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REMARK ON A SUMMATION FORMULA FOR THE SERIES

4F3(1)

Junesang Choi∗, Yashoverdhan Vyas and Arjun K. Rathie

Abstract. We aim to prove a known summation formula for the series

4F3(1) by mainly using a similar method as in [2], which is different from
that in [3]. The method of proof here as well as that in [2] is potentially
useful in getting some other summation formulas for pFq .

1. Introduction

Throughout this paper, let pFq denote the generalized hypergeometric series
(see, for details, e.g., [6], [7], [8, Section 1.5]). We begin by recalling the following
two summation formulas for the series 3F2 and 4F3 (see, e.g., [7, p. 245])

3F2

[

a, 1 + 1
2a, b ;

1
2a, 1 + a− b ;

− 1

]

=
Γ
(

1
2a+ 1

2

)

Γ(1 + a− b)

Γ(1 + a) Γ
(

1
2 + 1

2a− b
) (1.1)

and

4F3

[

a, 1 + 1
2a, b, c ;

1
2a, 1 + a− b, 1 + a− c ;

1

]

=
Γ
(

1
2a+ 1

2

)

Γ(1 + a− b) Γ(1 + a− c) Γ
(

1
2 + 1

2a− b− c
)

Γ(1 + a) Γ
(

1
2a− b+ 1

2

)

Γ
(

1
2a− c+ 1

2

)

Γ(1 + a− b− c)
.

(1.2)

For our present investigation, we also recall the following two summation
formulas due to Kim et al. [3]:

3F2

[

a, b, 1 + d ;
1 + a− b, d ;

− 1

]

=
(

1−
a

2d

) Γ
(

1 + 1
2a

)

Γ(1 + a− b)

Γ(1 + a) Γ
(

1 + 1
2a− b

) +
a

2d
·
Γ
(

1
2a+ 1

2

)

Γ(1 + a− b)

Γ(1 + a) Γ
(

1
2a− b+ 1

2

)

(1.3)
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and

4F3

[

a, b, c, d+ 1 ;
1 + a− b, 1 + a− c, d ;

1

]

=
(

1−
a

2d

) Γ
(

1 + 1
2a

)

Γ(1 + a− b) Γ(1 + a− c) Γ
(

1 + 1
2a− b− c

)

Γ(1 + a) Γ(1 + a− b− c) Γ
(

1 + 1
2a− b

)

Γ
(

1 + 1
2a− c

)

+
a

2d
·
Γ
(

1
2 + 1

2a
)

Γ(1 + a− b) Γ(1 + a− c) Γ
(

1
2 + 1

2a− b− c
)

Γ(1 + a) Γ(1 + a− b− c) Γ
(

1
2 + 1

2a− b
)

Γ
(

1
2 + 1

2a− c
) .

(1.4)

Remark 1. The identities (1.1) and (1.2) are obvious special cases of (1.3) and
(1.4), respectively. Taking the limit in (1.4) as c → ∞ yields (1.3).

Setting b = −n (n ∈ N0) in (1.3) and (1.4), respectively, we obtain the fol-
lowing interesting identities:

3F2

[

−n, b, 1 + d ;
1 + a+ n, d ;

− 1

]

=
(

1−
a

2d

) (1 + a)n
(

1 + 1
2a

)

n

+
a

2d
·

(1 + a)n
(

1
2a+ 1

2

)

n

(1.5)

and

4F3

[

−n, a, b, d+ 1 ;
1 + a+ n, 1 + a− b, d ;

1

]

=
(

1−
a

2d

) (1 + a)n
(

1 + 1
2a− c

)

n
(

1 + 1
2a

)

n
(1 + a− c)n

+
a

2d
·
(1 + a)n

(

1
2 + 1

2a− c
)

n
(

1
2a+ 1

2

)

n
(1 + a− c)n

.

(1.6)

Here and in the following, let C, N and Z
−

0 be the sets of complex numbers,
positive integers and non-positive integers, respectively, and let N0 := N ∪ {0}.

Kim et al. [3] established the result (1.3) with the help of classical Kummer’s
summation theorem and its contiguous results in [5] and established the result
(1.4) with the help of classical Dixon’s summation theorem and its contiguous
result in [4]. Very recently, Choi et al. [2] have proved an extended Watson’s
summation theorem for the series 4F3(1) in [3] by mainly using a known sum-
mation formula for 3F2(1/2). Here, similarly as in [2], we aim to prove (1.4) by
mainly using (1.3).

2. Derivation of (1.4)

Let L be the left side of (1.4). Expressing 4F3 as the series, we obtain

L =

∞
∑

k=0

(−1)k (a)k (b)k (1 + d)k
(1 + a− b)k (d)k k!

{

(−1)k (c)k
(1 + a− c)k

}

, (2.1)
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where (λ)n is the Pochhammer symbol defined (for λ ∈ C) by (see [8, p. 2 and
pp. 4-6]):

(λ)n : =

{

1 (n = 0)

λ(λ+ 1) . . . (λ+ n− 1) (n ∈ N)

=
Γ(λ+ n)

Γ(λ)

(

λ ∈ C \ Z−

0

)

,

(2.2)

where Γ is the familiar Gamma function.
Using the following identity (cf., [6, p. 69, Exercise 5])

2F1

[

−k, a+ k ;
1 + a− c ;

1

]

=
(−1)k (c)k
(1 + a− c)k

(k ∈ N0)

in (2.1), we have

L =

∞
∑

k=0

(−1)k (a)k (b)k (1 + d)k
(1 + a− b)k (d)k k!

2F1

[

−k, a+ k ;
1 + a− c ;

1

]

. (2.3)

Expressing 2F1 in (2.3) as the series, we get

L =

∞
∑

k=0

k
∑

m=0

(−1)k (a)k (b)k (1 + d)k (−k)m (a+ k)m
(1 + a− b)k (d)k (1 + a− c)m k! m!

,

which, upon using the identities

(α)k (α+ k)m = (α)k+m (α ∈ C; k, m ∈ N0) (2.4)

and

(−k)m =
(−1)m k!

(k −m)!
,

yields

L =

∞
∑

k=0

k
∑

m=0

(−1)k+m (a)k+m (b)k (1 + d)k
(1 + a− b)k (1 + a− c)m (d)k m! (k −m)!

. (2.5)

Applying the following formal manipulation of double series (see, e.g., [1], [6, p.
57, Lemma 10(2)])

∞
∑

k=0

k
∑

m=0

A(m, k) =

∞
∑

k=0

∞
∑

m=0

A(m, k +m),

we obtain

L =

∞
∑

k=0

∞
∑

m=0

(−1)k (a)k+2m (b)k+m (1 + d)k+m

(1 + a− b)k+m (d)k+m(1 + a− c)m m! k!
. (2.6)
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Using (2.4) in (2.6), we get

L =

∞
∑

m=0

(a)2m (b)m (1 + d)m
(1 + a− b)m (1 + a− c)m (d)m m!

×

∞
∑

k=0

(−1)k (a+ 2m)k (b+m)k (1 + d+m)k
(1 + a− b+m)k (d+m)k k!

,

which, upon expressing the inner series as 3F2, gives

L =

∞
∑

m=0

(a)2m (b)m (1 + d)m
(1 + a− b)m (1 + a− c)m (d)m m!

× 3F2

[

a+ 2m, b+m, 1 + d+m ;
1 + a− b+m, d+m ;

− 1

]

.

(2.7)

Finally, using (1.3) to evaluate the 3F2 in (2.7), after some simplification, we
find that the resulting right side of (2.7) leads to the right side of (1.4).
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