cs : char list, k : char list -> bool) = ...

there is no room between the arguments to do any work. However, if you have “functions that
return functions” as a language concept, you can express staging without any specific support from
your language.

It takes a little care to make sure that the initial call to match from accepts maintains staging:

fun accepts (r : regexp) : string -> bool =

let

val m = match r

in

fn s => m (String.explode s) isnil

end

We need to be sure to Curry the function, and to evaluate match r before abstracting over the
string s—otherwise we would not be exploiting the staging of match.

26

	What are Regular Expressions?
	First Definition: Intuition
	Second Definition: Formal Languages
	Representation Choices
	Representation of Strings
	Representation of Regular Expressions

	Third Definition: With char list

	Writing a Regular Expression Matcher
	First Attempt: Structural Recursion
	Second Attempt: Continuations
	The Spec For match
	Programming And Proving
	Zero
	One
	Char
	Plus
	Times
	Star (attempted)
	Summary

	Termination and Proof-Directed Debugging
	First Try
	Second Try
	Third Try
	Counterexample

	Solution 1: Checks
	Solution 2: Specs
	Soundness
	Completeness

	Introduction to Staging
	The difference between evaluation and equivalence.
	Staging

	Kleene Algebra Homomorphisms

