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Recursive Algorithms, Recurrence Equations, and Divide-and-

Conquer Technique 

 

Introduction 

In this module, we study recursive algorithms and related concepts. We show how 

recursion ties in with induction. That is, the correctness of a recursive algorithm is 

proved by induction. We show how recurrence equations are used to analyze the time 

complexity of algorithms. Finally, we study a special form of recursive algorithms based 

on the divide-and-conquer technique. 
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Simple Examples of Recursive Algorithms 

Factorial:  Consider the factorial definition 

𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × ⋯× 2 × 1 

This formula may be expressed recursively as 

𝑛! =  {
𝑛 × (𝑛 − 1)! ,     𝑛 > 1 
1,                          𝑛 = 1

 

Below is a recursive program to compute 𝑛!. 

int  Factorial (int 𝑛) { 
if (𝑛 == 1) return 1; 
else { 

   Temp = Factorial (𝑛 − 1); 
   return (𝑛 * Temp); 
   } 
} 

 

The input parameter of this function is 𝑛, and the return value is type integer. When 

𝑛 = 1, the function returns 1.  When 𝑛 > 1, the function calls itself (called a recursive 

call) to compute (𝑛 − 1)!.  It then multiplies the result by 𝑛, which becomes 𝑛!. 

The above program is written in a very basic way for clarity, separating the recursive 

call from the subsequent multiplication. These two steps may be combined, as follows. 

int  Factorial (int 𝑛) { 
if (𝑛 == 1) return 1; 

else return (n* Factorial (𝑛 − 1)); 
 } 

 

Correctness Proof: The correctness of this recursive program may be proved by 

induction.  

 Induction Base:  From line 1, we see that the function works correctly for 𝑛 = 1. 

 Hypothesis:  Suppose the function works correctly when it is called with 𝑛 = 𝑚, 

for some 𝑚 ≥ 1. 

 Induction step:  Then, let us prove that it also works when it is called with  

𝑛 = 𝑚 + 1.   By the hypothesis, we know the recursive call works correctly for 

𝑛 = 𝑚  and computes 𝑚!. Subsequently, it is multiplied by  𝑛 = 𝑚 + 1, thus 

computes (𝑚 + 1)!.  And this is the value correctly returned by the program. 
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Finding Maximum Element of an Array:   

As another simple example, let us write a recursive program to compute the maximum 

element in an array of n elements, 𝐴[0: 𝑛 − 1].  The problem is broken down as follows. 

To compute the Max of n elements for 𝑛 > 1,  

 Compute the Max of the first 𝑛 − 1 elements. 

 Compare with the last element to find the Max of the entire array. 

Below is the recursive program (pseudocode). It is assumed that the array type is dtype, 

declared earlier.  

dtype  Max (dtype 𝐴[ ], int 𝑛) { 
if (𝑛 == 1) return 𝐴[0]; 
else{ 

   𝑇 = Max(𝐴, 𝑛 − 1);     //Recursive call to find max of the first 𝑛 − 1 elements 
   If (𝑇 < 𝐴[𝑛 − 1])        //Compare with the last element 

         return 𝐴[𝑛 − 1]; 
   else return T; 
   } 
} 

 

Computing Sum of Elements in an Array 

Below is a recursive program for computing the sum of elements in an array 𝐴[0: 𝑛 − 1]. 

𝑆 = ∑𝐴[𝑖]

𝑛−1

𝑖=0

 

dtype Sum (dtype 𝐴[ ], int 𝑛) { 

if (𝑛 == 1) return 𝐴[0]; 
else{ 

   𝑆 = Sum(𝐴, 𝑛 − 1);   //Recursive call to compute the sum of the first 𝑛 − 1 elements 
   𝑆 = 𝑆 + 𝐴[𝑛 − 1];    //Add the last element 

   return (𝑆) 
   } 
} 
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The above simple problems could be easily solved without recursion. They were 

presented recursively only for pedagogical purposes. The next example problem, 

however, truly needs the power of recursion.  It would be very difficult to solve the 

problem without recursion. 

 

Towers of Hanoi Problem 

This is a toy problem that is easily solved recursively. There are three towers (posts) 

𝐴, 𝐵, and 𝐶.   Initially, there are n disks of varying sizes stacked on tower A, ordered by 

their size, with the largest disk in the bottom and the smallest one on top. The object of 

the game is to have all n discs stacked on tower B in the same order, with the largest 

one in the bottom.  The third tower is used for temporary storage. There are two rules: 

 Only one disk may be moved at a time in a restricted manner, from the top of one 

tower to the top of another tower. If we think of each tower as a stack, this means 

the moves are restricted to a pop from one stack and push onto another stack. 

 A larger disk must never be placed on top of a smaller disk. 

The recursive algorithm for moving n disks from tower A to tower B works as follows.  If 

𝑛 = 1, one disk is moved from tower A to tower B.  If 𝑛 > 1,     

1 Recursively move the top 𝑛 − 1  disks from 𝐴 𝑡𝑜 𝐶.  The largest disk remains on 

tower 𝐴 by itself. 

2 Move a single disk from 𝐴 𝑡𝑜 𝐵. 

3 Recursively move back 𝑛 − 1 disks from  𝐶 𝑡𝑜 𝐵. 

An illustration is shown below for 𝑛 = 4.   

 

(a) Initial configuration with 4 disks on Tower 0  
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(b) After recursively moving the top 3 disks from Tower 0 to Tower 2  

 

 

 
(c) After moving the bottom disk from Tower 0 to Tower 1 

 

 

 
(d) After recursively moving back 3 disks from Tower 2 to Tower 1. 
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Below is the recursive algorithm.  The call Towers (𝐴, 𝐵, 𝐶, 𝑛) moves n disks from tower 

A to B, using C as temporary storage. 

Towers (𝐴, 𝐵, 𝐶, 𝑛) { 
1    if (𝑛 == 1) { 
2        MoveOne (𝐴, 𝐵); 
3        return}; 

4    Towers (𝐴, 𝐶, 𝐵, 𝑛 − 1); 
5     MoveOne (𝐴, 𝐵); 

6     Towers (𝐶, 𝐵, 𝐴, 𝑛 − 1); 
    } 

 

Proof of Correctness 

The correctness of the algorithm is proved by induction.  For 𝑛 = 1, a single move is 

made from A to B.  So the algorithm works correctly for 𝑛 = 1.  To prove the correctness 

for any 𝑛 ≥ 2, suppose the algorithm works correctly for 𝑛 − 1.  Then, by the hypothesis, 

the recursive call of line 4 works correctly and moves the top 𝑛 − 1 disks to C, leaving 

the bottom disk on tower A.  The next step, line 5, moves the bottom disk to B. Finally, 

the recursive call of line 6 works correctly by the hypothesis and moves back 𝑛 − 1 

disks from C to B. Thus, the entire algorithm works correctly for 𝑛.  

 

An Improvement in Algorithm Style 

The above algorithm has a single move appearing twice in the code, once for 𝑛 = 1 and 

once for 𝑛 > 1. This repetition may be avoided by making 𝑛 = 0 as the termination 

criteria for recursion.  

Towers (𝐴, 𝐵, 𝐶, 𝑛) { 

if (𝑛 == 0) return; 
Towers (𝐴, 𝐶, 𝐵, 𝑛 − 1); 
MoveOne (𝐴, 𝐵); 
Towers (𝐶, 𝐵, 𝐴, 𝑛 − 1); 
} 
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Recurrence Equation to Analyze Time Complexity 

Let us analyze the time complexity of the algorithm.  Let  

𝑓(𝑛) = number of single moves to solve the problem for 𝑛 disks. 

Then, the number of moves for each of the recursive calls is 𝑓(𝑛 − 1).  So, we set up a 

recurrence equation for 𝑓(𝑛). 

𝑓(𝑛) =  {
1,                            𝑛 = 1
2𝑓(𝑛 − 1) + 1,    𝑛 ≥ 2 

 

We need to solve this recurrence equation to find 𝑓(𝑛) directly in terms of 𝑛.   

Method 1: Repeated Substitution 

𝑓(𝑛) = 1 + 2 ∙ 𝑓(𝑛 − 1)⏟      
1+2𝑓(𝑛−2)

 

𝑓(𝑛) = 1 + 2 + 4 ∙ 𝑓(𝑛 − 2)⏟      
1+2𝑓(𝑛−3)

 

𝑓(𝑛) = 1 + 2 + 4 + 8 ∙ 𝑓(𝑛 − 3) 

𝑓(𝑛) = 1 + 2 + 22 + 23 ∙ 𝑓(𝑛 − 3) 

After a few substitutions, we observe the general pattern, and see what is needed to get 

to the point where the last term becomes 𝑓(1). 

⋮ 

𝑓(𝑛) = 1 + 2 + 22 + 23 + ⋯+ 2𝑛−1 ∙ 𝑓(1) 

Then we can use the base case of the recurrence equation, 𝑓(1) = 1.  

𝑓(𝑛) = 1 + 2 + 22 + 23 + ⋯+ 2𝑛−1 

We use geometric sum formula for this summation (where each term equals the 

previous term times a constant).  

𝑓(𝑛) =  
2𝑛 − 1

2 − 1
 

𝑓(𝑛) = 2𝑛 − 1. 

The repeated substitution method may not always be successful.  Below is an 

alternative method.  
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Method 2: Guess the solution and prove it correct by induction 

Suppose we guess the solution to be exponential, but with some constants to be 

determined. 

Guess:      𝑓(𝑛) = 𝐴 2𝑛 + 𝐵  

We try to prove the solution form is correct by induction. If the induction is successful, 

then we find the values of the constant A and B in the process. 

Induction Proof:  

Induction Base, 𝑛 = 1:  

𝑓(1) = 1                 (from the recurrence) 

𝑓(1) = 2𝐴 + 𝐵     (from the solution form) 

So we need 

2𝐴 + 𝐵 = 1  

Induction Step:  Suppose the solution is correct for some 𝑛 ≥ 1: 

𝑓(𝑛) = 𝐴 2𝑛 + 𝐵                 (ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) 

Then we must prove the solution is also correct for 𝑛 + 1: 

𝑓(𝑛 + 1) = 𝐴 2𝑛+1 + 𝐵                (𝐶𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛) 

To prove the conclusion, we start with the recurrence equation for 𝑛 + 1, and apply the 

hypothesis: 

𝑓(𝑛 + 1) = 2𝑓(𝑛) + 1      (𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

=  2[𝐴 2𝑛 + 𝐵] + 1           (𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) 

= 𝐴 2𝑛+1 + (2𝐵 + 1) 

= 𝐴 2𝑛+1 + 𝐵                     (𝑒𝑞𝑢𝑎𝑡𝑒 𝑡𝑜 𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛) 

To make the latter equality, we equate term-by-term.  

2𝐵 + 1 = 𝐵  

So we have two equations for A and B. 

{
2𝐴 + 𝐵 = 1
2𝐵 + 1 = 𝐵
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We get  𝐵 = −1 and 𝐴 = 1. So we proved that  

𝑓(𝑛) = 𝐴 2𝑛 + 𝐵 

𝑓(𝑛) = 2𝑛 − 1. 

 

Computing Power by Repeated Multiplications 

Given a real number 𝑋 and an integer 𝑛, let us see how to compute 𝑋𝑛 by repeated 

multiplications.  The following simple loop computes the power, but is very inefficient 

because the power goes up by 1 by each multiplication.  

𝑇 = 𝑋 
𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 𝑛 
      𝑇 = 𝑇 ∗ 𝑋 

The algorithm is made much more efficient by repeated squaring, thus doubling the 

power by each multiplication. Suppose 𝑛 = 2𝑘 for some integer 𝑘 ≥ 1. 

𝑇 = 𝑋 
𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑘 
      𝑇 = 𝑇 ∗ 𝑇 

Now, let us see how to generalize this algorithm for any integer n.  First consider a 

numerical example. Suppose we want to compute 𝑋13,  where the power in binary is 

1101.  Informally, the computation may be done as follows.  

1. Compute  𝑋2 = 𝑋 ∗ 𝑋 

2. Compute  𝑋3 = 𝑋2 ∗ 𝑋 

3. Compute  𝑋6 = 𝑋3 ∗ 𝑋3 

4. Compute  𝑋12 = 𝑋6 ∗ 𝑋6 

5. Compute  𝑋13 = 𝑋12 ∗ 𝑋. 

This algorithm may be formalized non-recursively, with some effort.  But a recursive 

implementation makes the algorithm much simpler and more eloquent.  

real Power (real 𝑋, int 𝑛) { // It is assumed that 𝑛 > 0. 
if (𝑛 == 1)   return 𝑋; 
𝑇 = 𝑃𝑜𝑤𝑒𝑟 (𝑋, ⌊𝑛 2⁄ ⌋); 

𝑇 = 𝑇 ∗ 𝑇; 
If (𝑛 𝑚𝑜𝑑 2 == 1) 
     𝑇 = 𝑇 ∗ 𝑋; 
return 𝑇 } 
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Let 𝑛 = 2𝑚 + 𝑟, where 𝑟 ∈ {0,1}.  The algorithm first makes a recursive call to compute 

𝑇 = 𝑋𝑚.  Then it squares 𝑇 to get 𝑇 = 𝑋2𝑚.   If 𝑟 = 0, this is returned.  Otherwise, when 

𝑟 = 1, the algorithm multiplies 𝑇 by 𝑋, to result in 𝑇 = 𝑋2𝑚+1.  

 

Analysis 

Let 𝑓(𝑛) be the worst-case number of multiplication steps to compute 𝑋𝑛.  The number 

of multiplications made by the recursive call is 𝑓(⌊𝑛 2⁄ ⌋). The recursive call is followed by 

one more multiplication. And in the worst-case, if 𝑛 is odd, one additional multiplication 

is performed at the end. Therefore, 

𝑓(𝑛) = {
0,                             𝑛 = 1

𝑓(⌊𝑛 2⁄ ⌋) + 2,       𝑛 ≥ 2
 

Let us prove by induction that the solution is as follows, where the log is in base 2. 

𝑓(𝑛) = 2 ⌊log 𝑛⌋ 

Induction Base, 𝑛 = 1:  From the recurrence, 𝑓(1) = 0.  And the claimed solution is 

𝑓(1) = 2 ⌊log 1⌋ = 0.  So the base is correct.  

Induction step: Integer 𝑛 may be expressed as follows, for some integer 𝑘. 

2𝑘 ≤ 𝑛 < 2𝑘+1 

This means ⌊log 𝑛⌋ = 𝑘.  And, 

2𝑘−1 ≤ ⌊𝑛 2⁄ ⌋ < 2
𝑘 

Thus, ⌊log⌊𝑛 2⁄ ⌋⌋ = 𝑘 − 1.  To prove the claimed solution for any 𝑛 ≥ 2, suppose the 

solution is correct for all smaller values. That is, 

𝑓(𝑚) = 2 ⌊log𝑚⌋,    ∀ 𝑚 < 𝑛 

In particular, for 𝑚 = ⌊𝑛 2⁄ ⌋, 

𝑓(⌊𝑛 2⁄ ⌋) = 2 ⌊log⌊
𝑛
2⁄ ⌋⌋ = 2(𝑘 − 1) = 2𝑘 − 2 

Then,  

𝑓(𝑛) = 𝑓(⌊𝑛 2⁄ ⌋) + 2 = 2𝑘 − 2 + 2 = 2𝑘 = 2 ⌊log 𝑛⌋ 

This completes the induction proof. 
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Misuse of Recursion 

Consider again the problem of computing the power 𝑋𝑛 by repeated multiplication.  We 

saw an efficient recursive algorithm to compute the power with (2 log 𝑛) multiplications. 

Now, suppose a naive student writes the following recursive algorithm. 

real Power (real 𝑋, int 𝑛) { // It is assumed that 𝑛 > 0. 
if (𝑛 == 1)   return 𝑋; 
return (𝑃𝑜𝑤𝑒𝑟(𝑋, ⌊𝑛 2⁄ ⌋) ∗ 𝑃𝑜𝑤𝑒𝑟(𝑋, ⌈

𝑛
2⁄ ⌉)); 

 } 

Although this program correctly computes the power, and it appears eloquent and 

clever,  it is very inefficient.  The reason for the inefficiency is that it performs a lot of 

repeated computations. The first recursive call computes 𝑋⌊
𝑛
2⁄ ⌋  and the second 

recursive call computes 𝑋⌈
𝑛
2⁄ ⌉, but there is a lot of overlap computations between the 

two recursive calls. Let us analyze the number of multiplications, 𝑓(𝑛), for this algorithm.  

Below is the recurrence. 

𝑓(𝑛) =  {
0,                                                  𝑛 = 1

𝑓(⌊𝑛 2⁄ ⌋) + 𝑓(⌈
𝑛
2⁄ ⌉) + 1,      𝑛 ≥ 2

 

The solution is 𝑓(𝑛) = 𝑛 − 1.  (This may be easily proved by induction.)  This shows the 

terrible inefficiency introduced by the overlapping recursive calls. 

As another example, consider the Fibonacci sequence, defined as  

𝐹𝑛 = {
1,                           𝑛 = 1
1,                           𝑛 = 2
𝐹𝑛−1 + 𝐹𝑛−2,        𝑛 ≥ 3

 

It is easy to compute 𝐹𝑛 with a simple loop in O(𝑛) time.  But suppose a naïve student, 

overexcited about recursion, implements the following recursive program to do the job. 

int Fib (int 𝑛) { 
if (𝑛 ≤ 2) return (1); 

return (Fib(𝑛 − 1) + Fib(𝑛 − 2)) 
 

This program makes recursive calls with a great deal of overlapping computations, 

causing a huge inefficiency.  Let us verify that time complexity becomes exponential!  

Let 𝑇(𝑛) be the total number of addition steps by this algorithm for computing 𝐹𝑛.  
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𝑇(𝑛) = {
0,                                                      𝑛 = 1
0,                                                      𝑛 = 2
𝑇(𝑛 − 1) + 𝑇(𝑛 − 2) + 1,         𝑛 ≥ 3

 

We leave it as an exercise for the student to prove by induction that the solution is 

𝑇(𝑛) ≥ (1.618)𝑛−2 

Note that an exponential function has an extremely large growth rate. For example, for 

𝑛 = 50,   𝑇(𝑛) > 1 ∗ 1010. 

 

Recursive Insertion-Sort 

An informal recursive description of insertion sort is as follows. 

To sort an array of n elements, where 𝑛 ≥ 2, do: 

1. Sort the first 𝑛 − 1 elements recursively. 

2. Insert the last element into the sorted part. (We do this with a simple loop, 

without recursion. This loop is basically the same as what we had for the non-

recursive version of insertion-sort earlier.) 

 

Below is a formal pseudocode. 

 

ISort (dtype 𝐴[ ], int 𝑛) { 

if (𝑛 == 1) return; 
ISort (𝐴, 𝑛 − 1); 
𝑗 = 𝑛 − 1; 
while (𝑗 > 0 and 𝐴[𝑗] < 𝐴[𝑗 − 1]) { 
     SWAP(𝐴[𝑗], 𝐴[𝑗 − 1]); 
     𝑗 = 𝑗 − 1; 
    } 
}     

 

Note:  Our purpose in presenting recursive insertion-sort is to promote recursive 

thinking, as it simplifies the formulation of algorithms.  However, for actual 

implementation, recursive insertion sort is not recommended. The algorithm makes a 

long chain of recursive calls before any return is made. (This long chain is called depth 

of recursion.) And the long chain of recursive calls may easily cause stack-overflow at 

run-time when n is large. 
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Time Complexity Analysis 

Let 𝑓(𝑛) be the worst-case number of key-comparisons to sort n elements. As we 

discussed for the non-recursive implementation, we know the while loop in the worst-

case makes (𝑛 − 1) key-comparisons. So, 

𝑓(𝑛) =  {
0,                                        𝑛 = 1
𝑓(𝑛 − 1) + 𝑛 − 1,           𝑛 ≥ 2 

 

Method 1: Solution by repeated substitution 

𝑓(𝑛) = (𝑛 − 1) + 𝑓(𝑛 − 1) 

= (𝑛 − 1) + (𝑛 − 2) + 𝑓(𝑛 − 2) 

= (𝑛 − 1) + (𝑛 − 2) + (𝑛 − 3) + 𝑓(𝑛 − 3) 

⋮ 

= (𝑛 − 1) + (𝑛 − 2) + (𝑛 − 3) + ⋯+ 1 + 𝑓(1)⏟
=0 

 

=  (𝑛 − 1) + (𝑛 − 2) + (𝑛 − 3) + ⋯+ 1               (Apply arithmetic sum formula) 

= 
(𝑛 − 1)𝑛

2
 

=
𝑛2 − 𝑛

2
 

Method 2:  Guess the solution and prove correctness by induction  

Suppose we guess the solution as 𝑂(𝑛2) and express the solution as below, in terms of 

some constants 𝐴, 𝐵, 𝐶 to be determined. 

𝑓(𝑛) = 𝐴𝑛2 + 𝐵𝑛 + 𝐶 

Proof by induction: 

Base, 𝑛 = 1:  

𝑓(1) = 0               (from the recurrence) 

= 𝐴 + 𝐵 + 𝐶        (from the solution form) 

So we need 𝐴 + 𝐵 + 𝐶 = 0. 

Next, to prove the solution is correct for any 𝑛 ≥ 2, suppose the solution is correct for 

𝑛 − 1. That is, suppose 

𝑓(𝑛 − 1) = 𝐴(𝑛 − 1)2 + 𝐵(𝑛 − 1) + 𝐶 

= 𝐴(𝑛2 − 2𝑛 + 1) + 𝐵(𝑛 − 1) + 𝐶 
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Then, 

𝑓(𝑛) = 𝑓(𝑛 − 1) + (𝑛 − 1)                                  from the recurrence equation 

= 𝐴(𝑛2 − 2𝑛 + 1) + 𝐵(𝑛 − 1) + 𝐶 + (𝑛 − 1)       Use hypothesis to replace for f(n-1)      

= 𝐴 𝑛2 + (−2𝐴 + 𝐵 + 1) 𝑛 + (𝐴 − 𝐵 + 𝐶 − 1) 

= 𝐴𝑛2 + 𝐵𝑛 + 𝐶 

To make the latter equality, we equate term-by-term. That is, equate the 𝑛2 terms, the 

linear terms, and the constants. So, 

−2𝐴 + 𝐵 + 1 = 𝐵 

𝐴 − 𝐵 + 𝐶 − 1 = 𝐶 

We have three equations to solve for 𝐴, 𝐵, 𝐶. 

−2𝐴 + 𝐵 + 1 = 𝐵        →              𝐴 = 1/2 

𝐴 − 𝐵 + 𝐶 − 1 = 𝐶      →             𝐵 = 𝐴 − 1 = −1/2 

𝐴 + 𝐵 + 𝐶 = 0              →             𝐶 = 0 

Therefore, 𝑓(𝑛) =
𝑛2

2
−
𝑛

2
. 

 

Alternative Guess: 

Suppose we guess the solution as O(𝑛2) and use the definition of O( ) to express the 

solution with an upper bound: 

𝑓(𝑛) ≤ 𝐴 𝑛2 

We need to prove by induction that this solution works, and in the process determine 

the value of the constant A. 

Induction base, 𝑛 = 1:  

𝑓(1) = 0 ≤ 𝐴 ∙ 12 

Therefore,  

𝐴 ≥ 0  

Next, to prove the solution is correct for any 𝑛 ≥ 2, suppose the solution is correct for 

𝑛 − 1. That is, suppose 

𝑓(𝑛 − 1) ≤ 𝐴 (𝑛 − 1)2 
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Then, 

𝑓(𝑛) = 𝑓(𝑛 − 1) + 𝑛 − 1 

≤ 𝐴(𝑛 − 1)2 + 𝑛 − 1 

≤ 𝐴(𝑛2 − 2𝑛 + 1) + 𝑛 − 1 

≤ 𝐴𝑛2 + (−2𝐴 + 1)𝑛 + (𝐴 − 1) 

≤ 𝐴𝑛2 

To satisfy the latter inequality, we need to make the linear term ≤ 0,  and the constant 

term ≤ 0.  

−2𝐴 + 1 ≤ 0            →       𝐴 ≥ 1/2   

𝐴 − 1 ≤ 0                 →         𝐴 ≤ 1  

The three (boxed) inequalities on A are all satisfied by 
1

2
≤ 𝐴 ≤ 1.  Any value of A in this 

range satisfies the induction proof.  We may pick the smallest value, 𝐴 =
1

2
.  Therefore, 

we have proved  𝑓(𝑛) ≤ 𝑛2/2. 

 

Divide-and-Conquer Algorithms 

The divide-and-conquer strategy divides a problem of a given size into one or more 

subproblems of the same type but smaller size.  Then, supposing that the smaller size 

subproblems are solved recursively, the strategy is to try to obtain the solution to the 

original problem.  We start by a simple example. 

Finding MAX by Divide-and-Conquer 

The algorithm divides an array of 𝑛 elements, 𝐴[0: 𝑛 − 1], into two halves, finds the max 

of each half, then makes one comparison between the two maxes to find the max of the 

entire array. 

dtype FindMax (dtype 𝐴[ ], int 𝑆, int 𝑛)  
{ // 𝑆 is the starting index in the array, and 𝑛 is the number of elements 

if (𝑛 == 1)  return 𝐴[𝑆]; 
𝑇1 = FindMax (𝐴, 𝑆, ⌊

𝑛
2⁄ ⌋);                      //Find max of the first half 

𝑇2 = FindMax (𝐴, 𝑆 + ⌊
𝑛
2⁄ ⌋, 𝑛 − ⌊

𝑛
2⁄ ⌋);   //Find max of the second half 

if (𝑇1 ≥ 𝑇2)                                             // Comparison between the two maxes 
         return 𝑇1 
else return 𝑇2;  } 
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Analysis (Special case when 𝑛 = 2𝑘) 

Let 𝑓(𝑛) be the number of key-comparisons to find the max of an array of 𝑛 elements. 

Initially, to simplify the analysis, we assume that 𝑛 = 2𝑘 for some integer k.  In this case, 

the size of each half is exactly 𝑛 2⁄ ,  and the number of comparisons to find the max of 

each half is 𝑓(𝑛 2⁄ ). 

𝑓(𝑛) = {
0,                             𝑛 = 1

2𝑓(𝑛 2⁄ ) + 1,       𝑛 ≥ 2
 

Solution by Repeated Substitution 

𝑓(𝑛) = 1 + 2 𝑓(𝑛 2⁄ ) 

= 1 + 2[1 + 2𝑓(𝑛 4⁄ )] = 1 + 2 + 4𝑓(
𝑛
4⁄ )  

= 1 + 2 + 4 + 8 𝑓(𝑛 8⁄ )  

⋮ 

= 1 + 2 + 4 +⋯+ 2𝑘−1 + 2𝑘 𝑓 (𝑛
2𝑘⁄
)⏟      

𝑓(1)=0

 

= 1 + 2 + 4 +⋯+ 2𝑘−1                         (Use Geometric Sum formula) 

= 
2𝑘 − 1

2 − 1
= 2𝑘 − 1 

= 𝑛 − 1. 

 

So the number of key-comparisons is the same as when we did this problem by a 

simple loop.   

 

Analysis for general n 

The recurrence equation for the general case becomes: 

𝑓(𝑛) = {
0,                                                            𝑛 = 1

𝑓(⌊𝑛 2⁄ ⌋) + 𝑓(⌈
𝑛
2⁄ ⌉) + 1,                𝑛 ≥ 2

 

It is easy to prove by induction that the solution is still 𝑓(𝑛) = 𝑛 − 1.   

(We leave the induction proof to the student.) 
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Binary Search Algorithm 

The sequential search algorithm works on an unsorted array and runs in 𝑂(𝑛) time. But 

if the array is sorted, the search may be done more efficiently, in 𝑂(log 𝑛) time, by a 

divide-and-conquer algorithm known as binary-search. 

Given a sorted array 𝐴[0: 𝑛 − 1] and a search key, the algorithm starts by comparing 

the search key against the middle element of the array, 𝐴[𝑚].  

 If 𝐾𝐸𝑌 =  𝐴[𝑚], then return 𝑚 

 If 𝐾𝐸𝑌 < 𝐴[𝑚],  then recursively search the left half of the array.  

 If 𝐾𝐸𝑌 > 𝐴[𝑚],  then recursively search the right half of the array. 

So after one comparison, if the key is not found, then the size of the search is reduced 

to about  𝑛 2⁄ .  After two comparisons, the size is reduced to about 𝑛 4⁄ , and so on. So in 

the worst-case, the algorithm makes about log 𝑛 comparisons.  Now, let us write the 

pseudocode and analyze it more carefully. 

int BS (dtype 𝐴[ ], int 𝐿𝑒𝑓𝑡, int 𝑅𝑖𝑔ℎ𝑡, dtype 𝐾𝐸𝑌) { 
   // 𝐿𝑒𝑓𝑡 is the starting index, and 𝑅𝑖𝑔ℎ𝑡 is the ending index of the part to search. 
   // If not found, the algorithm returns -1. 
1    if (𝐿𝑒𝑓𝑡 > 𝑅𝑖𝑔ℎ𝑡)  return (−1);      // not found 

2    𝑚 = ⌊
(𝐿𝑒𝑓𝑡 + 𝑅𝑖𝑔ℎ𝑡)

2
⁄ ⌋    // Index of the middle element 

3   if (𝐾𝐸𝑌 == 𝐴[𝑚]) return (𝑚); 
4   else if (𝐾𝐸𝑌 < 𝐴[𝑚]) 

5              return (𝐵𝑆(𝐴, 𝐿𝑒𝑓𝑡,𝑚 − 1, 𝐾𝐸𝑌)); 

6    else  return (𝐵𝑆(𝐴,𝑚 + 1, 𝑅𝑖𝑔ℎ𝑡, 𝐾𝐸𝑌)); 
 

Let 𝑛 = 𝑅𝑖𝑔ℎ𝑡 − 𝐿𝑒𝑓𝑡 + 1 =   Number of elements remaining in the search. 

Let 𝑓(𝑛) = Worst-case number of key-comparisons to search an array of n elements. 

 

Analysis (Special case when 𝑛 = 2𝑘) 

In lines 3 and 4 of the algorithm, it appears that there are 2 key comparisons before the 

recursive call.  However, it is reasonable to count these as a single comparison, for the 

following reasoning: 

 The comparisons are between the same pair of elements (𝐾𝐸𝑌, 𝐴[𝑚]). 

 Computers normally have machine-level instructions where a single comparison 

is made, followed by conditional actions. 
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 It is also reasonable to imagine a high-level-language construct similar to a “case 

statement”, where a single comparison is made, followed by several conditional 

cases. 

We are now ready to formulate a recurrence equation for 𝑓(𝑛).  Note that for the special 

case when 𝑛 = 2𝑘 ,  the maximum size of the recursive call is exactly 𝑛 2⁄ . 

𝑓(𝑛) =  {
1,                         𝑛 = 1

1 + 𝑓 (
𝑛

2
) ,        𝑛 ≥ 2 

 

Solution by repeated substitution: 

𝑓(𝑛) = 1 + 𝑓(𝑛 2⁄ ) 

= 1 + 1 +  𝑓(𝑛 4⁄ ) 

= 1 + 1 + 1 + 𝑓(𝑛 8⁄ ) 

= 4 + 𝑓 (𝑛 24⁄ ) 

⋮ 

= 𝑘 + 𝑓 (
𝑛

2𝑘
) 

= 𝑘 + 𝑓(1) 

= 𝑘 + 1 

= log 𝑛 + 1. 

 

Analysis of Binary Search for general n 

For the general case, the size of the recursive call is at most ⌊𝑛 2⁄ ⌋.  So, 

𝑓(𝑛) =  {
1,                              𝑛 = 1

1 + 𝑓(⌊𝑛 2⁄ ⌋),        𝑛 ≥ 2 
 

We will prove by induction that the solution is  

𝑓(𝑛) = ⌊log 𝑛⌋ + 1 

(The induction proof is almost identical to our earlier proof for Power.) 

Induction Base, 𝑛 = 1:  From the recurrence, 𝑓(1) = 1.  And the claimed solution is 

𝑓(1) = ⌊log 1⌋ + 1 = 1.  So the base is correct.  

Induction step: Any integer 𝑛 may be expressed as follows, for some integer 𝑘. 

2𝑘 ≤ 𝑛 < 2𝑘+1 
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This means ⌊log 𝑛⌋ = 𝑘.  And, 

2𝑘−1 ≤ ⌊𝑛 2⁄ ⌋ < 2
𝑘 

Thus, ⌊log⌊𝑛 2⁄ ⌋⌋ = 𝑘 − 1.  To prove the claimed solution for any 𝑛 ≥ 2, suppose the 

solution is correct for all smaller values. That is, 

𝑓(𝑚) = ⌊log𝑚⌋ + 1,    ∀ 𝑚 < 𝑛 

In particular, for 𝑚 = ⌊𝑛 2⁄ ⌋, 

𝑓(⌊𝑛 2⁄ ⌋) =  ⌊log⌊
𝑛
2⁄ ⌋⌋ + 1 = (𝑘 − 1) + 1 = 𝑘 = ⌊log 𝑛⌋ 

Then,  

𝑓(𝑛) = 𝑓(⌊𝑛 2⁄ ⌋) + 1 = 𝑘 + 1 = ⌊log 𝑛⌋ + 1. 

This completes the induction proof. 

 

Mergesort  

The insertion-sort algorithm discussed earlier has a basic incremental approach. Each 

iteration of the algorithm inserts one more element into the sorted part.  This algorithm 

has time complexity O(𝑛2).  The Mergesort algorithm uses a divide-and-conquer 

strategy and runs in O(𝑛 log 𝑛) time. 

Let us first review the easier problem of merging two sorted sequences.  We consider a 

numerical example. Suppose we have two sorted sequences 𝐴 and 𝐵, and we want to 

merge them into a sorted sequence 𝐶. 

𝐴:    4,5,8,10,12,15 

𝐵:    2,3,9,10,11 

𝐶:      

We first compare the smallest (first) element of 𝐴, with the smallest (first) element of 𝐵. 

The smaller of the two is obviously the smallest element and becomes the first element 

in the sorted result, 𝐶. 

𝐴:    4,5,8,10,12,15 

𝐵:    3,9,10,11 

𝐶:    2  
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Now, one of the two sorted sequences (in this case, 𝐵) has one less element.  And the 

merge process is continued the same way.  

𝐴:    4,5,8,10,12,15 

𝐵:    9,10,11 

𝐶:    2,3  

The merge process is continued until one of the two sequences has no more elements 

in it, and the other sequence has one or more elements remaining. 

𝐴:    12,15 

𝐵:     

𝐶:    2,3,4,5,8,9,10,10,11  

At this point, the remaining elements are appended at the end of the sorted result 

without any further comparisons. 

𝐴:    

𝐵:     

𝐶:    2,3,4,5,8,9,10,10,11,12,15  

Let 𝑀(𝑚, 𝑛) be the worst-case number of key comparisons to merge two sorted 

sequences of length 𝑚 and 𝑛.  Then, 

𝑀(𝑚, 𝑛) = 𝑚 + 𝑛 − 1  

The reasoning is simple. With each comparison, one element is copied into the sorted 

result. So, after at most 𝑚+ 𝑛 − 1 comparisons, only one element will remain in one of 

the sorted sequences, which requires no further comparison. 

What is the best-case number of key-comparisons? It is min(𝑚, 𝑛).  The best-case 

happens if all elements of the shorter sequence are smaller than all elements of the 

longer sequence. 

A special case of the merge problem is when the two sorted sequences are of equal 

length. In this case, the worst-case number of comparisons is  

𝑀(
𝑛

2
,
𝑛

2
 ) = 𝑛 − 1. 

The total time of the merge is O(𝑛), which mean ≤ 𝐶𝑛 for some constant 𝐶.   

Below is the pseudocode for merging two sorted sequences 𝐴[1:𝑚] and 𝐵[1: 𝑛] into the 

sorted result 𝐶[1:𝑚 + 𝑛]. 
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Merge (dtype 𝐴[ ], int 𝑚, dtype 𝐵[ ], int 𝑛, dtype 𝐶[ ]) { 
// Inputs are sorted arrays 𝐴[1:𝑚] and 𝐵[1: 𝑛].  Output is sorted result 𝐶[1:𝑚 + 𝑛]. 
𝑖 = 1;   //Index into array A 
𝑗 = 1;   //Index into array B 
𝑘 = 1;  //Index into array C 
while (𝑚 ≥ 𝑖 𝑎𝑛𝑑 𝑛 ≥ 𝑗){ 
     if (𝐴[𝑖] ≤ 𝐵[𝑗]) 
          { 𝐶[𝑘] = 𝐴[𝑖];    𝑖 = 𝑖 + 1}; 
    else 
          {𝐶[𝑘] = 𝐵[𝑗];     𝑗 = 𝑗 + 1}; 
    𝑘 = 𝑘 + 1; 
     } 
while (𝑚 ≥ 𝑖)     //Empty remaining of array A 
         { 𝐶[𝑘] = 𝐴[𝑖];    𝑖 = 𝑖 + 1} ; 
while (𝑛 ≥ 𝑗)      //Empty remaining of array B 
         {𝐶[𝑘] = 𝐵[𝑗];     𝑗 = 𝑗 + 1}; 
} 

We are now ready to discuss the Mergesort algorithm, which uses a divide-and-conquer 

technique, and sorts a random array of 𝑛 elements from scratch. 

Mergesort:  To sort 𝑛 elements, when 𝑛 ≥ 2, do: 

 Divide the array into two halves; 

 Sort each half recursively; 

 Merge the two sorted parts. 

Let us consider a numerical example of Mergesort for 𝑛 = 23 = 8.  To sort 8 elements, 

they are divided into two halves, each of size 4. Then each 4 elements are divided into 

two halves, each of size 2. So at the bottom level, each pair of 2 is merged.  At the next 

level, two sorted sequences of length 2 are merged into sorted sequences of length 4.  

At the next level, two sorted sequences of length 4 are merged into a sorted 8. 

 5 2 4 3 8 2 1 4 

  

  (2, 5)   (3, 4)    (2, 8)    (1, 4) 

 

        (2, 3, 4, 5)         (1, 2, 4, 8)   

 

           (1, 2, 2, 3, 4, 4, 5, 8) 
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Next, consider an example of Mergesort for 𝑛 = 6. The recursive Mergesort divides the 

array into two halves, each of size 3. To sort each 3, they are divided into 2 and 1. 

                    5 2 4     6 1 2 

                                                                       

                       (2, 5)           (4)         (1, 6)           (2) 

 

                            (2, 4, 5)                       (1, 2, 6) 

 

                                       (1, 2, 2, 4, 5, 6) 

The Mergesort algorithm may also be implemented non-recursively. At the bottom level, 

each pairs of 2 are sorted. Then, pairs of length 2 are merged to get sorted sequences 

of length 4, and so on. Below is the non-recursive implementation for the last example. 

5 2     4     6     1 2 

  (2, 5)             (4, 6)              (1, 2) 

       (2, 4, 5, 6)                       (1, 2) 

                      (1, 2, 2, 4, 5, 6) 

 

Analysis of Mergesort (Special case when 𝑛 = 2𝑘) 

Let 𝑇(𝑛) be the total worst-case time to sort 𝑛 elements (by recursive Mergesort). The 

worst-case time to recursively sort each half is 𝑇(𝑛/2). And the time to merge the two 

sorted halves is O(𝑛), which means ≤ 𝑐𝑛 for some constant 𝑐. Therefore, 

𝑇(𝑛) ≤ {
2 𝑇 (

𝑛

2
) + 𝑐 𝑛,      𝑛 ≥ 2

𝑑,                            𝑛 = 1
 

Solution by repeated substitution: 

𝑇(𝑛) = 𝑐𝑛 + 2 𝑇 (
𝑛

2
) 

≤ 𝑐𝑛 + 2(𝑐
𝑛

2
+ 2 𝑇 (

𝑛

4
)) 
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≤ 𝑐𝑛 + 𝑐𝑛 + 4 𝑇 (
𝑛

4
) 

≤ 𝑐𝑛 + 𝑐𝑛 + 𝑐𝑛 + 8𝑇 (
𝑛

8
) 

≤ 3𝑐𝑛 + 23𝑇 (
𝑛

23
) 

⋮ 

≤ 𝑘𝑐𝑛 + 2𝑘𝑇 (
𝑛

2𝑘
) 

≤ 𝑘𝑐𝑛 + 2𝑘𝑇(1) 

≤ 𝑘𝑐𝑛 + 𝑑 2𝑘  

≤ 𝑐𝑛 log 𝑛 + 𝑑 𝑛 

Therefore, 𝑇(𝑛) is 𝑂(𝑛 log 𝑛).   

Note: When the recurrence is 𝑇(𝑛) ≤  ⋯, rather than strict equality, the solution simply 
becomes 𝑇(𝑛) ≤  ⋯.   For this reason, we often express the recurrence simply with 
equality, having in mind that the right side is an upper bound for 𝑇(𝑛).  
 

 

Guess the solution and prove correctness by induction 

To arrive at an initial guess, let us consider the merge tree, shown below. At the top 

level, the algorithm merges (𝑛/2) and (𝑛/2), which costs at most 𝑐𝑛 time.  At the next 

level, to merge each (𝑛/4, 𝑛/4) pair costs 𝑐𝑛/2. Since there are 2 such pairs, the total 

cost at this level is 2 ∙ 𝑐 𝑛/2, thus a total of 𝑐𝑛.  In summary, the cost of merging at each 

level of tree is 𝑐𝑛 time. And there are about log 𝑛 levels. (The exact number is not 

needed.)  Therefore, the total costs is O(𝑛 log 𝑛). 

                                    n    

                                                                                                  𝑀(
𝑛

2
,
𝑛

2
) = 𝐶𝑛  

                n/2                                  n/2                        

                                                                                                  2 ∙ 𝑀 (
𝑛

4
,
𝑛

4
) = 2 ∙

𝑐𝑛

2
= 𝑐𝑛 

   n/4                  n/4               n/4                n/4           

                                                                                                  4 ∙ 𝑀 (
𝑛

8
,
𝑛

8
) = 4 ∙

𝑐𝑛

4
= 𝑐𝑛 

n/8   n/8         n/8    n/8       n/8     n/8      n/8     n/8 

                                     ⋮ 
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We concluded in our estimate that the total time is O(𝑛 log 𝑛).  Based on this, there are 

several possibilities for guessing the solution form.  

 𝑇(𝑛) ≤ 𝐴 𝑛 log 𝑛 + 𝐵𝑛 

 𝑇(𝑛) ≤ 𝐴 𝑛 log 𝑛 

We leave the induction proof to the student. 

 

Generalization of time analysis for any integer size n 

The recurrence equation for the general case may be expressed as follows. 

𝑇(𝑛) = {
𝑇(⌈𝑛 2⁄ ⌉) + 𝑇(⌊

𝑛
2⁄ ⌋) + 𝑐 𝑛,         𝑛 ≥ 2

𝑑,                                                       𝑛 = 1
 

It is easy to prove by induction that the solution is 

𝑇(𝑛) ≤ 𝑐𝑛⌈log 𝑛⌉ 

The proof is left to the student as exercise.  


