
THE SIGN OF A PERMUTATION
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1. Introduction

Throughout this discussion, n ≥ 2. Each cycle in Sn is a product of transpositions: the
identity (1) is (12)(12), and a k-cycle with k ≥ 2 can be written as

(i1i2 · · · ik) = (i1i2)(i2i3) · · · (ik−1ik).
For example, a 3-cycle (abc) – which implicitly means a, b, and c are distinct – is a product
of two transpositions:

(abc) = (ab)(bc).

This is not the only way to write (abc) using transpositions, e.g., (abc) = (bc)(ac) = (ac)(ab).
Since each permutation in Sn is a product of cycles and each cycle is a product of

transpositions, each permutation in Sn is a product of transpositions.1 Although every
permutation is a product of disjoint cycles and those cycles are unique up to order (they
commute), a permutation is almost never a product of disjoint transpositions since a product
of disjoint transpositions has order at most 2.

Example 1.1. Let σ = (15243). Then two expressions for σ as a product of transpositions
are

σ = (15)(52)(24)(43)

and
σ = (12)(34)(23)(12)(23)(34)(45)(34)(23)(12).

Example 1.2. Let σ = (13)(132)(243). Note the cycles here are not disjoint. Expressions
of σ as a product of transpositions include

σ = (24)

and
σ = (13)(13)(32)(24)(43).

Write a general permutation σ ∈ Sn as

σ = τ1τ2 · · · τr,
where the τi’s are transpositions and r is the number of transpositions. Although the τi’s
are not determined uniquely, there is a fundamental parity constraint: r mod 2 is deter-
mined uniquely. For instance, the two expressions for (15243) in Example 1.1 involve 4 and
10 transpositions, which are both even. It is impossible to write (15243) as the product
of an odd number of transpositions. In Example 1.2, the permutation (13)(132)(243) is

1We can prove that every permutation in Sn is a product of transpositions without mentioning cycles,
by using biology. If n objects are placed in front of you and you are asked to rearrange them in a particular
way, you could do it by swapping objects two at a time with your two hands. I heard this argument from
Ryan Kinser.
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written as a product of 1 and 5 transpositions, which are both odd. It impossible to write
(13)(132)(243) as a product of an even number of transpositions.

Once we see that r mod 2 is uniquely determined for σ, it will make sense to refer to σ
as an even permutation if r is even and an odd permutation if r is odd. This will lead to
an important subgroup of Sn, the alternating group An, whose size is n!/2.

2. Definition of the sign

Theorem 2.1. Write σ ∈ Sn as a product of transpositions in two ways:

(2.1) σ = τ1τ2 · · · τr = τ ′1τ
′
2 · · · τ ′r′ .

Then r ≡ r′ mod 2.

Proof. The two products of transpositions that equal σ in (2.1) lead to an expression of the
identity permutation as a product of r + r′ transpositions:

(1) = σσ−1 = τ1τ2 · · · τrτ ′r′τ ′r′−1 · · · τ ′1.

(Note τ−1 = τ for transpositions τ and inverting a product reverses the order of multipli-
cation.)

Claim: A product of transpositions equal to (1) must have an even number of transpo-
sitions.

This claim forces r + r′ above to be even, so r ≡ r′ mod 2.
To prove the claim, write the identity in Sn as a product of k transpositions:

(2.2) (1) = (a1b1)(a2b2) · · · (akbk),

where k ≥ 1 and ai 6= bi for all i. We want to show k is even and will induct on k.
The product on the right side of (2.2) can’t have k = 1 since a transposition is not (1).

We could have k = 2, which is even. Suppose, by induction, that k ≥ 3 and every product
of fewer than k transpositions that equals (1) has an even number of transpositions.

Some transposition (aibi) for i 6= 1 has to move a1 (otherwise the overall product on the
right side of (2.2) sends a1 to b1, which is not the identity permutation). So a1 must be an
ai or bi for i > 1. We can suppose a1 is ai since (aibi) = (biai). The two equations

(cd)(ab) = (ab)(cd), (bc)(ab) = (ac)(bc),

where different letters are different numbers, show a product of two transpositions where
the second one moves a and the first one does not can be rewritten as a product of two
transpositions in which the first one moves a and the second one does not. So in (2.2),
without changing the number of transpositions we can arrange for a transposition moving
a1 other than (a1b1) to appear directly after (a1b1): we can assume a2 = a1. Now consider
the cases b2 = b1 and b2 6= b1.

Case 1: b2 = b1. The product (a1b1)(a2b2) in (2.2) is (a1b1)(a1b1), which is the identity
and can be removed. This turns the right side of (2.2) into a product of k−2 transpositions.
By induction, k − 2 is even so k is even.

Case 2: b2 6= b1. Check (a1b1)(a2b2) in (2.2), which is (a1b1)(a1b2), can be written as
(a1b2)(b1b2) since a1, b1, and b2 are all different. Then (2.2) can be rewritten as

(2.3) (1) = (a1b2)(b1b2)(a3b3) · · · (akbk),

where only the first two transpositions have been changed. Now run through the above
argument with (2.3) in place of (2.2). It involves the same number k of transpositions, but
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there are fewer transpositions in (2.3) that move a1 since we used to have (a1b1) and (a1b2)
in the product and now we have (a1b2) and (b1b2).

2

Some transposition in (2.3) other than the first term (a1b2) moves a1, so by running
through the above argument with (2.3) in place of (2.2) we land in either Case 1, which
lets us drop the number of transpositions by 2 and we’re done by induction, or Case 2,
which lets us drop the number of transpositions moving a1 by 1 without changing the total
number of transpositions.

When (1) is a product of transpositions with the leftmost one moving a1, there is always
at least one more transposition in the product moving a1 and Case 2 reduces that number
by 1. So in finitely many steps we have to land in Case 1 and then we are done. �

Remark 2.2. The bibliography at the end contains references to many different proofs of
Theorem 2.1. The proof given above is adapted from [13].

Definition 2.3. When a permutation σ in Sn can be written as a product of r transposi-
tions, we call (−1)r the sign of σ:

sgn(σ) = (−1)r if σ = τ1τ2 · · · τr.
Permutations with sign 1 are called even and those with sign −1 are called odd. This label
is also called the parity of the permutation.

Theorem 2.1 tells us that the r in Definition 2.3 has a well-defined value modulo 2, so
the sign of a permutation makes sense.

Example 2.4. The permutation in Example 1.1 has sign 1 (it is even) and the permutation
in Example 1.2 has sign −1 (it is odd).

Example 2.5. Each transposition in Sn has sign −1 and is odd.

Example 2.6. The identity is (12)(12), so it has sign 1 and is even.

Example 2.7. The permutation (143)(26) is (14)(43)(26), a product of three transpositions,
so it has sign −1.

Example 2.8. The 3-cycle (123) is (12)(23), a product of 2 transpositions, so sgn(123) = 1.

Example 2.9. What is the sign of a k-cycle? Since

(i1i2 · · · ik) = (i1i2)(i2i3) · · · (ik−1ik),
which involves k − 1 transpositions,

sgn(i1i2 · · · ik) = (−1)k−1.

In words, if a cycle has even length then its sign is −1, and if a cycle has odd length
its sign is 1. This is because the exponent in the sign formula above is k − 1, not k. To
remember that the parity of a cycle is ‘opposite’ to the parity of its length (a cycle of
odd length is even and a cycle of even length is odd), just remember that 2-cycles (the
transpositions) are odd.

The sign is a function Sn → {±1}. It takes on both values (when n ≥ 2): the identity has
sign 1 and each transposition has sign −1. Also, the sign is multiplicative in the following
sense.

2Since (a1b1) and (a1b2) were assumed all along to be honest transpositions, b1 and b2 do not equal a1,
so (b1b2) doesn’t move a1.
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Theorem 2.10. For σ, σ′ ∈ Sn, sgn(σσ′) = sgn(σ)sgn(σ′).

Proof. If σ is a product of k transpositions and σ′ is a product of k′ transpositions, then
σσ′ can be written as a product of k + k′ transpositions. Therefore

sgn(σσ′) = (−1)k+k
′

= (−1)k(−1)k
′

= sgn(σ)sgn(σ′). �

Corollary 2.11. Inverting and conjugating a permutation do not change its sign.

Proof. Since sgn(σσ−1) = sgn(1) = 1,

sgn(σ)sgn(σ−1) = 1.

Therefore sgn(σ−1) = sgn(σ)−1 = sgn(σ). Similarly, if σ′ = πσπ−1, then

sgn(σ′) = sgn(π)sgn(σ)sgn(π−1) = sgn(σ). �

Theorem 2.10 lets us compute signs of permutations using any decomposition into a
product of cycles: disjointness of the cycles is not necessary. Just remember that the
parity of a cycle is determined by its length and has opposite parity to the length (e.g.,
transpositions have sign −1). For instance, in Example 1.1, σ is a 5-cycle, so sgn(σ) = 1.
In Example 1.2,

sgn((13)(132)(243)) = sgn(13)sgn(132)sgn(243) = (−1)(1)(1) = −1.

3. A second description of the sign

One place signs of permutations show up elsewhere in mathematics is in a formula for
the determinant. Given an n × n matrix (aij), its determinant is a long sum of products
taken n terms at a time, and assorted plus and minus sign coefficients. These plus and
minus signs are signs of permutations:

det(aij) =
∑
σ∈Sn

sgn(σ)a1,σ(1)a2,σ(2) · · · an,σ(n).

For example, taking n = 2,

det

(
a11 a12
a21 a22

)
= sgn(1)a11a22 + sgn(12)a12a21 = a11a22 − a12a21.

In fact, determinants provide an alternate way of thinking about the sign of a permuta-
tion. For σ ∈ Sn, let Tσ : Rn → Rn by the rule

Tσ(c1e1 + · · ·+ cnen) = c1eσ(1) + · · ·+ cneσ(n).

In other words, send ei to eσ(i) and extend by linearity to all of Rn. This transformation
permutes the standard basis of Rn according to the way σ permutes {1, 2, . . . , n}. Writing
Tσ as a matrix provides a realization of σ as a matrix where each row and each column has
a single 1. These are called permutation matrices.

Example 3.1. Let σ = (123) in S3. Then Tσ(e1) = e2, Tσ(e2) = e3, and Tσ(e3) = e1. As
a matrix,

[Tσ] =

 0 0 1
1 0 0
0 1 0

 .
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Example 3.2. Let σ = (13)(24) in S4. Then

[Tσ] =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

The correspondence σ 7→ Tσ is multiplicative: Tσ1(Tσ2ei) = Tσ1(eσ2(i)) = eσ1(σ2(i)), which
is Tσ1σ2(ei), so by linearity Tσ1Tσ2 = Tσ1σ2 . Taking determinants, det(Tσ1) det(Tσ2) =
det(Tσ1σ2). What is det(Tσ)? Since Tσ has a single 1 in each row and column, the sum for
det(Tσ) contains a single nonzero term corresponding to the permutation of {1, 2, . . . , n}
associated to σ. This term is sgn(σ), so det(Tσ) = sgn(σ). In words, the sign of a permuta-
tion is the determinant of the associated permutation matrix. Since permutation matrices
are multiplicative, as is the determinant, this gives us a new way of understanding why the
sign of permutations is multiplicative.

4. A third description of the sign

While the sign on Sn was defined in terms of concrete computations, its algebraic property
in Theorem 2.10 turns out to characterize it.

Theorem 4.1. For n ≥ 2, let h : Sn → {±1} satisfy h(σσ′) = h(σ)h(σ′) for all σ, σ′ ∈ Sn.
Then h(σ) = 1 for all σ or h(σ) = sgn(σ) for all σ. Thus, if h is multiplicative and not
identically 1, then h = sgn.

Proof. The main idea is to show h is determined by its value at a single transposition, say
h(12). We may suppose n > 2, as the result is trivial if n = 2.

Step 1: For every transposition τ , h(τ) = h(12).
A transposition other than (12) moves at most one of 1 and 2. First we treat transposi-

tions moving either 1 or 2 (but not both). Then we treat transpositions moving neither 1
nor 2.

A transposition that moves 1 but not 2 has the form (1b), where b > 2. Check that

(1b) = (2b)(12)(2b),

so applying h to both sides of this equation gives us

h(1b) = h(2b)h(12)h(2b) = (h(2b))2h(12) = h(12).

Notice that, although (12) and (2b) do not commute in Sn, their h-values do commute since
h takes values in {±1}, which is commutative. The case of a transposition moving 2 but
not 1 is analogous.

Now suppose our transposition moves neither 1 nor 2, so it is (ab), where a and b both
exceed 2. Check that

(ab) = (1a)(2b)(12)(2b)(1a).

Applying h to both sides,

h(ab) = h(1a)h(2b)h(12)h(2b)h(1a) = h(1a)2h(2b)2h(12) = h(12).

Step 2: Computation of h(σ) for each σ.
Suppose σ is a product of k transpositions. By Step 1, all transpositions have the same

h-value, say u ∈ {±1}, so h(σ) = uk If u = 1, then h(σ) = 1 for all σ. If u = −1, then
h(σ) = (−1)k = sgn(σ) for all σ. �
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Theorem 4.1 has an application to physics. In quantum mechanics, each state of a
system is modeled by a one-dimensional subspace of a certain vector space. In a quantum
system of n identical particles (such as n electrons) rearrangements of the particles are
indistinguishable, so the one-dimensional subspace representing the system leads by the
axioms of quantum mechanics to a multiplicative function Sn → {±1}. By Theorem 4.1
this function is either identically 1 or the sign, which is related to the classification of
particles into two symmetry types: bosons and fermions.

5. The Alternating Group

The n-th alternating group An is the group of even permutations in Sn. That is, a
permutation is in An when it is a product of an even number of transpositions. Such
products are clearly closed under multiplication and inversion, so An is a subgroup of Sn.
Alternatively,

An = {σ ∈ Sn : sgn(σ) = 1}.
Therefore by Theorem 2.10 it is easy to see that An is a group.

Example 5.1. Take n = 2. Then S2 = {(1), (12)} and A2 = {(1)}.

Example 5.2. Take n = 3. Then A3 = {(1), (123), (132)}, which is cyclic (either non-
identity element is a generator).

Example 5.3. The group A4 consists of 12 permutations of 1, 2, 3, 4:

(1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Example 5.4. Every 3-cycle is even, so An contains all 3-cycles when n ≥ 3. In particular,
An is nonabelian for n ≥ 4 since (123) and (124) do not commute.

Although we have not defined the sign on S1, the group S1 is trivial so let’s just declare
the sign to be 1 on S1. Then A1 = S1.

Remark 5.5. The reason for the label ‘alternating’ in the name of An is connected with
the behavior of the multi-variable polynomial

(5.1)
∏

1≤i<j≤n
(Xj −Xi)

under a permutation of its variables. Here is what it looks like when n = 2, 3, 4:

X2 −X1, (X3 −X2)(X3 −X1)(X2 −X1),

(X4 −X3)(X4 −X2)(X4 −X1)(X3 −X2)(X3 −X1)(X2 −X1).

The polynomial (5.1) is a product of
(
n
2

)
terms.

When the variables are permuted, the polynomial will change at most by an overall
sign. For example, if we exchange X1 and X2 then (X3−X2)(X3−X1)(X2−X1) becomes
(X3−X1)(X3−X2)(X1−X2), which is −(X3−X2)(X3−X1)(X2−X1); the 3rd alternating
polynomial changed by a sign. In general, rearranging the variables in (5.1) by a permutation
σ ∈ Sn changes the polynomial by the sign of that permutation:∏

i<j

(Xσ(j) −Xσ(i)) = sgn(σ)
∏
i<j

(Xj −Xi).

A polynomial whose value changes by an overall sign, either 1 or −1, when each pair of its
variables is permuted is called an alternating polynomial. The product (5.1) is the most
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basic example of an alternating polynomial in n variables. A permutation of the variables
leaves (5.1) unchanged precisely when the sign of the permutation is 1. This is why the
group of permutations of the variables that preserve (5.1) is called the alternating group.

How large is An?

Theorem 5.6. For n ≥ 2, |An| = n!/2.

Proof. Pick a transposition, say τ = (12). Then τ 6∈ An. If σ 6∈ An, then sgn(στ) =
(−1)(−1) = 1, so στ ∈ An. Therefore σ ∈ Anτ , where we write Anτ to mean the set of
permutations of the form πτ for π ∈ An. Thus, we have a decomposition of Sn into two
parts:

(5.2) Sn = An ∪Anτ.

This union is disjoint, since every element of An has sign 1 and every element of Anτ has
sign −1. Moreover, Anτ has the same size as An (multiplication on the right by τ swaps
the two subsets), so (5.2) tells us n! = 2|An|. �

Here are the sizes of the smallest symmetric and alternating groups.

n 1 2 3 4 5 6 7
|Sn| 1 2 6 24 120 720 5040
|An| 1 1 3 12 60 360 2520

6. Minimal number of transpositions for a permutation

For σ ∈ Sn, what is the fewest number of transpositions in Sn with product σ? For
example, the 7-cycle (1234567) can be written as a product of 6 transpositions:

(6.1) (1234567) = (12)(23)(34)(45)(56)(67).

That shows the 7-cycle is even, but it is not a product of 2 transpositions even though 2
is even, since a product of 2 transpositions moves at most 4 things while (1234567) moves
7 things. Can we use 4 transpositions? No. It turns out 6 transpositions is the minimal
number for a 7-cycle.

Theorem 6.1. Let σ ∈ Sn be a product of m disjoint cycles, including 1-cycles. If we write
σ = τ1τ2 · · · τr where each τi is a transposition, then the smallest value of r is n−m.

Example 6.2. Let σ = (1234567) in S7. Then n = 7, m = 1, and n−m = 6. We have ex-
pressed σ as a product of 6 transpositions in (6.1). If we view σ in S10 as (1234567)(8)(9)(10)
then n = 10, m = 4, and n−m = 6 again. This shows 1-cycles are a nice accounting tool.

Example 6.3. Let σ = (123)(4567) in S7. Then n = 7, m = 2, and n − m = 5. An
expression of σ as a product of 5 transpositions is (12)(23)(45)(56)(67).

Example 6.4. It is important in Theorem 6.1 that we are using disjoint cycles, which is a
canonical way to decompose permutations into cycles. For instance, σ = (12)(23)(34) is a
product of 3 cycles in S4 that are not disjoint, and if we use n = 4 and m = 3 (incorrect)
then n−m = 1 and σ is not a transposition: it is the 4-cycle (1234).

Proof. First we show σ can be written as a product of n−m transpositions. By assumption,
σ = c1 · · · cm where the cj ’s are disjoint cycles. Throw in 1-cycles for missing numbers (those
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fixed by σ) and that makes the sum of the lengths of the different cycles equal to n. Let `j
be the length of cj : cj = (a1ja2j · · · a`jj). This is a product of `j − 1 transpositions:

(a1ja2j · · · a`jj) = (a1ja2j)(a2ja3j) · · · (a`j−1 ja`jj).

Multiplying these together for j = 1, . . . , r expresses σ as a product of
∑m

j=1(`j − 1) =∑m
j=1 `j −m = n−m transpositions. In Example 6.3, for instance, `1 = 3 and `2 = 4.
It remains to prove σ is never a product of less than n−m transpositions. To do this we

will use an argument based on linear maps and hyperplanes due to Mackiw [8].
For each permutation σ in Sn, associate a linear map Lσ : Rn → Rn that permutes the

standard basis e1, . . . , en of Rn according to σ and extend this by linearity:

Lσ(ei) = eσ(i), Lσ

(
n∑
k=1

ckek

)
=

n∑
k=1

ckeσ(k) for ck ∈ R.

For example, if σ = (123) then

Lσ(c1, c2, c3) = Lσ(c1e1 + c2e2 + c3e3) = c1e2 + c2e3 + c3e1 = (c3, c1, c2).

Watch out: Lσ(c1, c2, c3) is not (cσ(1), cσ(2), cσ(3)), which is (c2, c3, c1)! Permuting the basis

vectors by σ amounts to permuting coordinates by σ−1:

Lσ

(
n∑
k=1

ckek

)
=

n∑
k=1

ckeσ(k) =
n∑
k=1

cσ−1(k)ek,

so Lσ(c1, . . . , cn) = (cσ−1(1), . . . , cσ−1(n)). If σ = σ−1 then this subtlety does not matter,
and that includes the case when σ is a transposition.

For two permutations σ and σ′ in Sn, Lσσ′ = Lσ ◦ Lσ′ on Rn: to check this equality of
linear maps it suffices to check both sides have the same value on the standard basis of Rn,
where each side has the effect ek 7→ eσ(σ′(k)). So when σ is a product of m disjoint cycles
and r transpositions, say σ = c1 · · · cm = τ1 · · · τr, we have

Lσ = Lc1 ◦ · · · ◦ Lcm = Lτ1 ◦ · · · ◦ Lτr .

We showed at the start of this proof that σ can be written as a product of n − m
transpositions. To show that number is minimal, we will show r ≥ n − m by looking at
subspaces of Rn. Let Wσ = {v ∈ Rn : Lσ(v) = v}. For example, if σ = (123)(4567) then

Wσ = {(a, a, a, b, b, b, b) : a, b ∈ R} = R(1, 1, 1, 0, 0, 0, 0) + R(0, 0, 0, 1, 1, 1, 1),

which has basis {e1 + e2 + e3, e4 + e5 + e6 + e7}. More generally, when σ = c1 · · · cm for
disjoint cycles c1, . . . , cm we have Wσ =

∑m
j=1 Rwj , where wj =

∑
i∈cj ei: each wj is the

sum of the standard basis vectors ei in Rn where i is moved by cj . The vectors w1, . . . ,wm

are sums of disjoint sets of standard basis vectors in Rn, so they are linearly independent.
Since they span Wσ, dim(Wσ) = m. We will show Wσ contains a subspace of dimension
n− r, so n− r ≤ dim(Wσ) = m and thus r ≥ n−m, which is what we want.

For each transposition τ = (ij) in Sn, Lτ swaps the two basis vectors ei and ej and fixes
the other basis vectors: Lτ (ei) = ej , Lτ (ej) = ei, and Lτ (ek) = ek for k 6= i, j. Then

Lτ

(
n∑
k=1

ckek

)
= ciej + cjei +

∑
k 6=i,j

ckek.
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A vector is fixed by Lτ precisely when the coefficients of ei and ej agree, so the fixed vectors
for Lτ form

Wτ = R(ei + ej) +
∑
k 6=i,j

Rek,

which is a hyperplane in Rn (subspace of dimension n− 1). Since σ = τ1 · · · τr,
r⋂
i=1

Wτi ⊂Wσ.

An intersection of r hyperplanes in Rn has dimension at least n− r, so

m = dim(Wσ) ≥ n− r.
Therefore r ≥ n−m. �
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