
APPENDIX A

Regular Expression
Reference

THis APPENDIX PROVIDES a comprehensive quick reference for your day-to-day Java
regular expression needs. The material in this appendix is presented as pure regex
patterns, not the Java String-delimited counterparts. For example, when referring
to a digit, \d, not \ \d, is used here.

TableA-1. Common Characters

Regex Description

q The character q

\\ The backslash (/) character

\t The tab character

\n The newline or linefeed character

\r The carriage-return character

\f The form-feed character

Notes

Could be any character, not
including special regex characters
or punctuation.

\ delimits special regex characters,
of which the backslash is a member.

211

Appendix A

TableA-2. Predefined Character Classes

Resex Description Notes

Any single character

\d Any single digit from 0 to 9

\D

\s

\S

\w

\W

212

Will match any character
except a single digit

A whitespace character:
[\t\n\xOB\f\r]

A non-whitespace
character

A word character:
[a-zA.-Z_0-9]

A nonword character; the
opposite of \w

Matches any single character, including spaces,

punctuation, letters, or numbers. It may or may not
match line-termination characters, depending on the
operating system involved, or if the DOT ALL flag is active
in the regex pattern. Thus, it's probably a good idea to
explicitly set, or tum off, DOT ALL support in your
patterns, in case you need to port your code.

By default, this won't match line terminators.

This matches tab, space, end-of-line, carriage-return,

form-feed, and newline characters.

Matches anything that is not a whitespace character, as
described previously. Thus, 7would be matched, as
would punctuation.

Any uppercase or lowercase letter, digit, or the
underscore character.

Anything that isn't a word character, as described previ­
ously. Thus, the minus sign will match, as will a space.
It won't match the end-of-line$ or beginning-of-line
A characters.

Table A -3. Character Classes

Reg ex

[abc]

["abc]

[a-zA-Z]

[a-c[x-z]]

[a-z&&[a,e]]

[a-z&&["bc]]

[a-d&&["b-c]]

Description

a, b, ore

Any character except
a, b, ore

Any uppercase or
lowercase letter

a through c,
or x through z

a ore

All lowercase letters
except for band c

a through d, but not b
through c

Regular Expression Reference

Notes

Strictly speaking, it won't match ab.

This will match any character except a, b, or c.
It won't match the end-of-line$ or beginning-of­

line " characters.

When working with numbers, [0-25] doesn't
mean 0 to 25. It means 0 to 2, or just 5. If you
wanted 0 to 25, you would need to actually write

an expression, such as \dl1 \dl2£0-5]. Note that
[0-9] is exactly equal to \d.

For example, [1-3[7-9]] matches 1 through 3, or 7

through 9. No other digit will do.

[a-z&&[a,e,i,o,u]] matches all lowercase vowels.

For example, all the prime numbers between 1
and 9 would be [1-9&&["4689]]. That is, 1
through 9, excluding 4, 6, 8, and 9.

[1-9&&["4-6]] matches 1 through 3, or 7 through
9. Compare this to the union example presented
earlier in this table.

213

Appendix A

TableA-4. POSIX Character Classes

Resex Description

\p{Lower} A lowercase alphabetic

character

\p{Upper} An uppercase alphabetic

character

\p{ASCII} An ASCII character

\p{Alpha} An alphabetic character

\p{Digit} A decimal digit

\p{Alnum} An alphanumeric
character

\p{Punct} Punctuation

\p{Graph} A visible character

\p{Print} A printable character

\p{Blank} A space or a tab

\p{Space} Any whitespace
character

\p{Cntrl} A control character

\p{XDigit} A hexadecimal digit

214

Notes

Tilis is a good way to deal with punctuation in general,

without having to delimit special characters such as

periods, parentheses, brackets, and such. It matches

!"#$%&'0•+,-J:;<=>f@f\1"-'IIJ-.

Exactly equal to f\p(Alnum)\p{Punct}}.

Exactly equal to f\p{Graph}}.

It matches { \t\n\xOB\j\r].

Regular Expression Reference

TableA-5. Boundary Matchers

Regex Description

1\ Beginning-of-line
character

$ End-of-line
character

\b A word
boundary

Notes

This is an invisible character.

This is an invisible character.

This is the position of a word boundary. Its usage requires some
caution, because \b doesn't match characters; it matches a
position. Thus, the String anna marrie doesn't match the regex
anna\bmarie. However, it does match anna\b\smarrie. That's
because there's a word boundary at the position after the last a in
anna, and it happens to be the space character, so \s is necessary
to match it, and marie must then follow it. Because \b matches a
position, it is meaningless to add greedy qualifiers to it. Thus,
\b+, \b\b\b\b\b, and \ball match exactly the same thing.

Further complicating the picture is the fact that in a character
class, \b means a backspace character. This is syntactically legal
(if a little awkward) because the word boundary has no place
inside a character class. Thus, [\b] describes a backspace
character, because it is surrounded by [and].

\B A non-word This is the opposite of word boundary, as described previously.
boundary

\A The beginning of \A matches the beginning of the input, but it isn't just a synonym

\Z

the input for the II. pattern. This distinction becomes clear if you use the
Pattern. MULTI LINE flag when you compile your pattern. \A matches
the beginning of the input, which is the very beginning of the file.
By contrast, II. matches the beginning of each line when the
Pattern.MULTILINE tlagisactive.

The end of the
input except for
the final $, if any

\Z matches the end of the input, but it isn't just a synonym for the
$ character. This distinction becomes clear if you use the
Pattern. MULTI LINE flag when you compile your pattern. \Z
matches the end of the input, which is the very end of the file.
By contrast, $matches the end of each line when the
Pattern. MULTI LINE flag is active.

\G The end of the
previous match

\z The end of the
input

This behaves exactly like the \Zwith a capital Z character, except
that it also captures the closing $ character.

215

Appendix A

TableA-6. Greedy Quantifiers

Regex

x•

X{n}

X(n,}

X{n,m}

216

Description

X, once or not at all

X, zero or more times

X, one or more times

X, exactly n times

X, at least n times

Notes

A? would match A, or the absence of A. This applies to

either the character that immediately precedes it, or a

group (if the group immediately precedes it), or a

character class (if the character class immediately

precedes it).

This pattern is very much like the i' pattern, except that it

matches zero or more occurrences. It doesn't match "any

character," as its usage in DOS might indicate. Thus, A*
would match A, AA, AAA, or the absence of A. This
applies to either the character that immediately

precedes it, or a group (if the group immediately

precedes it), or a character class (if the character class

immediately precedes it).

This quantifier is very much like the • pattern, except

that it looks for the existence of one or more occurrences

instead of zero or more occurrences. This applies to

either the character that immediately precedes it, or a

group (if the group immediately precedes it), or a

character class (if the character class immediately
precedes it).

This quantifier demands the occurrence of the target
exactly n times. This applies to either the character that
immediately precedes it, or a group (if the group
immediately precedes it), or a character class (if the

character class immediately precedes it).

This quantifier demands the occurrence of the target at

least n times. This applies to either the character that

immediately precedes it, or a group (if the group

immediately precedes it), or a character class (if the

character class immediately precedes it).

X, at least n but not more This quantifier demands the occurrence of the target at

than m times least n times, but not more than m times. This applies to

either the character that immediately precedes it, or a
group (if the group immediately precedes it), or a character

class (if the character class immediately precedes it).

Table A-7. Reluctant Quantifiers

Regex Description

X, once or not at all

X*? X, zero or more times

X+? X, one or more times

Regular Expression Reference

Notes

This pattern is very much like the ? pattern, except that
it prefers to match nothing at all. When it's used with
the Matcher. matches () method, ?? functions in exactly
the same way as the 'I pattern. However, when it's used
with Matcher. find (), the behavior is different. For
example, the pattern x??, as applied to the String xx,

will actually not find x, yet consider that lack of finding
a success. That's because we asked it to be reluctant to
match, and the most reluctant thing it can do is match
zero occurrences of x. This applies to either the
character that immediately precedes it, or a group (if

the group immediately precedes it), or a character
class (if the character class immediately precedes it).

This pattern is very much like the "'pattern, except that
it prefers to match as little as possible. When it's used
with the Matcher. matches () method, *'I functions in
exactly the same way as the "'pattern. However, when
it's used with Matcher. find (), the behavior is different.
For example, the pattern x*?, as applied to the String xx,

will actually not find x, yet consider that a success.
That's because we asked it to be reluctant to match,
and the most reluctant thing it can do is match zero
occurrences of x. This applies to either the character
that immediately precedes it, or a group (if the group
immediately precedes it), or a character class (if

character the class immediately precedes it).

This pattern is very much like the + pattern, except
that it prefers to match as little as possible. When it's
used with the Matcher. matches () method, +'I functions
in exactly the same way as the +pattern. However,
when it's used with Matcher. find(), the behavior is
different. For example, the pattern x+ ?, as applied to
the String xx, will actually find one x, yet consider that
a success. That's because we asked it to be reluctant to
match, and the most reluctant thing it can do is match
one occurrence of x. This applies to either the
character that immediately precedes it, or a group (if

the group immediately precedes it), or a character
class (if the character class immediately precedes it).

217

Appendix A

Table A-7. Reluctant Quantifiers (Continued)

Regex

X{n}?

X(n,}?

X{n,m}?

218

Description

X, exactly n times

X, at least n times

Notes

This pattern is exactly like the X{n} pattern. This

applies to either the character that immediately

precedes it, or a group (if the group immediately

precedes it), or a character class (if the character class

immediately precedes it).

This pattern is very much like theX{n,} pattern, except

that it prefers to match as little as possible. When it's

used with the Matcher. matches () method, X{n,}?

functions in exactly the same way as the X{n,} pattern.

However, when it's used with Matcher. find(), the

behavior is different. For example, the patternX£3,}?,

as applied to the String xxxxx, will actually only find

xxx, yet consider that a success. Compare this with just

X{3,5}, which would have found xxxxx. That's because

we asked it to be reluctant to match, and the most

reluctant thing it can do is match three occurrences of

x. This applies to either the character that immediately

precedes it, or a group (if the group immediately

precedes it), or a character class (if the character class

immediately precedes it).

X, at least n but not more This pattern is very much like the X{n,m} pattern,

than m times except that it prefers to match as little as possible.

When it's used with the Matcher. matches () method,
X{n,m}? functions in exactly the same way as the
X{n,m} pattern. However, when it's used with

Matcher. find(), the behavior is distinct. For example,

the patternX{3,5}?, as applied to the String xxxxx, will

actually find xxx, yet consider that a success. Compare

this with just X£3,5}, which would have found xxxxx.

This happens because we asked it to be reluctant to

match, and the most reluctant thing it can do is match

three occurrences of x. Notice that if there were six x
characters, such as xxxxxx, the pattern would have

matched twice: once for the first three xxx characters
and then again for the other three. Again, this is

because three is the minimum requirement. This
applies to either the character that immediately precedes

it, or a group (if the group immediately precedes it), or

a character class (if the character class immediately

precedes it).

Table A-B. Possessive Quantifiers

Regex Description

X1+ X, once or not at all

X*+ X, zero or more times

Regular Expression Reference

Notes

Very much like the ? pattern, this pattern prefers to
match as much as possible. However, this pattern won't
release matches to help the entire expression match as a
whole. For example, the pattern \w?+ \d, as applied to
the StringA2, will actually not match, because the first
\w?+ consumes the A and the 2, and it won't release
them for the greater good of allowing the entire
expression to match. Thus, \dis unable to match. This is
because we asked \w?+ to be possessive, and the most
possessive thing it can do is match the occurrence of A
and 2, and not release them. This applies to either the
character that immediately precedes it, or a group (if the
group immediately precedes it), or a character class (if

the character class immediately precedes it).

Very much like the "'pattern, this pattern prefers to
match as much as possible. However, this pattern won't
release matching to help the entire expression as a
whole match. For example, the pattern \w*+ \d, as
applied to the StringJava2, will actually not match,
because the first \w*+ consumes the String]ava2 and
won't release it for the greater good of allowing the entire
expression to match. Thus, \dis unable to match. This is
because the pattern \w*+ is possessive, and the most
possessive thing it can do is match the entire Java2 and
not release anything. This applies to either the character
that immediately precedes it, or a group (if the group
immediately precedes it), or a character class (if the
character class immediately precedes it).

219

Appendix A

Table A-B. Possessive Quantifiers (Continued)

Regex Description Notes

X++

X{n}+

X(n,}+

220

X, one or more times

X, exactly n times

X, at least n times

Very much like the + pattern, this pattern prefers to

match as much as possible. However, this pattern won't

release matching to help the entire expression as a

whole match. For example, the pattern \w++ \d, as

applied to the 5 tring]ava2, will actually not match,

because the first \w++ consumes the StringJava2 and
won't release it for the greater good of allowing the entire

expression to match. Thus, \dis unable to match. This is

because the pattern \w++ is possessive, and the most
possessive thing it can do is match the entire]ava2 and

not release anything. This applies to either the character

that immediately precedes it, or a group (if the group

immediately precedes it), or a character class (if the

character class immediately precedes it).

This pattern is exactly like the X{n} pattern. This applies

to either the character that immediately precedes it, or a

group (if the group immediately precedes it), or a
character class (if the character class immediately

precedes it).

Very much like the X{n,} pattern, this pattern prefers to
match as much as possible. However, this pattern won't

release matching to help the entire expression as a
whole match. For example, the pattern \w(4,}+ \d, as
applied to the String]ava2, will actually not match,

because the \w(4,}+ consumes the StringJava2 and
won't release it for the greater good of allowing the entire

expression to match. Thus, \dis unable to match 4. This

is because the pattern \w(4,}+ is possessive, and the

most possessive thing it can do is match the entire]ava2
and not release anything. This pattern applies to either

the character that immediately precedes it, or a group (if

the group immediately precedes it), or a character class

(if the character class immediately precedes it).

Regular Expression Reference

Table A-B. Possessive Quantifiers (Continued)

Regex Description Notes

X{n,m}+ X, at least n but not more Very much like the X{n,m} pattern, this pattern prefers
thanmtimes

TableA-9. Logical Operators

Regex Description

XY X followed by Y

XjY Either X or Y

to match as much as possible. However, this pattern
won't release matching to help the entire expression as a
whole match. For example, the pattern \x£2,5)\d, as
applied to the String/ava2, will actually not match,
because the first \w++ consumes the String]ava2, and
won't release it for the greater good of allowing the entire
expression to match. Thus, \dis unable to match. This is
because the pattern \x(2,5} is possessive, and the most
possessive thing it can do is match the entire]ava2 and
not release anything. This applies to either the character
that immediately precedes it, or a group (if the group
immediately precedes it), or a character class (if the
character class immediately precedes it).

Notes

This is the default relationship assumption between
characters. Note that spaces are a valid part of this
syntax. Thus, A B means the character A, followed by a
space, followed by the character B.

ABICD will match either AB or CD. Similarly, the pattern
hello sirlmadam will match hello sir or it will match
madam. Specifically, it won't match hello madam. This
is because of the nature of the And pattern discussed
previously. When the regex engine sees hello sir, it assumes
you mean that hello, followed by a space, followed by sir
should be treated as a single logical unit. These are all
Anded together. Then the engine sees the Or pattern, so
it assumes that the logical alternative is madam.

If you actually want to accept hello sir or hello madam,
you'll have to use groups-thus, the pattern hello
(sirjmadam). Or better yet, you can use the noncapturing
group hello (?:sirlmadam).

221

Appendix A

TableA-9. Logical Operators (Continued)

Regex

{X)

\n

222

Description

X, the capturing group

The nth capturing
group matched

Notes

A capturing group is a logical unit that is conceptually

similar to the logical units you're familiar with from

algebra. Thus, {\d\d\d\d) is a capturing group that

defines four digits. Capturing groups can be referred to

later in your expression by using a back reference, as

explained later. They're counted left to right and can be

nested. Thus, h(ello (world)) has three capturing

groups. Capturing group 0 is the entire expression,

which matches the String hello world. Capturing group
1 is ello world, because you count from left to right, and

the first group starts with the (right before the e in hello.

Group 2 is world, because the second group starts right

before the win world.

ln this context, I'm not referring to newline, even though

\n looks like the newline symbol. The n in this case

refers to a number. The regex engine allows you to

access the information captured by a previous part of

the group, even as the search is executing. For example,
if you want to find repeated words, all you need is the

pattern {\w+)\ W\1, which says, "Look for a group of
word characters, followed by a nonword character, fol­
lowed by that exact same word character captured in

group 1." If you attempt to refer to a group that doesn't

exist, a PatternSyntaxException will be thrown.

If you happen to have, say, 13 captured groups, then \13
will mean that you want the thirteenth capturing group.

If you don't have 13 groups, then the same expression

\13 will mean the first capturing group, followed by the

digit3.

TableA-10. Quotation

Regex

\

\Q

Description

Quotes the following
character

Quotes all characters
until\E

\E Ends quote started by \Q

Regular Expression Reference

Notes

This quotes the metacharacter that follows, so it will
actually be treated as a character. Thus, if you were
looking for a dollar sign, you would use \$. as the
pattern. By contrast,$ would have matched the end­
of-line character. Remember that for regex expressions
used directly as Strings, you need to double the
number of\ characters you see. Thus, in a Java String,
\s becomes \ \s.

This works in conjunction with \Eto quote a sequence
of characters. If you need to quote a lot of characters in
sequence, then use \Q to open your quote and \E to
close it. For example, if you want the characters \([?•,
the expression \Q\(?•\Ewill do the job.

Table A-11. Noncapturing Group Constructs

Reg ex

(?:X)

Description

Definesasubpattern
as a logical unit

Notes

Noncapturing groups don't store the infor­
mation that actually matches the pattern for
later access. These are much more efficient
than capturing groups if you're only using
grouping for logical purposes. This pattern is
noncapturing.

(1idmsux-idmsux) iforCASE INSENSITIVE The pattern (?i)hel(?-i)LOwill match the
x for COMMENTS
sforDOTALL
u for UNICODE CASE
mforMULTILINE
d for UNIX LINES

(1idmsux-idmsux:X) X, with the given
flags on or off

String HELW, because (?i) indicates a case­
insensitive match starting from h, and (?-i)
signals an end to that case insensitivity after
the first l. This pattern is noncapturing.

The pattern (?i:hel)Wwill match the String
HELW, because (?i: indicates a case-insensitive
match starting from h and ending with the first
l. This pattern is noncapturing.

223

Appendix A

TableA-12. Lookarounds

Reg ex

(?=X)

(?!X)

(?<=X)

(?<!X)

('l>X)

224

Description

X, using zero-width
positive lookahead

X, using zero-width
negativelookahead

X, using zero-width

positive lookbehind

X, using zero-width
negativelookbehind

X, as an independent, non­
capturing group

Notes

This pattern glances to the right of whatever remains to
be parsed from the candidate String to find the first
position at which the expression X exists. For example,
if you want to extract all of the inline comments from a
text file, you might try the pattern (?=II).*$ and extract
group 0. This pattern is noncapturing.

This pattern glances to the right, to whatever remains
to be parsed from the candidate String, to find the first
position at which the expression X doesn't exist. For
example, if you want to skip leading spaces leading up
to some content, you could use (?!\s). •. This pattern is
noncapturing.

This pattern glances to the left, to whatever remains to
be parsed from the candidate String, to find the first
position at which the expression X exists. For example,
if you want to extract all of the inline comments from a
text file, you might try the pattern (?=II).*$. This pattern
is noncapturing.

This pattern glances to the left, to whatever remains to
be parsed from the candidate String, to find the first
position at which the expression X doesn't occur. For
example, if you want to extract all of the text before
inline Java comments from a text file, you might try the
pattern . *(?<=II). This pattern is noncapturing.

This pattern refuses to release the contents of the
match, regardless of the consequences on the rest
of the pattern's ability to match. Thus, whereas the
pattern \w+ \d matches the Stringjava2, the pattern
(?>\w+)\d does not, because the (?>\w+) consumes
java and 2, and refuses to release the 2 so that \d

can match.

Regular Expression Reference

TableA-13. Less Common Characters

Regex

\On

\Onn

\Omnn

\xhh

\uhhhh

\a

\e

\ex

Description Notes

The character with octal value on 0 <= n <= 7

The character with octal value onn 0 < = n < = 7

The character with octal value Omnn 0 <= m <= 3, 0 <= n <= 7
(This can't exceed 377.)

The character with hexadecimal value Oxhh 0 <= h <= 9 or A<=h <=F

The character with hexadecimal value 0 <= h <= 9 or A<=h <=F
Oxhhhh

The alert (bell) character (' \u0007')

The escape character (' \uOOlB')

The control character corresponding to x

TableA-14. Unicode Blocks and Categories

Regex

\p{lnGreek}

\p{Lu}

\p{Sc}

\P{InGreek}

[\p{L}&&[" \p{Lu}))

Description

A character in the
Greek block

An uppercase letter

A currency symbol

Any character except
one in the Greek block
(negation)

Any non-uppercase
letter

Notes

\p{Lu} matches any uppercase character.

If you need to find or swap out, say, a dollar
sign, this is a good way to do so without having
to deal with the various delimiting complexities
of not matching the end-of-line character$.

Notice the use of the capital P here. In general,
uppercase \Pis the opposite of lowercase \p.
Thus, \P(Lower} matches all uppercase
characters.

This is exactly equal to \p(Upper}.

225

APPENDIX B

Pattern and
Matcher Methods

THis APPENDIX PROVIDES a summary of the methods of the Pattern and Matcher
classes in Java. It's intended to be a quick reference for working with the various
regex utilities you'll be using. For more detailed descriptions, please see the appro­
priate section in the text.

Pattern Class Fields

UNIX LINES

The UNIX_LINES flag is used in constructing the second parameter of the
Pattern. compile (String reg ex, int flags) method. Use this flag when parsing
data that originates on a UNIX machine.

On many flavors of UNIX, the invisible character \n is used to note termination
of a line. This is distinct from other operating systems, including flavors ofWmdows,
which may use \r\n, \n, \r, \u2028, or \u0085 for a line terminator.

If you've ever transported a file that originated on a UNIX machine to a
Windows platform and opened it, you may have noticed that the lines sometimes
don't terminate as you might expect, depending on which editor you use to view
the text. This happens because the two systems can use different syntax to denote
the end of the line.

The UNIX_LINES flag simply tells the regex engine that it's dealing with UNIX
style lines, which affects the matching behavior of the regular expression meta­
characters A and $.

NOTE Using the UNIX_ LINES flag, or the equivalent (?d) regex pattern,
doesn't degrade performance. By default, this flag isn't set.

227

AppendixB

228

CASE INSENSITIVE

The CASE_ INSENSITIVE field is used in constructing the second parameter of the

Pattern. compile(String regex, int flags) method. It's useful when you need to
match U.S. ASCII characters, regardless of case.

NOTE Using this flag, or the equivalent (7i) regular expression, can cause
performance to degrade slightly. By default, this flag is not set.

COMMENTS

The CQWtiENTS field is defined because it's used in constructing the second parameter
of the Pattern . compile(String regex, int flags) method. lttells the regexengine
that the regex pattern has an embedded comment in it. Specially, it tells the regex
engine to ignore any comments in the pattern, starting with the spaces leading up
to the #character and everything thereafter, until the end of the line.

Thus, the reg ex pattern A #matches uppercase US-ASCII char code 65 will

use A as the regular expression, but the spaces leading up to the #character and
everything thereafter until the end of the line will be ignored.

NOTE Using this flag, or the equivalent (?x) regular expression, doesn't
degrade performance.

MULTILINE

The MULTILINE field is used in constructing the second parameter of the

Pattern. compile(String reg ex, int flags) method. It tells the regex engine that

regex input isn't a single line of code; rather, it contains several lines that have their

own termination characters.

This means that the beginning-of-line character, "·and the end-of-line
character, $,will potentially match several lines within the input String.

Pattern and Matcher Methods

For example, imagine that your input String is This is sentence. \n So is this.
If you use the MULTIUNE flag to compile the regular expression pattern:

Pattern p = Pattern.compile(""", Pattern .MULTILINE);

then the beginning of line character, 11., will match before the Tin This is a sentence.
It will also match just before the Sin So is this. Without using the MULTI LINE flag, the
match will only find the Tin This is a sentence.

NOTE Using this flag, or the equivalent (?m) regular expression, may
degrade performance.

DOT ALL

The DOT ALL flag is used in constructing the second parameter of the
Pattern.compile(String regex, int flags)method.

The DOT ALL flag tells the regex engine to allow the metacharacter period(.) to
match any character, including a line termination character. What does this mean?

Imagine that your candidate String were Test\n. If your corresponding regex
pattern were the period (.), then you would normally have four matches: one for
the T, another for the e, another for s, and the fourth for t. This is because the regex
metacharacter period (.) will normally match any character, except line termination
characters.

Enabling the DOT ALL flag

Pattern p = Pattern.compile(".", Pattern . DOTALL);

would have generated five matches. Your pattern would have matched the T, e, s,
and t characters. In addition, it would have matched the \n character at the end of
the line.

NOTE Using this flag, or the equivalent (?s) regular expression, doesn't
degrade performance.

229

AppendixB

230

UNICODE CASE

The UNICODE_ CASE flag in conjunction with the CASE_ INSENSITIVE flag generates

case-insensitive matches for international character sets.

NOTE Using this flag, or the equivalent (?u) regular expression, can
degrade performance.

CANON_EQ

As you know, characters are actually stored as numbers. For example, in the U.S.
ASCII character set, the character A is represented by the number 65. Depending
on the character set that you're using, the same character can be represented by
different numeric combinations. For example, a can be represented by both +00£0
and U+0061 0+0300. A CANON_ EQ match would match either representation.

NOTE Using this flag may degrade performance.

Pattern Class Methods

public static Pattern compile(String regex) throws
PatternSyntaxException

You'll notice that the Pattern class doesn't have a public constructor. This means
that you can't write the following type of code:

Pattern p = new Pattern("my regex");//wrong!

To get a reference to a Pattern object, you must use the static method
pattern(String regex). Thus, your first line ofregex code might look like the
foUowing:

Pattern p = Pattern.compile("my regex");//Right!

Pattern and Matcher Methods

The parameter for this method is a String that represents a regular expression.
When passing a String to a method that expects a regular expression, it's important
to delimit any \ characters that the regular expressions might have by appending
another \character to them. This is because String objects internally use the \
character to delimit metacharacters in a character sequences, regardless of whether
those character sequences are regular expressions. This has been true long before
regular expression were a part ofJava. Thus, the regular expression \d becomes
\\d. To match a single digit, your regular expression code becomes the following:

Pattern p = Pattern.compile("\\d");

The point here is that the regular expression \d becomes the String \\d.
The delimitation of the String parameter can sometimes be tricky, so it's

important to understand it well. By and large, it means that you double the
\ characters that might already be present in the regular expression. It doesn't
mean that you simply append a single \ character.

The compile method will throw a java. util.regex.PatternSyntaxException if the
regular expression itself is badly formed. For example, if you pass in a String that
contains [4, the compile method will throw a PatternSyntaxException at runtime,
because the syntax of the regular expression [4 is illegal.

The compile(String regex) method returns a Pattern object.

public static compile pattern(String regex, int flags)
throws PatternSyntaxException

The compile(String regex, int flags) method is a more powerful form of the
compile method. The first parameter for this method, reg ex, is a String that
represents a regular expression, as detailed in the previous
pattern. compile(String regex) method entry. For details on how the String
parameter must be formatted, please see the previous compile(String regex)
method entry.

The flexibility of this compile method is fully realized by using the second
parameter, int flags. For example, if you want a match to be successful regardless
of the case of the candidate String, then your pattern might look like the following:

Pattern p = Pattern.compile(regex,Pattern.CASE_INSENSITIVE);

You can combine the flags by using the I operator. For example, to achieve
case-insensitive Unicode matches that include a comment, you might use the
following:

231

AppendixB

232

Pattern p =
Pattern.compile("t # a compound flag example",Pattern.CASE_INSENSITIVE

Pattern.UNICODE_CASEI Pattern.COMMENT);

The compile(String reg ex, int flags) method returns a Pattern object.

public String pattern()

This method returns the regular expression from which this pattern was compiled.
This is a simple String that represents the regex you passed in.

This method can be misleading in two ways. First, the String that is returned
doesn't reflect any flags that were set when the pattern was compiled. Second, the
regex String you passed in isn't always the pattern String you get back out. Specifically,
the original String delimitations aren't shown. Thus, if your original code was

Pattern p = Pattern.compile("\\d");

then you should expect your output to be \d, with a single \ character.

public Matcher matcher(CharSequence input)

Remember that you create a Pattern object by compiling a description of what
you're looking for. A Pattern lists the features of what you're looking for. Speaking
purely conceptually, your patterns might look like the following:

Pattern p = Pattern.compile("She must have red hair and be smarter than I am");

Correspondingly, you'll need to compare that description against candidates.
That is, you'll want to examine a given String to see whether it matches the
description you provided.

The Matcher object is designed specifically to help you do this sort of interro­
gation. The Pattern. matcher(CharSequence input) method returns the Matcher that
will help get details about how your candidate String compares with the description
you passed in.

public int flags()

Earlier, I discussed the constant flags that you can use in compiling your
regex pattern. The flags method simply returns an int that represents those flags.

Pattern and Matcher Methods

To see if your Pattern class is currently using a given flag-for example, the
Pattern. COMMENTS flag-simply extract the flag

int flgs = myPattern.flags();

and then & that flag to the Pattern. COMMENTS flag:

boolean isUsingCommentFlag =(Pattern.COMMENTS == {Pattern.COMMENTS & flgs))

Similarly, to see if you're using CASE_insensitive, do the following:

boolean isUsingCaseinsensitiveFlag =
{Pattern.CASE_insensitive == (Pattern. CASE_insensitive & flgs));

public static boolean matches(String regexJCharSequence
input)

Very often, you'll find that all you need to know about a String is whether it
matches a given regular expression exactly. You don't want to have to create a
Pattern object, extract its Matcher object, and interrogate that Matcher.

This static utility method is designed to help you do exactly that. Internally, it
creates the Pattern and Matcher objects you need, compares the regex to the input
String, and returns a Boolean indicating whether the two objects match exactly.
Usage might look something like PatternMatchesTest example shown here:

import java.util.regex.*;
public class PatternMatchesTest{

}

public static void main(String args[]){

}

String regex = "ad*";
String input = "add";

boolean isMatch = Pattern.matches(regex,input);
System.out.println(isMatch);\\return true

If you're going to be doing a lot of comparisons, then it's more efficient to
explicitly create a Pattern object and do your matches manually. However, if you're
not going to be doing a lot of comparisons, then matches is a handy utility method.

233

AppendixB

234

The Pattern.matches(String regex, CharSequence input) method is also used

internally by the String class. As ofJ2SE 1.4, String has a new method called matches,

which internally defers to this one. Thus, you might already be using this method

without being aware of it.

Of course, this method can throw a PatternSyntaxException if the regex pattern

under consideration isn't well formed.

public String[] split(CharSequence input)

This method can be particularly helpful if you need to break up a String into

an array of substrings based on some criteria. In concept, it's similar to the

StringTokenizer. However, it's much more powerful and more resource intensive

than StringTokenizer, because it allows your program to use a regular expressions

as the splitting criteria.

This method always returns at least one element. If the split candidate, input,

can't be found, a String array is returned that contains exactly one String, namely

the original input.

If the input can be found, then a String array is returned. That array contains

every substring after an occurrence of the input. Thus, for the pattern

Pattern p =new Pattern.compile(",");

the split method for Hello, Dolly will return a String array consisting of two elements.

The first element of the array will contain the String Hello, and the second will

contain the String Dolly. That String array is obtained as follows:

String tmp[] = p.split("Hello,Dolly");

In this case, the value return is

//tmp =={ "Hello", "Dolly"}

There are some subtleties you should be aware of when working with this

method. If the candidate String had been Hello,Dolly, with a trailing comma char­

acter after they in Dolly, then this method would still have returned two elements:

a String array consisting of Hello and Dolly. The implicit behavior is that training

spaces aren't returned.
If the input String had been Hello,,Dolly, the resulting String array would have

four elements. The return value of the split method, as applied to the Pattern , is

II p.split("Hello,,Dolly") == {"Hello","","","Dolly"}

Pattern and Matcher Methods

The String method further optimizes its search criteria by placing an invisible
" before the pattern and a $ after it.

public String[] split(CharSequence input, int limit)

This method works in exactly the same way as Pattern. split (CharSequence input),
with one variation. The second parameter, limit, allows you to control how many
elements are returned:

Limit == o

If you specify that the second parameter, limit, should equal 0, then this method
behaves exactly like its overloaded counterpart:

Limit >0

Use a positive limit if you're interested in only a certain number of matches.
You should use number 1 as the limit. Say the Pattern p has been compiled for the
String , as previously. To split the String Hello, Dolly, You, Are, My, Favorite when
you only want the first two tokens, you would use this:

String[] tmp = pattern.split("Hello, Dolly, You, Are, My, Favorite",3);

The value of the resulting String would be this:

//tmp[o] = "Hello", tmp[l] = "Dolly";

The interesting behavior here is that a third element is returned, in this case

//tmp[2] = "You, Are, My, Favorite";

Using a positive limit can potentially lead to performance enhancements,
because the regex engine can stop searching when it meets the specified number
of matches:

Limit <0

Using a negative number-any negative number-for the limit tells the regex
engine that you want to return as many matches as possible and that you want
trailing spaces, if any, to be returned. Thus, for the regex pattern , and the candidate
String Hello,Dolly the command

String tmp[] = p.split("Hello,Dolly", -1);

235

AppendixB

236

results in

//tmp == {"Hello", "Dolly"};

However, for the String Hello, Dolly,<space><space><space>, with trailing

spaces after the comma following the Dolly, the method call

String tmp[] = p.split("Hello,Dolly, ", -1);

results in

//tmp == {"Hello","Oolly"," "};

Notice that the actual value of the negative limit doesn't matter. Thus,

p.split("Hello,Dolly", -1);

is exactly equivalent to

p.split("Hello,Oolly", -100);

Method Class Methods

public Pattern pattern()

The pattern method returns the Pattern that created this particular Matcher object.

The Pattern returned doesn't contain any of the flags that are explicitly set by using the

Pattern constants when the pattern is compiled, such as Pattern.MUL TILINE.

public Matcher reset()

The reset() method clears all state information from the Matcher object it is called

on. The Matcher is, in effect, reverted to the state it originally had when you first

received a reference to it.

public Matcher reset(CharSequence input)

The reset(CharSequnce input) method clears the state of the Matcher object it's

called on and replaces the candidate String with the new input. This has the same

effect as creating a new Matcher object, except that it doesn't have the associated

overhead. This recycling can be a useful optimization, and it's one that I often use.

Pattern and Matcher Methods

public int start()

This method returns the index of the first character of the candidate String
matched. If there are no matches, or if no matches have been attempted, an
IllegalStateException is thrown.

public int start(int group)

This method allows you to specify which subgroup within a matching you're
interested in and returns the index of the first character in which that subgroup
starts. If there are no matches, or if no matches have been attempted, an
IllegalStateException is thrown. If you refer to a group number that doesn't exist,
an IndexOutOfBoundsException is thrown.

public int end()

The end method returns the ending index plus 1 of the last successful match the
Matcher object had. If no matches exist, or if no matches have been attempted, this
method throws an IllegalStateException.

public int end(int group)

Uke the start (int) method, this method allows you to specify which subgroup
within a matching you're interested in, except that it returns the last index of
matching character sequence plus 1. If no matches exist, or if no matches have
been attempted, this method throws an IllegalStateException. If you refer to a
group number that doesn't exist, an IndexOutOfBoundsException is thrown.

public String group()

The group method can be a powerful and convenient tool in the war against
jumbled code. It simply returns the substring of the candidate String that matches
the original regex pattern. The group () method throws an IllegalS tate Exception if the
find method call wasn't successful. Similarly, it throws an IllegalStateException if find
has never been called at all.

public String group(int group)

This method is a more powerful counterpart to the group() method. It allows you
to extract parts of a candidate string that match a subgroup within your pattern.

237

AppendixB

238

The group(int) method throws an IllegalStateException if the find method
call wasn't successful. Similarly, it throws an IllegalStateException is find has
never been called at all. If called for a group number that doesn't exist, it throws an
IndexOutOfBoundsException.

public int groupCount()

This method simply returns the number of groups that the Pattern defined. There's
a very important, and somewhat counterintuitive, subtlety to notice about this
method: It returns the number of possible groups based on the original Pattern,

without even considering the candidate String. Thus, it's not really information
about the Matcher object; instead, it's about the Pattern that helped spawn it. This
can be tricky, because the fact that this method lives on the Matcher object could be
interpreted as meaning that it's providing feedback about the state of the Matcher.

It isn't. It's telling you how many matches are theoretically possible for the given
Pattern.

public boolean matches()

This method is designed to help you match a candidate String against the matcher's
Pattern. It returns true if, and only if, the candidate String under consideration
matches the pattern exactly.

public boolean find()

The find() method parses just enough of the candidate String to find a match. If
such a substring is found, then true is returned and find stops parsing the candidate.
If no part of the candidate String matches the pattern, then find returns false.

public boolean find(int start)

find(int start) works exactly like its overloaded counterpart, with the exception
of where it starts searching. The int parameter start simply tells the Matcher at
which character to start its search.

Thus, for the candidate String I love Java. Java is my favorite language. Java
Java Java. and the Pattern Java, if you only want to start searching at character
index ll, you use the command find(11).

Pattern and Matcher Methods

public Matcher appendReplacement(StringBuffer sb,
String replacement)

The appendReplace method allows you to modify the contents of a StringBuffer
based on a regular expression. It even allows you to use back references by using
the $n notation, in which n refers to some captured subgroup. For example, for the
StringBuffer Waldo Smith, the Pattern (\w+) (\w+), and the replacement $2, $1,
the contents of the StringBuffer will be modified to Smith, Waldo.

The appendReplacement method will throw an IllegalStateException if a find ()
hasn't been called, or if find would have returned false if called. It will throw an
IndexOutOfBoundsException if the capturing group referred to by $1, $2, etc., doesn't
exist in the part of the pattern currently being scrutinized by the Matcher.

public StringBuffer appendTail(StringBuffer sb)

The appendTail method is a supplement to the appendReplacement method. It simply
appends every remaining subsequence from the original candidate String to
the StringBuffer, if reading from the append position, which I explained in the
appendReplacement section, to the end of the candidate string.

public String replaceAll(String replacement)

The replaceAll method returns a String that replaces every occurrence of the
description with the replacement. Using this method will change the state of your
Matcher object. Specifically, the reset () method will be called. Therefore, remember
that all start, end, group, and find calls will have to be reexecuted.

Like the appendReplacement method, the replaceAll method can contain refer­
ences to substring by using the $symbol. For details, please see the appendReplacement
documentation presented earlier.

public String replaceFirst(String replacement)

The replaceFirst method is a more limited version of the replaceAll method. This
method returns a String that replaces the first occurrence of the description with
the replacement. Using this method will change the state of your Matcher object.
Specifically, the reset () method will be called. Therefore, remember that all start,
end, group, and find calls will have to be reexecuted after replaceFirst is called.

Like the appendReplacement method, the replaceFirst method can contain
references to substring by using the $symbol. For details, please see the
appendReplacement documentation presented earlier.

239

APPENDIX C

Common Regex Patterns

THis APPENDIX PRESENI'S some practical regex patterns that you can use for
common matching and validation tasks.

Table C-1. IPAddress "(([0-1]?\d{l,2)\.)l(2[0-4}\d\.)l(25[0-5]\.))(3}
(([0-1]?\d{l,2})1(2[0-4]\d)l(25[0-5]))$

Regex Description

A Beginning of line

A group consisting of

A subgroup consisting of

[0-1]? Zero or one, both optional, followed by

\d Anydigit

{1,2} Repeated one or two times, followed by

\. Aperiod

Close subgroup

Or

A subgroup consisting of

2 The digit 2, followed by

[0-4] Any digit from 0 to 4, followed by

\d Any digit, followed by

\. A period

Close subgroup

Or

A subgroup consisting of

2 The digit 2, followed by

5 The digit 5, followed by

241

AppendixC

242

Table C-1. IP Address A(([0-1]7\d{l,2}\.)l(2[0-4]\d\.)l(25[0-5]\.)){3}
(([0-1]7\d{l,2})1(2[0-4]\d)l(25[0-5]))$ (Continued)

Regex Description

[0-5) Any digit from 0 to 5, followed by

\. A period

Close subgroup

Close group

{3} Repeated three times, followed by

A group consisting of

A subgroup consisting of

[0-1)? Zero or one, both optional, followed by

\d{l,2} Any two digits

Close subgroup

Or

A subgroup consisting of

2 The digit 2, followed by

[0-4) Any digit from 0 to 4, followed by

\d Any digit

Close subgroup

Or

A subgroup consisting of

2 The digit 2, followed by

5 The digit 5, followed by

[0-5) Any digit from 0 to 5, followed by

Close subgroup

Subgroup

$ Endofline

• In English: Three sets of three digits separated by periods, each ranging from 0 to 255,

followed by three digits, each ranging from 0 to 255.

Common Regex Patterns

NOTE The following pattern also matches the IP address, but all the groups
have been marked as noncapturing:

(?:(?: [O-l]?\d{l,2} \.)1(?:2[0-4) \d \ .)1 (?:25 [0-5] \ .)) {3} (?: (?: [0-1] ?\
d{l,2}) 1<?:2[0-4) \d) I (?:25[0-5)))

This is slightly more efficient than the previous pattern, but it's less legible.

Table C-2. Simple E-mailA(\p{Alnum}+(\.l\-1\-)?)•\p{Alnum}@(\p{Alnum}+
(\.I\-1\-J?J•\p{AlphaJ$

Reg ex

I\

\p{Alnum}

+

\.

_

\-

•

\p{Alnum}

@

\p{Alnum}

+

Description

Beginning ofline

A group consisting of

A letter or a digit

Repeated one or more times, followed by

A subgroup consisting of

A period

Or

An underscore

Or

A hyphen

Close subgroup

The preceding punctuation is optional

Close group

The previous group can be repeated zero or more times,
followed by

A letter or a digit, followed by

An @symbol, followed by

A letter or a digit

Repeated one or more times, followed by

243

AppendixC

244

Table C-2. Simple E-mailll(\p{Alnum}+(\.l\-1\-)?)*\p(Alnum}@(\p(Alnum}+
(\.1\J\-)?)*\p(Alpha}$ (Continued)

Reg ex Description

A group consisting of

\. A period

Or

_ An underscore

Or

\- A hyphen

Close group

? The preceding punctuation is optional

\p(Alpha} An upper- or lowercase letter

$ End of line

• In English: Any number of alphanumeric characters followed by single hyphens, periods, or

underscores, but ending in an alphanumeric character; followed by an @symbol; followed by

any number of alphanumeric characters; followed by single hyphens, periods, or underscores,

but ending in an upper- or lowercase character.

NOTE The following pattern matches the previous one exactly, except that it
allows an IP address as well:

"(\ p{Alnurn}+(\.1 _I\-)?)*\ p{Alnum}@(((\ p{Alnum}+(\ ·I _I\-)?) •
\p{Alpha})l ((([0-l)?\d{l,2} \ .) 1(2[0-4] \d \ .)1(25[0-5] \.)) {3} (([0-l]?\d(l,2}) I
C2 I0-41 \d) 1 C25 10-5)))))$

For a breakdown of the IP address pattern, please see Table C-1.

Common Regex Patterns

Table C-3. Digit Repeated Exactly n Times \d(n}, Where n Is the Number
of Digits Needed

Regex Description

\d Any number

{n} Repeated n times

• In English: n digits. Thus, if n was equal to 4, any four digits.

Table C-4. Characters Repeated Exactly n Times \w(n}, Where n Is the Number of
Characters Needed

Regex Description

\w Any number, any digit, or an underscore symbol

{n} Repeated n times

• In English: n characters. Thus, if n was equal to 4, any four characters.

Table C-5. Characters Repeated n tom Times \w(n.m}, Where n Is the Number of
Characters Needed

Regex Description

\w Any number, any digit, or an unders~ore symbol

{n Repeated n times

m} But not more than m times

• In English: n characters. Thus, if n was equal to 4 and m was equal to 9, any four, five, six,
seven, eight, or nine characters.

245

AppendixC

246

Table C-6. Credit Cards: Visa, MasterCard, American Express, and Discover
l\ff4\df3JJif5fl-sJ\df2JJif60llJJ-7\df4J-7\df4J-7\df4JI3£4, 71\d£131$

Regex Description

1\ Beginningofline

A group consisting of

A subgroup consisting of

4 the digit four, followed by

\d(3) Any three digits

Close subgroup

Or

A subgroup consisting of

5 The digit 5, followed by

[1-5) Any digit ranging from 1 to 5, followed by

\d[2) Any two digits

Close subgroup

Or

A subgroup consisting of

6001 The digits 6, 0, 0, 1

Close subgroup, followed by

-t An optional hyphen, followed by

\d{4) Any four digits, followed by

-t An optional hyphen, followed by

\d{4] Any four digits, followed by

-t An optional hyphen, followed by

\d{4] Any four digits, followed by

-t An optional hyphen

Or

3 The digit 3, followed by

Common Regex Patterns

Table C-6. Credit Cards: Visa, MasterCard, American Express, and Discover
"((4\d{3JJI(5{1-5]\d{2})1(6011))-?\d{4}-?\d{4}-?\d{4}13f4, 7]\d{13}$ (Continued)

Reg ex Description

[4,7) A 4 or a 7, followed by

\d{l3) Any thirteen digits, followed by

$ End of line

• lnEnglish:Anwnber starting with 4 and three digits, or 5 and three digits, or 6011 , followed by a
hyphen, followed by three sets of four digits, or 34 and thirteen digits, or 37 and thirteen digits.

NOTE This regex does not, and cannot, conform to mod 10 verification. To
find a Java program that does, please visit http: I lwww. influxs. com.

Table C-7. Real Number "1+-]?\d+(\. \d+)?$

Regex Description

1\ Beginning of line, followed by

[+-)? An optional plus or a minus sign

\d+ Followed by one or more digits, followed by

A group consisting of

\. A period, followed by

\d+ One or more digits

)? Close group, and make it optional

$ Endofline

• In English: Any nwnber of digits followed by an optional decimal component.

247

Index

A

addresses confirmation, 33-37

alternates, 12-15

append position, 99

appendReplace method, 239

appendReplacementmethod, 98-102, 123

appendTail method, 98, 103, 239

Apress Web site, 6

Arraylist, 189

B

back references, 2Q-21, 123-24

batch reads and writes, 145-46

boolean String.matches method, 42

boundary characters, ll-12

ByteBuffer, 144, 145

ByteBuffers, 152-60

c
Calendar object, 185

CANON_EQ flag, 59, 230

CASE_INSENSITIVE field, 57, 228

character classes, 15-17

characters

boundary, 11-12

common, 9-11

CharSequence parameter, 56, 63

Command object, 143

COMMENT flag, 52

COMMENTS flag, 57-58, 63, 228

common characters, 9-11

compile flags, 189

compile method, 59-61, 23Q-32

compiling patterns, 160-62

composition technique, 7

connections, optimizing, 144-45

D

data validation, 42-46

date confirmation, 27-30, 184-89

delimiting strings, 106-7

DOTALL flag, 58-59, 229

duplicate words, finding, 38-41

E

EDI document, validating, 207-9

end method, 81-86, 237

examineLog method, 168

examples, 173-210

confirming date formats, 184-89

confirming format of phone number,
173-78

confirming zip codes, 179-83

extracting phone numbers from files,
20Q-203

modifying contents of files, 196-99

249

Index

250

F

searching directory for file containing
expression, 203-7

searching files, 192-96

searching strings, 189-92

validating EDI document, 207-9

FileChannels, 144-45

modifying contents of files, 198

searching files, 192-94

storing patterns, 152-60

FilelnputStream, 144

FileLocks tool, 144

FileOutputStream, 144

files

modifying contents of, 196-99

searching, 192-96

find method, 93-96, 238

finding duplicate words, 38-41

find(int start) method, 238

flagsmethod,56,63-64,232-33

G

getFileContent method, 199

getRegex method, 154

getXMLmethod, 151

group method, 86-87, 237

and end method, 83, 84

and qualifiers, 127, 128

and start method, 79

and subgroups, 119, 120, 121

groupCount method, 9Q-91, 238

group(int group) method, 88-90, 237-38

group(int) method, 88-89

groups, 18-19,117-18

I

and Matcher object, 71-72

noncapturing, 138, 142

subgroups, 119-22

IllegalStateException, 93

and appendReplacement method, 102

and end method, 83, 86

and group method, 87, 90

and start method, 78, 81

indexOfmethod, 113, 160

IndexOutOffioundsException, 81, 86, 90,
95,102,124

I
Java

integrating with regular expressions,
21-41

confirming addresses example, 33-37

confirming dates example, 27-30

confirming phone number formats
example, 22-25

confirming zip codes example, 25-27

finding duplicate words example,
38-41

overview, 21-22

vs. Perl, 51-52

java.util.Properties, 173

Java.util.regex object model, 55-115

Matcher object

appendReplacement method, 98-102

appendTail method, 103

Index

and back references, 123 overview, 55-56

date validation with, 44-46 pattern method, 62-63

end method, 81-86, 83-86 splitmethod,65-70

find method, 93-96 UNICODE_ CASE flag, 59

and finding duplicate words, 38--40 UNIX_UNES flag, 57

group method, 86-87 String object, 106-12

groupCount method, 90-91 delimiting strings, 106-7

and groups, 71-72 matches method, 107-8

lookingAtmethod,96-98 replaceFirst method, 108-9

matchermethod,63 splitmethod,109-12

matches method, 91-92

overview, 70-71 L

pattern method, 73 limit parameter, 68, 110

and Pattern.matches method, 64--65 LinkedHashMap, 191

replaceAll method, 103-5 Logger. throwing method, 162

replaceFirst method, 105-6 lookarounds, 130-37

reset method, 73-76 negativelookaheads,132-34

start method, 77-81 negativelookbehinds,137

vs. String.matches method, 53 overview, 130

and String.replaceAll method, 109 positive lookaheads, 130-32

and String.replaceFirst method, 108 positive lookbehinds, 134-37

overview, 55 lookingAtmethod,96-98

Pattern object, 55-70
M

CANON_EQ flag, 59

CASE_INSENSITIVE field, 57
Map, 191

COMMENTS flag, 57-58
MappedByteBuffers, 195

compile method, 59-61
matcher method, 63, 232

DOTALL flag, 58-59
Matcher object

flagsmethod,63-64
appendReplacement method, 98-102

matcher method, 63
appendTail method, 103

matches method, 64--65
and back references, 123

MULTIUNE flag, 58
date validation with, 44-46

251

Index

252

end method, 81-86,83-86

find method, 93-96

and finding duplicate words, 38-40

group method, 86-87

groupCount method, 90-91

and groups, 71-72

lookingAt method, 96-98

matchermethod,63

matches method, 91-92

overview, 70-71

pattern method, 73

and Pattern.matches method, 64-65

replaceAll method, 103-5

replaceFirst method, 105-6

reset method, 73-76

start method, 77-81

vs. String.matches method, 53

and String.replaceAll method, 109

and String.replaceFirst method, 108

matcher(CharSequence input) method, 63

matchers, defining, 3--4

matches

specifying postion of, 139

specifying size of, 140

matchesmethod,53,91-92,238

matches(String regex, CharSequence
inpuQmethod,64

matches(String regex,CharSequence input)
method,64-65,233-34

matches(String regex) method, 107-8

MatchNameFormats.java program, 30

metacharacters,5

Method class methods, 236-39

modifying contents of files, 196-99

MUil'IUNE flag, 58, 228-29

N

negation example, 17

negativelookaheads,132-34

negativelookbehinds,137

newsgroups, 210

noncapturing groups, 138, 142

NullPointerException, 108, 109, 110, 112

0

object-oriented regular expressions,
143-71

batch reads and writes, 145-46

compiling patterns as needed, 160-62

and not limiting to regex solutions,
163-68

optimizing connections, 144-45

overview, 143

storing patterns externally, 146-60

not using normal property file,
147-48

not using XML, 148-52

overview, 146-47

using FileChannels and ByteBuffers,
152-60

optimizingconnections,144-45

optimizing regular expressions, 138-40

p

Pattern class fields, 227-30

Pattern class methods, 230-36

pattern method, 62-63, 73, 232, 236

Pattern object, 55-70

and appendReplacement method, 98

CANON_EQ flag, 59

CASE_INSENSITIVE field, 57

COMMENTS flag, 57-58

compile method, 59-61

data validation with, 44-46

DOTALL flag, 58-59

finding duplicate words example, 38-40

flagsmethod,63-64

and lookingAt method, 96

matcher method, 63, 232

matches method, 64-65, 108

MULTILINE flag, 58

overview, 55-56

pattern method, 62-63

and reluctant qualifiers, 130

split method, 65-70

split(String regex, int limit) method, 112

split(String regex) method, 110

vs. String.matches method, 53

and String.replaceFirst method, 109

UNICODE_ CASE flag, 59

UNIX_LINES flag, 57

patterns

compiling as needed, 160-62

creating, 5-7

defining, 2-3

reading, 8-9

storing externally, 146-60

not using normal property file,
147-48

not usingXML, 148-52

overview, 146-4 7

using FileChannels and ByteBuffers,
152-60

PatternSyntaxException, 55, 65, 108, 109,
llO, ll2, 230-31

Perl, vs. Java's regexsupport, 51-52

phone numbers

extracting from files, 200-203

format confirmation, 22-25, 173-78

positive lookaheads, 130-32

positive lookbehinds, 134-37

Properties object, 147, 148, 152

pulltechrrique,5-6

pushtechnique,6-7

Q

qualifiers, 125-30

quantifiers and alternates, 12-15

R

reading patterns, 8-9

RegexProperties class, 173, 179

regular expression operations, 41-51

data validation, 42-46

overview, 41

search and replace, 46-48

splitting strings, 48-51

regular expressions, building blocks of, 2-4

replaceAll method, 46-48, 109, 115, 123, 239

replaceAll(String replacement) method,
103-5

replaceFirst method, 46-48, 123, 239

Index

253

Index

254

replaceFirst(String regex,String
replacement) method, 108-9

replaceFirst(String replacement) method,
105-6

resetmethod, 73-76,106,236

resources, 210

ResultSet, 3, 117, 143

RuntimeException, 60, 62

RX.java program, 6

s
saveXML method, 151

searchFile method, 194

searching, 46-48

directory for file containing expression,
203-7

files,192-96

strings, 189-92

searchString method, 192

split(CharSequence input, int limit)
method,68-70,235-36

split(CharSequence input) method, 65-68,
234-35

split(String regex, int limit) method, 110-12

split(String regex) method, 109-10

splitting strings, 48-51

start method, 77-78, 97

and find method, 93

and group method, 87

and replaceFirst method, 106

start(int group) method, 78-81, 237

storing patterns externally, 146-60

not using normal property file, 147-48

not using XML, 148-52

overview, 146-4 7

using FileChannels and ByteBuffers,
152-60

String object, 106-12

and common characters, 11

delimiting strings, 106-7

group method, 86-90

and groups, 71, 72

indexOfmethod, 113, 160

matchermethod,43

matches method, 15, 53

matches(regex) method, 38

matches(String regex,CharSequence
input) method, 64

matches(String regex) method, 22, 45,
107-8

modification of, 52

replaceAll method, 103-5, 109, 175

replaceFirst method, 108, 108-9

splitmethod,68, 113,114,185

split(CharSequence input, int limit)
method, 68-70

split(CharSequence input) method,
65-68

split(String regex, int limit) method,
110-12

split(String regex) method, 109-10

substringmethod,46,87

StringBuffer object, 98, 99, 100-101, 103 U
strings

data validation with, 42-44

prechecking candidate strings, 138

searching, 189-92

splitting, 48-51

StringTokenizer, 1, 109, 163

subgroups, 119-22

substrings method, 46

syntax of regular expressions, 7-20

back references, 20-21

boundary characters, 11-12

character classes, 15-17

T

common characters, 9-11

groups, 18-19

overview, 7

quantifiers and alternates, 12-15

reading patterns, 8-9

telephone numbers. See phone numbers

UNICODE_ CASE flag, 59, 230

UNIX_UNES flag, 57,227

v
validating EDI document, 207-9

w
words, duplicate, 38-41

writing regular expressions, 5-7

X
XML, not using for storing patterns, 14a-52

XMLDecoder class, 148

XMLDecoder object, 149-50

XMLEncoder class, 148

XMLEncoder object, 149-50

XMLHelper class, 151

z
zip code confirmation, 25-27, 179-83

zipPatternKey, 182

Index

255

ASP Today
ASPToday is a unique solutions library for professional ASP Developers, giving
quick and convenient access to a constantly growing library of over 1 000 practical
and relevant articles and case studies. We aim to publish a completely original
professionally written and reviewed article every working day of the year.
Consequently our resource is completely without parallel in the industry. Thousands
of web developers use and recommend this site for real solutions, keeping up to
date with new technologies, or simply increasing their knowledge.

Find it FAST!
Powerful full-text search engine so you can find exactly the solution you need.

Printer-friendly!
Print articles tor a bound archive and quick desk reference.

Working Sample Code Solutions!
Many articles include complete downloadable sample code ready to adapt
for your own projects .

.... ASP.NET 1 .x and 2.0

..... ADO.NET and SOL

.... XML

..,.. Web Services

..,.. E-Commerce

..,.. Security

..,.. Site Design

..,.Site Admin

..... SMTP and Mail

..... Classic ASP and ADO

and much, much more ...

To receive a FREE two-month subscription to ASPToday, visit
www.asptoday.com/subscribe.aspx and answer the question about this book!

The above FREE two-month subscription offer is good for six months from original copyright date of book this ad appears in.

Each book will require a different promotional code to get this free offer- this code will determine the offer expiry date. Paid
subscribers to ASPToday will recerve 50% off of selected Apress books with a pa1d 3-month or one-year subscription.
Subscribers will also receive discount offers and promotional email from Apress unless their subscriber preferences indicate

they don't wish this. Offer limited to one FREE two-month subscription offer per person.

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNI1Y. You'll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business-especially Apress authors, who all write

with The Expert's Voice™-will chime in to help you. Why not aim to become one of our most valuable partic­

ipants (MVPs) and win cool stuff? Here's a sampling of what you'll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPY6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We've come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.
OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP. MySQL, Linux, Pe~. Apache, Python, and more.

HOW TO PARTICIPATE:

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the 'suits."

WEB DEVELOPMENT/DESIGN

Ugly doesn't cut it anymore, and CGI is absurd.

Help is in sight for your site. Rnd design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there-the good guys need help.

Discuss computer and network security issues here. Just don't let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.
It's after hours. It's time to play. Whether you're into LEGQ®
MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestratlon here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

