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Abstract. Six different estimators of standard deviation 

have been compared by stochastic simulations and by asymp

totic calculations. The observations were independent, 

identically distributed either with a normal distribution 

or with a distribution ln the "neighbourhood" of a normal 

distribution. 

The simulations showed that the usual standard deviation 

estimator is too sensitive against deviations from norma

lity. Estimators based on the absolute deviation or on a 

fractile-difference turned out to be better under the con

sidered deviations from normality, and compared well with 

the usual estimator under normal assumptions. 

The asymptotic calculations showed that comparing asymp

totic values of two estimators may give a false impression 

of their corresponding finite properties. 

Key words: robust estimation, standard deviation, 

stochastic simulation. 
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1. INTRODUCTION 

On the basis of independent, identically distributed 

observations x1 , ... ,X we want to estimate their common 
n 

standard deviation (SD). 

If the observations are normally distributed the minimum 

variance unbiased estimator is; 

where X is the arithmetic mean and k 1 Cn) lS a correction 

factor for biasedness depending on n. If, however, the assump-

tion of normality lS violated, we do not know much about the 

finite properties of s1 relative to the properties of other 

estimators. 

Bickel and Lehmann (1976) have studied asymptotic relative 

efficiencies of different estimators for dispersion under non-

normal assumptions. 

In this paper we have compared different SD-estimators for 

n finite as well as infinite, when the distributions of the 

observations are in the "neighbourhood" of the normal distribution. 

2. CHOICE OF DENSITIES 

Our choices of the common distribution function and density 

function, F and f respectively, are motivated by our wish 

to study the following two situations: 

A The shape of the density f differs slightly from the normal 

density (~,a). However, the expectation and SD in f is 

still ~ and a , respectively. 

B The density of the underlying distribution of the sample lS 

normal (~,a), but the set of observations may contain a 
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small proportion of wild observations with SD larger than a. 

In situation A we want to estimate the common SD of all the 

observations in the sample, while we ln situation B want to 

estimate the SD of the non-wild observations. 

To examplify situation A we have chosen to study the 

following cases: 

(i) f is the density of aV+b where V is t-distributed 

with v degrees of freedom~ v=5~6, ... ,10. 

(ii) f lS the density of aW+b where W lS x2 -distributed 

with v degrees of freedomj v~3,4>···~10. 

The constants a and b are for each density chosen such 

that expectation and SD are E, and o ~ respectively,, 

The densities in case (i) are for large v very similar to 

the normal density (E,,a), but their tails are heavier. In 

case (ii) the densities also are similar to the normal density 

(E,,a) for large v, but they are skewed to the right. We have 

also considered densities with tails lighter than the normal 

density. Some of the densities in case (i) and (ii) compared 

to the normal density (E,,a) are shown in Figure 1 (a)-(c). 

To examplify situation B we have chosen to study the case: 

(iii) f is given by 

f(x) = (1-s)~~(x~s) + s ~a~(~~s) 

where ~ is the normal density (0,1). We have considered 

s in the interval [0,0.10]. 

In Figure 1(d) the density f with E: = 0.05 lS compared with 

the normal density (E,,a). 
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3. EsTIMATORS 

We have compared SlX SD-estimators. They are based on the 

following estimators being asymptotic unbiased under normal 

assumptions: 

n 
= filZ· E IX--XI/n 

i=1 l 

T 3 = "1 0% upper trimmed n1eaD of 

co -j} )/2~iJ 
0,8 4 1 0,1 5 :; 0 .0 L; l 

= co -j} )/2• u 
0.7 5 0.2 5 0.7 s 

=median {!X--0 
l 0.50 

1}/u 
0.7 5 

1x.~n l"/c 
l 05 G 0,1 0 

where u lS the p-fractile in the standard normal distribution, 
p 

j}p lS the empirical p-fractile in the sample (linear interpo-

lation when necessary) and c = 2[~(0)-~(u 1 )]/(1-a) 
a 1 -a 2 

(c = 0.6573). 
0.1 0 

The estimators T., i=1 , ... ,6 are biased for finite n. Therefore 
l 

we introduce a correction factor k.(n), such that S. = k.(n)T., 
l l l l 

i=1 , ... ,6 are unbiased or approximately unbiased under normal 

assumptions, k.(n)-+1 
l 

as n -+ oo • 

For i=1 and 2 there are explicit expressions for k.(n). 
l 

For i=4 and 5 we have fitted an exponential curve to ETi • 

n=15, ..• ,50 (computed by using tables of expected values of 
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order statistics from the normal distribution) by least squares. 

For i=3 and 6 we have fitted exponential curves to simulated 

estimates of E T. , n=5, ... ,50. Thus k. (n), i=3,4,5,6 are 
l l 

the inverse of the fitted curves: 

k (n) = / n 
2 n-1 

k_..,(n) 
.:) 

0 'I 7 ...... ,... T'r· l = ( 1 o 0 ~ 0 , I 6 0 5 " e ~ "~ " , b "·- ) ~ 

= {See Table 1 foP n < i 5 

( 1 • 0- 0 • 0 2 4 6 u • e "~· a,o 3 " 7 5" n ) - 1 for n > 1 5 

for n > 1 5 

-1 
k 6 ( n) = ( 1 . 0-0 . 58 6 8 •e- 0•3 3 11 s n - 0 . 0 81 31 • e .. 0•0 3 4 0 0 • n) 

We found it necessary to tabulate k.(n), i=4,5 
l 

for 

because of the pronounced periodicity of ET., i=4,5 
l 

n < 1 5 

due to 

the interpolation. For n > 15 the difference between the 

estimator using the exponential fitting and the estimator 

using the table values is small compared to the SD. We have 

used the curves in the simulations. 

In Figure 2 

estimate of 

-1 
[ki(n)] 

ET., i=1,3,5. 
l 

is compared with 

In Figure 2(b) 

to the expected values and in Figure 2(c) 

ET. or a simulated 
l 

-1 [k 5 (n)] is fitted 

-1 [k 3 (n)] is fitted 

to the simulated estimates. To 

fitting we also show the exact 

judge the accuracy of the 

-1 [k1 Cn)] in Figure 2(a). 
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and s 2 are probably the most used SD-estimators. 

and s 5 are based onfractile-differences, while s 6 has been 

suggested by Hampel (see Andrews (1972)) as a robust SD-

estimator. 

s 3 1s our suggestion of a trimmed SD-estimator. The 10% 

largest of I X -0 I , i=1; ..• ,n are trimmed away before taking 
l 0 50 

the mean of the left observations. We feel that this way of 

trimming take better care of the sker,J distributions than for 

example trimming av.Jay the 5% sma~lest and 5% largest observa-

tions in the sample. 

For a given density the estimators can be compared analytically 

in the asymptotic case. If r is the normal density for instance, 

the estimators are all asymptoTically unbiased 2nd their asymp-

totic relative efficiencies are given in Table 2" In situation 

is asymptotically unbiased. In situation B, the asympto-
1 

tic expectation of s1 equals cr(I+8E) 2 and that of s 2 

equals cr(1+2E). The asymptotic relative efficiency of s 2 to 

is 1.494 for E = 0.01 and 2,354 for E = 0.05 (compared 

with 0.876 for s = 0.0). 

It is interesting to find out if these - and other - asympto-

tic results can be transferred to small sample sizes - and if 

not how the expectations and standard deviations are approaching 

their asymptotic value. 
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lf, f'IETHOD 

We have been using the technique of stochastic simulation 

(Monte-Carlo Method). The simulation program was wri t-,:en in 

Simula 67 (Birtwistle (1973)). The stochastic drawings were 

realized by a pseudo-random generator (Knuth (1969)). The 

simulations were performed on CD 3 3 0 0 and CDC-CYBEP. 7 4 of the 

University of Oslo. Simulation results are usually based on 

1000 samples for each point ln the figures and on 10000 s~mples 

for each number in the tables. 

During the simulations 'che parameters \vere ~ = 0, a = 1 . 

We have worked with n from 5 to 50. 

To compare the six SD-estimators we have estimated 

the mean,§., and the SD of 
l" 

s. 
l 

by SD(S.;)" 
..1. 

ES. 
l 

by 

The reason for using and SD(S.) 
1. 

as estimators is that 

they are traditional, well-known measures. Preliminary simula-

tions with the median of the samples as estimator of ES. 
l 

and 

as estimator of SD of S. 
l 

showed the same tendencies. 

As the estimators ln many cases are biased we found it some-

2 
times necessary to calculate the mean square error, E(S.-a) . 

l 

For small n this lS in most cases dominated by var S .. 
l 

'i.Je 

have also studied the empirical distributions of the estimators 

by histograms. 

The estimators S. and SD(S.), i=1 ,2, ... 6 will also be 
l l 

compared with their corresponding asymptotic properties. 

For i=1,4 and 5 it is known from statistical textbooks, for 

example Wilks (1962), that /n(S.-s.)/T. 
l l l 

is asymptotic nor-

mally distributed, s. and T. are given below. For i=2,3 
l l 

and 6 /n(S.-s.)/T. is more difficult to handle. 
l l l 
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Lehmann (1976) prove, however, that if f lS symmetric, the 

estimator of the location parameter may be replaced by the 

paran1eter itself in the derivation of the asymptotic proper-

ties. Thus it easily follows that m(S.-s.)/T. is asymptotic 
l l l 

normally distributed for i=2 and 6. To prove that this is the 

case also for i=3 we followed Bickel (1965). If f is not 

symmetric we have deleted s. and T. for i= 2, 3 and 6. We shall 
l l 

refer to s. as the asymptotic expectation and T~ as the 
l l 

asymptotic variance of 

The asymptotic expectations are: 

s1 = lvar X 

s2 = hf/2 EIXI (if f is symmetric) 

s3 = s /c (if f lS symmetric) 
0.1 0 0.1 0 

s4 = [F-1 (0.841) - F- 1 (0.159)]/2 

s5 = [F-1 (0. 75) F- 1 (0.25)]/2u 
0.7 5 

. -1 
s 6 = H (0.5)/u 

0.7 5 
(if f is symmetric) 

where X is a random variable with density f and distribution 

function F. 

by F- 1 Cp). 

The p-fractile of a distribution, F, is denoted 

H- 1 (1-a) H 
Further sa = J xdH(x)/(1-a) where 

0 

lS 

the distr{bution function of jX-~1 and ~ is the median of F. 

The asymptotic variances are: 

T2 = (T 2 /4)•(A /T 4 -1) 
l 4 

T2 = (n/2) var IX/ 
2 

(if f lS symmetric) 

T2 = v /4 
4 0.8 111 

7 if /4•u 2 T~ = 
5 0.7 5 0.,75 

2 = [ -, h(H- 1 (0.5))]- 2 T [ ·u (if f lS symmetric), 
6 0.75 
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where T 2 = var X, A. 
4 

and finally 

V = p C 1 -p) If 2 
p p 

where f = f(F- 1 (p)). 
p 

H- 1 (1-a) 
J x 2 dH(x)/(1-a) 
0 

2(1-p) 2 /f f1 + p(1-p)/f12 
p -p -p 

If F is symmetric, S 5 and S 6 1vill have the same asymp

totic properties. In this case the expressions for the asymp-

totic expectations and variances of Su and s 5 can be reduced. 

We have also calculated some rough estimates of the variance 

of SD(S.). If m is the ::-ll1JIJber of sin<ulated samples, the 
l 

approximate variance lS where T 2 and 1.. 4 

are the variance and fourth central moment of S .. If the 
l 

distribution of Si is normal, A4 = 3T 4 , and the approximate 

variance is T 2 /2m. Now, replacing T 2 by an estimate and m 

by 10000, we obtain an estimate for the variance of SD ( S . ) . 
l 

These estimates vary with s~' i=1 , ... ,6, with the density 
J.. 

and with n. After some calculations we found it reasonable 

to give the estimate SD(S .. ) 
l 

with three decimals, the third 

decimal being more uncertain the smaller n is. 

f 

The variance of S. being T 2 /m, we also give S. with three 
l l 

decimals. 
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5, RESULTS 

In the normal case we show in Figure 3 the empirical distri-

butions of s., i=1 , ... ,6 for n=20. The estimators are con
l 

structed to be unbiased in this case. The estimated SD's, 

SD(S.), are given in Table 3 for n=5,10,20 and 50, they may be 
l 

compared with 

approximate 

T.//n also given in Table 3 which is the 
l 

SD of s. for large n. To get another idea of 
l 

the accuracy of the simulations~ the exact SD of s1 for n=10 

is 0.239 and that of s 2 is 0,250 and the exact SD of s1 

for n=20 is 0.163 and that of s 2 1s 0,173. 

We now turn to situation A and choose f as the density of 

aW + b where W is x2 -distributed with 6 degrees of freedom 

(see Section 2 case (ii)). In Table 4 the estimated expectations 

of S. for n=5,10,20 and 50 are given. They may be compared 
l 

to the asymptotic expectation s. given in the last line. 
l 

The 

observed biasedness is small compared to SD(S.) for n=5,10,20 
l 

and 50 given in Table 5, except for and perhaps 

s3 are the estimators with smallest SD. Including the biased

ness, however, s2 comes out most favourable in this range of n. 

As the number of degrees of freedom is increasing we are 

approaching the normal situation and the expectations will tend 

to 1. The relationship between the SD's will change and s1 

will become the better one, see Figure 4(a) and (b) for n=20. 

In situation A we have also studied expectation and SD of 

s. when f is the density of aV+b where V is t-distributed 
l 

(see Section 2 case (i)). The simulated results are given 1n. 

Figure S(a) and (b) for n=20. We also here obtain that the 

estimators are biased, but that s1 behaves better than the 

other in this respect. SDCS 1 ) is, however, larger than 
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and SD(S 3 ) and the mean square error of s 2 lS smaller than 

the mean square error of s1 

of freedom 10 or less. 

for n=20 and number of degrees 

In situation A we have also considered the case with tails 

slightly lighter than the normal distribution (f(x) = 

(1-E)lP(x)+E:u(x),£ E <0,0.10], where u(x) is the density of a 

uniform distribution (-/3~+/3)). The estimators behaved very 

similar to the pure normal situation. 

In situation B we consider the densi f(x) = 0.95~(x/cr) 

+ 0.05lP(x/3cr)/3cr (see Section 2 case (iii)), and we are going 

to estimate cr. Figure 6 shows the empirical distribution of 

s., i=1, ... ,6 for n=20. 
l 

It is seen that s1 is both rnore 

biased and more dispersed than the others. 

The estimated expectations of s . 
l 

n=5,10,20 and 50 are 

glven in Table 6. They may be compared to the asymptotic 

expectation given ln the last line of the table. Note that 

ES., i=2, ... ,6 
l 

seem to approach s. rather quickly. 
l 

For 

n > 20 the differences are all less than 0.01. The table shows 

that the "trimmed" estimators, Si' i=3, ... ,6, behave well 

with respect to expectation. In Table 7 we give SD(S.), 
l 

i=1, ... ,6 compared to T.//TI for 
l 

n=5,10,20 and 50. 

with respect to SD, s1 behaves worse than the other 

estimators. 

Also 

The biasedness and the SD of the estimators are increasing 

with increasing £, as might be expected. This is most pro-

nounced for s1 , as is seen in Figure 7(a). In Figure 7(b) 

it is shown how SDCS 1 ) lS increasing with E, while SD(S.), 
l 

i=2,3 and 5 of the more robust estimators is not very much 

influenced of E. 
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In situation B we have also considered the case when the wild 

observations are uniformly distributed with expectation ~ and 

SD 3a. We obtained similar results. 

Having carried out the simulations we found that the perio-

dicity of ET., i=4, 5 
l 

which were removed by using the tabulated 

values of k. (n) 
l 

for n < 15, turned up again in SDCS.). 
l 

Finally, we shall point out by a couple of examples the 

importance of knowing whether ES. 
1 

and SD of s. 
l 

are 

approaching their asymptotic values s. and T· from above 
l l 

or below. 

For instance, if the density f is s:ynunetric s 5 and s6 

are asymptotically equivale~:,t ~ specially T 5 = T 6 • For 

f (X) = q> (X) or f (X ) :: 0 • 9 5 (.j) (X ) + 0 " 0 5 (j) (X/ 3 ) / 3 , 

however, In SDCS 5 ) and In SDCS 6 ) approach their common 

asymptotic value from opposite sides as can be deduced from 

Table 3 and Table 7. In both cases s 5 is to be preferred. 

From Table 6 it 1s seen that for f(x) = 0.95~(x)+0.05q>(x/3)/3 

1s larger than the other s., i=2, •.. ,6. 
l 

For n=5 the 

difference between 81 and any s. ) 
l 

i=2, ... ,6 is much 

smaller. This is because ES 1 is approaching s 1 from below 

and for i=2, ... ,6 ES. 
l 

is approaching s. from above. 
l 

is also shown in Figure B(a) for i=1 ,2,3. 

This 

At the end of Section 3 we pointed out the large asymptotic 

relative efficiency 2.354 of s2 to s1 for f(x) = 0.95q>(x) 

+ O.OSq>(x/3)/3. For small n, say n ~ 20, the relative 

efficiency of s2 to s1 lS much less. This is because 

In SDCS 1 ) 1s approaching T 1 from below while In SD(S 0 ) 
L 

is 

approaching T 
2 

from above, se Figure B(b). 

Thus the situation for is not as bad for finite samples 

as might be thought from only asymptotic considerations. 
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6. DISCUSSION 

The problem of robust SD-estimation is quite difficult compared 

to estimation of location. We are always running the risk of 

eliminating important information about the real dispersion in 

the distribution. For instance, in the case of t-distribution, 

we found that s 3 , which trims away outlayers, caused under

estimation of cr (Figure 5(a)). To put it another way, we do 

not know whether possible heavy tails are due to impurities or 

characterize the underlying distributio~. However, we know 

now that s1 is extremely sensitive against outlayers, and that 

for reasonable deviations from normality assumptions, more 

robust estimators should substitute s1 . in this manner we 

avoid totally wrong estimates when outlayers are present. 

We have also seen that there are great differences between 

the two fractile-difference estimators considered. Karl 

Pearson (1920) found that the asymptotic optimal choice of 

fractile-difference estimator under normality assumptions lS 

obtained by S = ( j} o.93- j} o.o7 ) I 2 uo.93 ) . However, robustness of 

fractile-difference estimators increases with decreasing diffe

rence. Earlier simulations with S caused an extremely unro

bust estimator (in some situations even worse than s1 ). The 

chosen estimator s4 seems to be a rather reasonable choice. 

It is quite robust, and has satisfying properties in the normal 

case. s5 is very robust, but perhaps too bad in the normal 

case. 

Even if s5 and s6 are asymptotically equivalent when f 

is symmetric, their finite properties are quite different, as 

they in many situations approach their common asymptotic 
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properties from opposite sides. In fact, s 5 turns out to be 

better than the asymptotic properties and should therefore be 

preferred to s6. 

The main conclusion of this work is that slightly robust 

estimators such as s2 , s 3 and s4 should substitute the tra

ditional s1 . The actual choice of estimator among these 

three depends on what we can say about possible deviations from 

the normality assumption. 

A very interesting question concerning SD-estimators is 

whether a robust estimator can substitute the usual s1 in 

other computations (for instance in students T =Cx-t;)/D/S 1 ). 

This may be an important method of robus-tifying statistics 

and tests. We have performed a few simulations along this 

line, and it seems to work out very well. Further simulations 

are necessary and we hope to give these results in a future 

paper. 
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' 
n 5 

k 4 (n) l. 0340 

k 5 (n) 1. 0188 
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l ' l 6 7 8 9 10 11 12 l3 
f 

14 

1.0156 1.0111 l. 0162 1.0286 1.0293 1. 0202 1. 0149 1 o- 2G I , r, ?6 • .L ~ I _j_. J..L..) . 

1.0510 1.0279 1.0181 1. 0187 1.0281 1. 0187 1.0146 1. 014911. 0192 

TABLE 1" 

The correction factors 
-1 

k o ( n) = ( ET . ) , i = 4 , 5 
l l 

for n < 15, computed by using tables of expected 

values of order statistics from the normal distribution. 

1 2 3 4 5 6 
! 

l I 
j 

TifT. 1 j 0.876 
l 

o. 674 I 0.541 0. 368 i 0.368 j 

TABLE 2. 

The asymptotic relative efficiencies of Si to S1 

when the observations are normally distributed. 

! 
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: 8D( 81 ) r dv'n [ 8D(s2 ) Tz//ll 8D( 83 ) / T3 //il 1/ 8D(84 ) 1 T4//ll 8D( 85) I Ts/v'n ;I 8D( 86 ) TG/Iil 
'-----~----+-----~----r-----H-----+-----H-----~----#-----+-----*-----4-----~ 

I 
In= 5 
I 
in=10 

ln=20 
ID=50 
i 

I I l I I il 
o.361 0.316 1 o.31o o.338 o.394 o.385 

1
,o.363 i o.43o I o.42o o.522j.!o.586 

0.237 o.224! o.25o o.239 0.287 0.272 10.292 I o.3o4 I 0.362 0.369 • 0.368 

0.162 0.158 1 0.172 0.169 0.195 0.193 lo.2o2 10.215 lo.246 0.261 :o.262 

0.109 0.107 lo.122 0.122 lo.134 I 0.136 I 0.165 ,0.165 :o.166 0.102 0.100 

The estimated 

I ~ l I 

SD of 

TABLE 3. 

s., i=1,2, ..• ,6 
l 

for different n, 

10.522 
I 

10.369 
,0.261 
!0.165 
I 

compared with the SD obtained from the asymptotic value. 

The observations are normally distributed (0,1). 

IX 1 
f 

5 0.972 
10 0.983 

i 20 0.988 

50 0.996 

s. 1.000 
J_ 

The table gives 

I I l 
2 3 4 5 6 f 

I ! I I 

0.972 0.946 0.960 0.95610.9091 
0.974 0.922 0.956 0.945 I 0.900 

0.972 0.906 0.950 0.944 0.909 I 

0.974 0.894 0.943 
I 

0.951 0.913 

- - 0.944 0.939 -

TABLE 4. 

§. for n=5,10,20 and 50. They may be 
l 

compared with the asymptotic expectation s . ·. 
l 

The observations 

are distributed as (W-6)//12 where W is x2 -distributed with 

6 degrees of freedom. 



; n= 5 

. n=lO 

' n=20 

n=50 
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I l 
T 5 I In I SD ( s 6 ) I 

I I .,. 11 
1 n= 5 1 0.433 0.447 0.434 ,0.416 110.414 

! n=lO i 0.304 0.316 , 0.295 j0.2891l 0.318 

! n=20 t 0.217 0.224 , 0.204 1;0.196 ,: 0.218 

,, 
o . 4 s 9 11 o . 4 s 3 

,0.325/i 0.372 

~ 0.230 F 0.253 

!o.l45 !"o.170 

0.529 0.558 I 
0.374 0.353 ! 

; I I' l 
i n=50 i 0.142 0.141 : 0.129 lo.121 1; 0.143 

I J 

0.2651'!0.252: 

0.167 .: 0.162 I 

l : ~ j 

TABLE 5. 

The estimated SD of S., i=l~2., •.. ,6 for different n, compared with 
l 

the SD obtained from the asympto-r,ic value. The observations are dis-

tributed as (W-6)//12 where !:J is x2 -distrihuted vTith 6 degrees of 

freedom. 

~1---:----:--r~-~~ ~-~-~~-:.. 6 1 

r-:-~-~--~~L--- I 1 .. J j 
' 5 11.137 ! 1.1251 LlOl i 1.127 i 1.092 ! 1.065 I 
! 10 I Ll47 i 1.1121 L0661l.063 i l.047 i 1.042 I 
~ 20 i 1.153 ~ l. 098 : 1. 040 ! 1. 043 ; L 038 11.032 1 

50 : 1.176 j 1.104 i L038! 1.048 i 1.037! L036! 

s. 
l 

-

=*-= 
i 8 i ; l 8 ' ' \ 
! 1.1 3 I 1.100 i L04 : 1.046! 1.039 1.039! 

TABLE 6. 

The table g1ves S. for n=5,10,20 2-nd 50. They may be compared with 
l 

the asymptotic expectation s .• The observations have density 
l 

f(x) = 0.95~(x) + 0.05~(x/3)/3. 

0.548·o.682 il' 0.526
1 

0.445! 0.489 r 0.414 ,,, 0.5231 0.461 0.506 ,0.547 i 0.643 [o.547: 
I I l I I J ' 
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TABLE 7. 

The estimated SD for different n, compared with 

the SD obtained from the asJlnptotic value. The observations have density 

:f(~~) = 0.95~(x) + 0.05tO(xn)/~. 
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FIGURE 1 . 

The normal (0,1) density compared ~ith some of the densities 
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considered in Situations A and B: (~) and (b) the densities of 
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the transformed t-distribution with 5 and 10 degrees of 

freedom, (c) the density of the transformed 

and (d) f ( x) = 0 . 9 5 lP ( x) + 0 • 0 5 lP C1x I 3 ) I 3 • 

x2 -distribution, 
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Simulated estimates of ET1 

ET 5 is shown for 5 < n < 50 

-1 
[ k 5 ( n)] • for n > 1 5. 

Simulated estimates of ET 3 
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are comp~red with [k1 (n)] =ET1 

and compared with 

-1 
are compared with [k 3 (n)] • 
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(a) S. and (b) 
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are shown for increasing values of v 

when the observations are x~-distributed, 
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SD(S.) are shown for 1increasing values 
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of v when the obs~rvations are t-distributed with v 

degrees of freedom, n=20 and, i=1 ,2,3 and 5. 
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0.05 ~(x/3)/3 based on 10000 samples. 
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are shown for increasing values 

of £ when the observations have density f(x) ; (1-£)lP{x) 

+ £ lP(x/3)/3, n;2Q and i = 1 , 2 , 3 and 5 . 
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FIGURE 8. 

In SD(S.) are shown for increasing values 
l 

of n, the observations have density! f(x) = 0.95 l.j)(x) 

+' 0.05 (l)(x/3)/3, 

values. 

i=1,2,3. T. are the asymptotic 
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