SQUARE FUNCTIONS AND UNIFORM RECTIFIABILITY
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ABSTRACT. In this paper it is shown that an Ahlfors-David n-dimensional measure p on
R? is uniformly n-rectifiable if and only if for any ball B(zo, R) centered at supp(u),

R
A /JCEB(xO,R)

Other characterizations of uniform n-rectifiability in terms of smoother square functions
are also obtained.

w(B(z,r))  p(B(z,2r)) ’ du(z) dr <cR"
rn (2r)™ T .

1. INTRODUCTION

Given integers 0 < n < d, a Borel set E C R%is said to be n-rectifiable if it is contained in
a countable union of n-dimensional C'! manifolds and a set of zero n-dimensional Hausdorff
measure H". On the other hand, a Borel measure p in R? is called n-rectifiable if it is of the
form p = g H"|g, where F is a Borel n-rectifiable set and g is positive and H" integrable on
E. Rectifiability is a qualitative notion, but David and Semmes in their landmark works
[DS1] and [DS2] introduced the more quantitative notion of uniform rectifiability. To
define uniform rectifiability we need first to recall the notion of Ahlfors-David regularity.

We say a Radon measure p in R? is n-dimensional Ahlfors-David reqular with constant
[&)) if

(1.1) co'r™ < u(B(x,r)) < cor™ for all @ € supp(u), 0 < 7 < diam(supp(p)).

For short, we sometimes omit the constant ¢y and call u n-AD-regular. It follows easily
that such a measure p must be of the form p = hH"|,pp(), Where h is a positive function
bounded from above and from below.

An n-AD-regular measure p is uniformly n-rectifiable if there exist 8, M > 0 such that
for all x € supp(u) and all » > 0 there exists a Lipschitz mapping p from the ball B, (0,)
in R” to R? with Lip(p) < M such that

w(B(x,r) N p(Bp(0,1))) > 6r".
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When n = 1, p is uniformly 1-rectifiable if and only if supp(u) is contained in a rectifiable
curve in R? on which the arc length measure satisfies (1.1). A Borel set E C R? is n-AD-
reqular if p = H"|g is n-AD-regular, and it is called uniformly n-rectifiable if, further,
H"|g is uniformly n-rectifiable. Thus p is an uniformly n-rectifiable measure if and only if
i = hH"| g where h > 0 is bounded above and below and E is an uniformly n-rectifiable
closed set.

Uniform rectifiability is closely connected to the geometric study of singular integrals.
In [Dal] David proved that if £ C R? is uniformly n-rectifiable, then for any convolution
kernel K : R%\ {0} — R satisfying

(1.2) K(—z)=—K(z) and ’VJK(x)‘ <cjle| " for x € RI\ {0}, 1 =0,1,2,...,

the associated singular integral operator Tk f(z) = [ K(z—y) f(y) dH"|r(y) is bounded in
L*(H"|g). David and Semmes in [DS1] proved conversely that the L?(H"|g)-boundedness
of all singular integrals Tk with kernels satisfying (1.2) implies that E is uniformly n-
rectifiable. However if one only assumes the boundedness of some particular singular
integral operators satisfying (1.2), then the situation becomes much more delicate.

In [MMV] Mattila, Melnikov and Verdera proved that if E is an 1-AD regular set, the
Cauchy transform is bounded in L?(H"|g) if and only if E is uniformly 1-rectifiable. It is
remarkable that their proof depends crucially on a special subtle positivity property of the
Cauchy kernel related to the so-called Menger curvature. See [CMPT] for other examples
of 1-dimensional homogeneous convolution kernels whose L2-boundedness is equivalent
to uniform rectifiability, again because of Menger curvature. Recently in [NToV] it was
shown that in the codimension 1 case, that is, for n = d — 1, if ¥ is n-AD-regular, then
the vector valued Riesz kernel z/|x|"*! defines a bounded operator on L?(H"|g) if and
only if F is uniformly n-rectifiable. In this case, the notion of Menger curvature is not
applicable and the proof relies instead on the harmonicity of the kernel x/|z|"™!. Tt is an
open problem if the analogous result holds for 1 <n < d — 1.

In this paper we prove several characterizations of uniform n-rectifiability in terms of
square functions. Our first characterization involves the following difference of densities

Ay, r) = MBSﬂ) _ M(B(;f;fr))

and reads as follows.

Theorem 1.1. Let p be an n-AD-reqular measure. Then p is uniformly n-rectifiable if
and only if there exists a constant ¢ such that, for any ball B(xg, R) centered at supp(u),

R dr
(1.3) L] iswnPdu) T < e
0 JzeB(zo,R) r

Recall that a celebrated theorem of Preiss [Pr] asserts that a Borel measure p in R?

u(B(z,r))

a.e. z € R% In a sense, Theorem 1.1 can be considered as a square function version of
Preiss’ theorem for uniform rectifiability. On the other hand, let us mention that the “if”
implication in our theorem relies on some of the deep results by Preiss in [Pr].

It is also worth comparing Theorem 1.1 to some earlier results from Kenig and Toro
[KT], David, Kenig and Toro [DKT] and Preiss, Tolsa and Toro [PTT]. In these works

is n-rectifiable if and only if the density lim, . exists and is positive for p-
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it is shown among other things that, given a > 0, there exists S(a) > 0 such that if p is
n-AD-regular and for each compact set K there exists some constant cx such that

w(B(z,r))  pw(B(z,tr))
™ (tr)™

<cgr® forl<t<2 ze KnNsupp(u), 0 <r <1,

then y is supported on an C'*# n-dimensional manifold union a closed set with zero u-
measure. This result can be thought of as the Holder version of one of the implications in
Theorem 1.1.

We also want to mention the forthcoming work [ADT] by Azzam, David and Toro
for some other conditions on a doubling measure which imply rectifiability. One of the
conditions in [ADT] quantifies the difference of the measure at different close scales in
terms of the Wasserstein distance Wi. In our case, the square function in Theorem 1.1
just involves the difference of the n-dimensional densities of two concentric balls such that
the largest radius doubles the smallest one.

Motivated by the recent work [LM] studying local scales on curves and surfaces, which
was the starting point of this paper’s research, we also prove smooth versions of Theorem
1.1. For any Borel function ¢ : R* — R let

sot(x)ztin@ (%),DO

and define
App(z,t) = /(%(y —x) — pa(y — x)) du(y),

whenever the integral makes sense. If ¢ is smooth, let
Op(x,t) = t0s pi(x)
and define
Bpslast) = [ 0,00 = 2.0) duly),

again whenever the integral makes sense. Our second theorem characterizes uniform n-
rectifiable n-AD-regular measures using the square functions associated with A, , and

A,uﬁ(p'

Theorem 1.2. Let ¢ : RY — R be of the form e ™" with N € N, or (1 + |z[2)~®, with
a>n/2. Let u be an n-AD-regular measure in R?. The following are equivalent:

(a) w is uniformly n-rectifiable.
(b) There exists a constant ¢ such that for any ball B(xg, R) centered at supp(u),

R 2 dr n
(1.4) 1Ay (z,7)|"dp(x) — < cR™.
0 JzeB(xo,R) r
(¢) There exists a constant ¢ such that for any ball B(xo, R) centered at supp(iu),
f A 2 dr n
(1.5) |Ap(@, )" du(z) — < cR".
0 JzeB(zo,R) r

The functions ¢; above are radially symmetric and (constant multiples of) approximate
identities on any n-plane containing the origin. The definitions of A, ,(x,t) and A, ,(x,1)
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arise from convolving the measure p with the kernels ¢ () — ¢o(x) and 9, (x,t), respec-
tively. Note that ¢;(x) — p2i(x) is a discrete approximation to d,(x,t). Note also that

the quantities A, (z,t), Ay (2, t) and Ay o (z,7) are identically zero whenever p = H"|p,
L is an n-plane, and x € L.
For each integer k > 0, let

ﬁzw(:r,t) = /8:2(31 —x,t) du(y), where 632(1%) = tkoFpy ().
Similarly, let
A (ot = [ D* i) (y = ) duty),
where
D*[pi(z) = DM [Dgi](x), and Dey(x) = ¢u(@) — par().

By arguments analogous to the ones of Theorem 1.2, we obtain the following equivalent
square function conditions for uniform rectifiability.

Proposition 1.3. Let ¢ : RY — R be of the form e~ 1*"" | with N € N, or (1 + |z|?)™,
with a > n/2. Let u be an n-AD-regular measure in R? and k > 0. The following are
equivalent:

(a) w is uniformly n-rectifiable.

(b) There exists a constant cj such that for any ball B(zo, R) centered at supp p,

"’ AY 2 gu(e) & < o R”
(1.6) | Mo(a;,r)| () = c, R".
0 JzeB(zo,R)
(¢) There exists a constant ¢y such that for any ball B(xzo, R) centered at supp p,
R Ak 2 dr n
(17) B ()P du(n) < e B
0 IGB(I(),R)

Proposition 1.3 is in the same spirit as the characterization of Lipschitz function spaces
in Chapter V, Section 4 of [St].

There are other characterizations of uniform n-rectifiability via square functions in the
literature. Among the most relevant of these is a condition in terms of the S-numbers of
Peter Jones. For = € supp(p) and r > 0, consider the coefficient

" . dist(y, L)
pi (z,r) = inf /B T du(y),
where the infimum is taken over all n-planes L. Like A, (z,7), 81 (x,r) is a dimensional
coefficient, but while S{'(x,r) measures how close supp(p) is to some n-plane, A, (z,r)
measures the oscillations of p. In [DS1], David and Semmes proved that p is uniformly
n-rectifiable if and only if ' (z,7)2dz % is a Carleson measure on supp(u) x (0,00), that
is, (1.3) is satisfied with A, (z,r) replaced by B (z,r).

The paper is organized as follows. In Section 2 we provide the preliminaries for the
proofs of Theorems 1.1 and 1.2. In Section 3 we show first that the boundedness of
the smooth square functions in (1.4) implies uniform rectifiability. We then show, using
convex combinations, that (1.3) implies (1.4), and thereby establish one of the implications
in Theorem 1.1. Then we show by a simple argument that (1.5) implies (1.4) and thereby
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establish another of the implications in Theorem 1.2. In Section 4 we prove that uniform
n-rectifiability implies (1.4) and (1.5), and thus complete the proof of Theorem 1.2. In
Section 5 we prove that (1.3) holds if x is uniform n-rectifiable; this is the most delicate part
of the paper because of complications which arise from the non-smoothness of the function
T "XB0,r) — (21) "X B(0,2r)- Finally, in Section 6 we outline the proof for Proposition 1.3.

Throughout the paper the letter C stands for some constant which may change its value
at different occurrences. The notation A < B means that there is some fixed constant C'
such that A < CB, with C as above. Also, A = B is equivalent to A < B < A.

2. PRELIMINARIES

2.1. The David cubes. Below we will need to use the David lattice D of “cubes”
associated with p (see [Da2, Appendix 1], for example). Suppose for simplicity that
(R = oco. In this case, D = Ujez D; and each set @ € Dj, which is called a cube,

satisfies 1(Q) ~ 277" and diam(Q) ~ 27/. In fact, we will assume that
¢ 1277 < diam(Q) < 277,

We set £(Q) := 277. For R € D, we denote by D(R) the family of all cubes QeD
which are contained in R. In the case when u(R?%) < oo and diam(supp(u)) ~ 277, then
D=U >0 Di- The other properties of the lattice D are the same as in the previous case.

2.2. The « coefficients. The so called « coefficients from [Tol] play a crucial role in our
proofs. They are defined as follows. Given a closed ball B C R? which intersects supp (),
and two finite Borel measures o and v in R? | we set

distg(o,v) := sup{‘ffda - ffdy) : Lip(f) <1, supp f C B},

where Lip(f) stands for the Lipschitz constant of f. It is easy to check that this is indeed
a distance in the space of finite Borel measures supported in the interior of B. See [Ma,
Chapter 14] for other properties of this distance. Given a subset A of Borel measures, we
set

distp(u, A) := inf distp(y, o).
oceA

We define

1
a,(B) = infL distp(u, cH|”L),

r(B)rt >0
where 7(B) stands for the radius of B and the infimum is taken over all the constants
¢ > 0 and all the n-planes L such that L N %B # @. To simplify notation, we will write
a(B) instead of aj;(B).

Given a cube @ € D, let By be a ball with radius 10£(Q) with the same center as Q.
We denote

a(Q) = a(Bg).

We also denote by c¢g and Lg a constant and an n-plane minimizing a(Q).
The following is shown in [Tol].
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Theorem 2.1. Let u be an n-AD-reqular measure in R®. If p is uniformly n-rectifiable,
then there exists a constant ¢ such that

(2.1) Z a(Q)? Q) < cu(R) for all R € D.

QCR

2.3. The weak constant density condition. Given p satisfying (1.1), we denote by
G(C, €) the subset of those (z, ) € supp(p) X (0, 00) for which there exists a Borel measure
0 = 0, satisfying

(1) supp(o) = supp(p),

(2) the AD-regularity condition (1.1) with constant C,

(3) |o(B(y,t)) —t"| < er™ for all y € supp(p) N B(x,r) and all 0 < ¢t < r.
We remark that the error term in (3) is in terms of " and not of ¢".

Definition 2.2. A Borel measure p satisfies the weak constant density condition (WCD)
if there exists a positive constant C such that the set

G(C,¢e)" == [supp(p) x (0,00)]\ G(C,¢)

is a Carleson set for every ¢ > 0, that is, for every € > 0 there exists a constant C(¢) such
that

R T
(2.2) /O /B e ) dute 0% <R

for all z¢ € supp(u) and R > 0.

Theorem 2.3. Letn € (0,d) be an integer. Ann-AD-regular measure p in R is uniformly
n-rectifiable if and only if it satisfies the weak constant density condition.

David and Semmes in [DS1, Chapter 6] showed that if p is uniformly n-rectifiable,
then it satisfies the WCD. In [DS2, Chapter II1.5], they also proved the converse in the
cases when n = 1,2,d — 1. The proof of the converse for all codimensions was obtained
very recently in [To2]. The arguments rely on two essential and deep ingredients: the
so called bilateral weak geometric lemma of David and Semmes [DS2], and the (partial)
characterization of uniform measures by Preiss [Pr].

3. BOUNDEDNESS OF SQUARE FUNCTIONS IMPLIES UNIFORM RECTIFIABILITY

In this section we assume that either p(z) = e "™ with N € N, or ¢(z) = (1+|z[?)™@
with @ > n/2, as in Theorem 1.2. We will show that if (1.3), (1.4) or (1.5) holds, then p
is uniformly n-rectifiable. We work first with the case of (1.4) and afterward derive the
other two cases from it.

We denote by U(¢p, ¢p) the family of n-AD-regular measures with constant cg in R? such
that

Ay p(x,7) =0 forall > 0 and all x € supp(u).

Lemma 3.1. For all € > 0 there exists § > 0 such that all n-AD-reqular measures p with
constant ¢y and 0 € supp(u) such that
—1

/ / Apple, 7)) du(z) dr < 6,
xEB 0,0~
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satisfy
distp(o,1) (1 U(p, c0)) < &

Proof. Suppose that there exists an € > 0, and for each m > 1 there exists an n-AD-regular
measure [, with constant ¢y such that 0 € supp(um),

m 1
(3.1) [ Sty dr <
1/m JzeB(0,m) m
and
(3.2) dist p(o,1) (1tm, U(p, c0)) = &.

By (1.1), we can replace {u,} by a subsequence converging weak * (i.e. when tested
against compactly supported continuous functions) to a measure p and it is easy to check
that 0 € supp(u) and that p is also n-dimensional AD-regular with constant c¢y. We claim
that

(3.3) /0 b / Bl du(e) dr =0,

The proof of (3.3) is elementary. Fix mg and let n > 0. Because of (1.1) and the decay
conditions assumed for ¢ there exists A > 2mg so that

(3.4) sup / / iz — ) — ool — y)ldv(y)du(z) < -
1/mo<t<mg J B(0,2mg) J |z—y|>A mo

whenever v satisfies (1.1) with constant co. Set K = [1/mg, mq] x B(0,2mg) and let Y
be a continuous function with compact support such that xp( 4) < X < 1. Then, writing

() = () — par(x) we have by (3.4)
J [ 1 =50 < no)dutayie <.
and by (3.1)
//K |(XWt) * pian () | dptrn () dt < 1 + %

Now {y — X(x — y)¥u(x —y), (t,z) € K} is an equicontinuous family of continuous

functions supported inside a fixed compact set, which implies that (1) * un, (z) converges

to (x¥¢) * p(x) uniformly on K. It therefore follows that

5) [[ Wesutlduye < n+timsap [ G @) dian )t < 20
K m z€B(0,mo)

mo

1/mo
Since 7 is arbitrary the left side of (3.5) vanishes, and since this holds for any mg > 1, our
claim (3.3) proved.

By continuity it follows that ¢, * u(x) is constant on (0, 00) x supp(u). In other words,
€ U(p, co). However, by condition (3.2), letting m — oo, we have

dist g(o,1) (11, U (s, c0)) = €,

because distp(o,1)(-,U(¢, o)) is continuous under the weak * topology, see [Ma, Lemma
14.13]. So p € U(p, cp), which is a contradiction. O

By renormalizing the preceding lemma we get:
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Lemma 3.2. Let u be an n-AD-regular measure such that xo € supp(p). For all e > 0
and r > 0 there exists a constant § > 0 such that if

5 1r
/ / 1A ()| da() dt < 577,
sr zE€B(z0,6717)

then

diStB(xQ,r) (M,Z/{(QO, CO)) <er™th

Proof. Let T : R? — R? be an affine map which maps B(zg,r) to B(0,1). Consider
the image measure o = T%T#,u, where as usual T#u(E) := u(T-1(E)), and apply the
preceding lemma to o. ([

Definition 3.3. Given n > 0, a Borel measure p in R? is called n-uniform if there exists
a constant ¢ > 0 such that

w(B(x,r)) =cr™ for all x € supp(p) and r > 0.

We will denote by U(c) the collection of all n-uniform measures with constant c¢. By
the following lemma, it turns out that U(¢p,-) and U(-) coincide.

Lemma 3.4. Let f:[0,00) — [0,00) be defined either by f(x) = e~ for some N € N,
orby f(x) =1 +z)"? fora>1. Let u be a n-dimensional AD-regular Borel measure in
R?. Then p is n-uniform if and only if there exists some constant ¢ > 0 such that

(3.6) /f(‘x ZQyP)d,u(y) =ct" for all x € supp(p) and t > 0.

Proof. For f(x) = e~* this lemma is due to De Lellis (see [DeL, pp. 60-61]) and an
identical proof works for the functions of the form f(z) = e~ We provide a similar
proof for the case f(z) = fo(z) = (1 4+ x)~®. It is clear that (3.6) holds if x is n-uniform.
Now assume (3.6) and set Df(x) =z f'(z). We claim that

(3.7) span{D™f :m > 0} is dense in L'((0, 00)).
To verify (3.7) we note that

1 1
fa(x) + " Dfa(.I) = (1 + l‘) 1ma = fa+l(33),
so that fo41 € span{Dm fa:im > 0}. Hence by induction we see that whenever P is a
polynomial with P(0) = 0,
(3.8) (1+2) 77 *P((1+2)"") € span{D™f, : m > 0}.
Moreover if P is the algebra of functions of the form P((14x)~!) where P is a polynomial
with P(0) = 0, an application of the Weierstrass approximation theorem as in [DeL,

Lemma 6.14] shows that P is dense in Cp((0,00)). Therefore for any ¢ > 0 and any
h € Cy((0,00)) there exists some P € P such that

[P —(1+2)"h|le < e

Hence we deduce that the functions on the left side of (3.8) form a dense subset of
L'((0,00)), and (3.7) follows.
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Now let B be the set of g € L'((0,00)) for which there is a constant ¢, such that

/gcx;wvdmw=wﬁ“

Then f € B, by the hypothesis (3.6). Differentiating (3.6) with respect to ¢ shows that
Df(x) =z f'(x) € B with constant —2cn independent of z. Then by induction and (3.7)
B contains a dense subset of L'((0,00)). Since B is closed in L'((0,00)), it follows that
X(0,1) € B and the lemma is proved. O

Lemma 3.5. If up € U(p,co) then p is supported on an n-rectifiable set.
Proof. Since p € U(p, cp) we have

(3.9) Qo—k * (X)) — ok * p(x) =0 for all £ > 0 and all x € supp(u).
Now consider the function F : R — R defined by

Pla) = Y2 gy 0 (o) — o » @)

k>0

Taking into account that |pg—k * pu(x) — ok * p(x)| < ¢ for all x € R? and k € N, we see
that F(z) < oo for all z € R?%, and so F is well defined. Moreover, by (3.9) we have F = 0

on supp(y).
Now we claim that F(z) > 0 for all z € R%\ supp(y). Indeed, it follows easily that

klim Yok * p(z) =0 for all z € R4\ supp(u),
—00

while, by the n-AD-regularity of p,

lim inf por * pu(x) > eyt for all x € R%.
k—o0

Thus if € R\ supp(p) we have g1 * () — @or * u(z) # 0 for all large k > 0, which
implies that F'(x) > 0 and proves our claim.

We have shown that for u € U(p, cp), supp(u) = F~1(0). Next we will show F~1(0)
is a real analytic variety. Notice that the lemma will follow from this assertion because
supp(u) has locally finite H"™ measure, so that the analytic variety F~!(0) is n-dimensional
and any n-dimensional real analytic variety is n-rectifiable.

To prove that the zero set of F' is a real analytic variety it is enough to check that
Yok * [L — @ok * [ is a real analytic function for each k£ > 0, because the zero set of a
real analytic function is a real analytic variety and the intersection of any family of real
analytic varieties is again a real analytic variety; see [Na]. So it is enough to show that
@, % is a real analytic function for every r > 0.

In the case p(x) = e~ consider the function f : C¢ — C defined by

Fetreozi) = 5 [ oo (—r—w (ij@ - zm)N) Auly).

It is easy to check that f is well defined and holomorphic in the whole C¢, and thus
o % 4 = f|ga is real analytic.
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In the case p(z) = (1+ |2|2)™%, a > n/2, for (z1,...,24) € C? we take

[z, 2a0) = rin /(1 +r? i(yz‘ - Zi)2> B du(y).

This is a holomorphic function in the open set

V:{zGCd:|Imzi|<2dT71/2f0r1§i§d}.

Indeed, for z € V', we have
d d

d
3
Re (14772 P — 2 2> = 14772 i—Rez)?—(Imz)?) > 1—r2 Imz)? > =.
(147 S > (5~ Rez)*~ (Im=)?) SUEES
O

i=1
Thus f is well defined and holomorphic in V', and so ¢, % i = f|pa is real analytic.

Theorem 3.6. If u € U(p,co) then w is n-uniform.

Proof. It u € U(p, o), then @, x u(x) = @o, * u(x) for all x € supp(p) and all » > 0, and
consequently

(3.10) Ok x () = @pxp(x)  forall 1 <r <2 all k € Z, and all = € supp(p).
By the preceding lemma p is of the form
p=pH"E,

where p is some positive function on E bounded from above and below and E C R? is an
n-rectifiable set. This implies that the density

0" (z.11) = ling M52

exists at p-a.e. € R see [Ma, Theorem 16.2]. It then follows easily that

lim @, * u(z) exists at p-a.e. x € RY
e—0

and with (3.10) this implies that
(3.11) ©p, * (x) = pr, * u(z)  for all Ry, Ry > 0 and p-a.e. x € RY,
Notice that
Vien+n)(e) = [ Venlo =) dulw).

and by decomposing this integral into annuli centered at z, using the fast decay of Vg
at oo and the fact that p(B(z,7)) < cor™ for all r > 0, we easily see that

c
(312 IV (o i)l < 2
with ¢ depending on ¢y. Thus as R — oo the right side of (3.12) tends to 0 and we
conclude that from (3.11) that

or, * 1W(x) = ¢r, * pu(y)  for all Ry, Ry > 0 and all z,y € supp(u).

Therefore, by Lemma 3.4, p is n-uniform. O

We return to Lemma 3.2 and the proof that (1.4) implies uniform n-rectifiability.
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Lemma 3.7. Let i be an n-AD-reqular measure in R such that xo € supp(u). For all
e > 0, there exists a constant § := d(e) > 0 such that if, for some r > 0,

[ Ao D dpa() 2 < 4y,
Sr x€B(xo,6—17) t

then there exists some constant ¢; > 0 such that

(3.13) [W(B(y, 1)) — crt”| <er”
for ally € B(xzg,r) Nsupp(p) and 0 <t < r.

Proof. Let € > 0. By Cauchy-Schwarz, we have

51y
Lo Bt duto)de
or z€B(xo,6~1r)

" 12 s, 1/2
< [/ | Bpip (@, 1) 2 dia(a) t] [/ JI— dt]
1) x€B(x0,6~11) or z€B(z0,6~1r)

c[5”+4 rn] 2 [5_2 r? w(B(zo, 5_17"))] V2

<c [5(n+4)/2 Tn/2} [5—(71—0—2)/2 T(n+2)/2:| — et

Hence for any €1 > 0 we see that if § is small enough then by Lemma 3.2,

diStB(xo,3r) (:U’a U(QO, CO)) <é it

and there exists o € U(cy) such that distp(y, 3, (1, 0) < e1 ™! for a suitable constant c;.

Let y € B(xp,r) and for 0 < ¢t < r consider a smooth bump function X, such that
XByt) < Xt < XB(yt(14n) and [[VXytlleo < %, where 7 is some small constant to be
determined later. For y € B(zg,r) and for 0 < t < r, we have

‘ [ Fi@rin@) ~ [ yetwriota)

(3.14) "
- : err”
< HVX%tHOO dlStB(xo,ST)(Ma U) <c nt .
Therefore by (3.14) and Lemma 3.4, for 0 < ¢ < r,
~ ~ g rtl
W(B0) < [ Rpuo)du(e) < [ Ryala)dota) +
(3.15) . !
<ert™(1+ )"+ .
>~ C]1 n 77t )
and
n+1
~ err
WB0) > [, 2 @)= [ R, o @) dote) -
(3.16) - " K

" €1 rn+1

C &
NEEROE nt

v
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Choosing n and €1 appropriately, we get that for some small €5 := e3(e1,7),

rn—&-l
(3.17) 1(B(y,1) — at"| < e ( : w) |

Hence if t > £5'/?r, then because t" < r"*1/t,

nt1
[(B(y,1)) — art"| < ce 1"17 < el
2 /27'

On the other hand, if t < £2'/2r, then by the AD-regularity of s,
(B(y, 1)) — e1t"| < p(B(y, 1) + eat™ < e(ea'/?)" ™.

Therefore, since limg, 0402 = 0, (3.13) holds if €; and 7 are sufficiently small. U

Lemma 3.8. Let p be an n-AD-regular measure. Assume that |A, ,(z,7)|? du(x) % is a
Carleson measure on supp(u) X (0,00). Then the weak constant density condition holds

for .

Proof. Let ¢ > 0 and let A := A. C R? x R consist of those pairs (z,7) such that (3.13)
does not hold. We have to show that

R
d
/ / xa(x,r)du(zx) a <c¢(e) R" for all z € supp(u), r > 0.
0 JzeB(zR) r

To this end, notice that if (z,r) € A, then

Y dt
/ / = ‘Almp(y’ t)|2 du(y) — > gnta ",
or yEB(x,0=1r) t

where § = §(¢) is as in Lemma 3.7. Then by Chebychev’s inequality,

R

[ e
0 z€B(z,R)

R 1 /5‘“" dt dr

< —_— Aoy, ) duly) — | du(z) —

/0 /zeB(z,R) ortdrn \ Js, yEB(m,J_lr)’ o9 )] ) t (z) r

§— 1R 51t (B( 6_1r)) dt
< Apo(y, 1) / B2 1) gy du(y) —.
/0 /|yZ|<(1+6—1)R’ o0 0) 5t gntd pntl () t

51t -1 51t
B(y,6 'r —9(n dr —9(n
/ M(‘ng n+l )*)dr <o A +2)/ — <o HnHS)
5t 4 r 5t r

dr
T

But since

I

we then get

R
/ / yale,r) du(z)
0 JzeB(z,R)

—2(n+3) R 2 dt —3n—7 pn
<cyd Aoy, )" du(y) — < cé R™,
0 ly—z|<(1+6-1)R t

which is what we needed to show. O

dr
.

As an immediate corollary of Theorem 2.3 and Lemma 3.8 we obtain the following.
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Theorem 3.9. If i is an n-AD-reqular measure in R and if ¢ is a constant such that for
any ball B(xo, R) with center xo € supp(u),

R 9 dr
/ / Al )2 dp(a) T < eR™,
0 z€B(zo,R) r

then p is uniformly n-rectifiable.

Corollary 3.10. Suppose that for any ball B(xo, R) centered at supp(u)

R dr
I/ Ao, )2 du() L < R
0 JzeB(zo,R) r

Then u is uniformly n-rectifiable.

Proof. We will show that (1.3) implies (1.4), by taking a suitable convex combination, and
then apply Theorem 3.9.
For R > 0 we seek a function ¢g : (0,00) — (0,00) such that

1 = 1 -
(3.18) T R? = / ﬁX[U:T](s)(pR(T) dr = / Pr(r) dr, for s> 0.
0 s

rn

Differentiating with respect to s we get

2s —522 QOR(S) .

_Rn+2 enrt = sn

Hence (3.18) is solved for R > 0 and s > 0 by
_ ogntl 2
QOR(S) = W@ R2

Using (3.18) we can now write, for x € supp(u), and any R; > 0,

S dR 0 dR
/0 B B = | Mor = oam) = plo)

= [TV ot D@aeyan) s ate) = ([~ Soxont- Dontr) ar ) <t -

By a change of variables we get
— —z|)p dr = — —z|)p dr.
| soxont=ah@ntdr = [ ooy = a)za(r) dr

Therefore, using Cauchy-Schwarz and the fact that fooo ¢r(r)dr < 1, we obtain

/OOO |App(z, R |2 / < —XB(0,) () — (271«) XB(0,2r) (- )) s pu(x) Gr(r) dr

/ / () Plr) dr O
<[ (/0 ¢R<>dR)|A (e, ) dr.
Moreover,

o dR X s \ntl -2 dR 2 e 2 1
~ Y _ 5 o _ = tn+1 —t dt < iy
/0 Pr(r) R /0 (R) R 7‘/0 ‘ ~or

2 dR

R
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Hence we infer that

0 o dr > dr
| 18ueerr L s [T iauenp L,
0 r 0 r

which shows that (1.3) implies (1.4). O

Corollary 3.11. Suppose that for any ball B(xo, R) centered at supp(u)

R ~ dr
I/ B, du(e) L < R
0 JzeB(zo,R) r

Then p is uniformly n-rectifiable.

Proof. We will show that (1.5) implies (1.4) by calculus and Cauchy-Schwarz and Theorem
3.9 again.
By calculus

2r
dt
Applz,r) = Aﬂcp(x t)— 7

r

so that by Cauchy-Schwarz

2r dt 2r dt 2r dt
]Au#,(a:,r)]Q S/ t/ ‘Au,w(xvt)F? SlogZ/ ’Auso(l’ t)‘2 0

Therefore

Ir dt d
// Ao (2, )| Pdp () <log2/ // Ay oz, t)*— Tu()
(20, R B(o,R) t
2R 2t dr\ ~
< 10g2/ / / —)|Au,¢(x,t)|2—d,u(x).
B(zo,R) J0 t T ¢

) 2R th
< (log 2) |A (1) 7dﬂ($)7
B(z0,2R) J0

so that (1.5) implies (1.4). O

4. UNIFORM RECTIFIABILTY IMPLIES BOUNDEDNESS OF SMOOTH SQUARE FUNCTIONS

Let h : R? — R be a smooth function for which there exist positive constants ¢ and e
such that
c c

(4.1) |h(z)] < A and |Vh(z)| < A5 a)iee

for all z € R?. Furthermore assume that
(4.2) [ by = 2)ary0) =0

for every n-plane L and every x € L. For r > 0, denote

ho(z) = — h (5) .

rm r
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Theorem 4.1. Let u be an n-AD-reqular measure in R®. If p is uniformly n-rectifiable,
then there exists a constant ¢ such that

R dr
(43) I/ e+ ()P dia(2) L < e R,
0 z€B(zo,R) r

for all zy € supp(u), R > 0.

Because the functions ¢ () — ¢2¢(x) and d,(x,t) have the form h; for functions with h
satisfying (4.1) and (4.2), Theorem 4.1 establishes the remaining parts of Theorem 1.2.

Proof. 1t is immediate to check that the estimate (4.3) holds if and only if for all Ry € D

20(Q) . , dr
(4.4 Py /Q /m) e+ (o) 55 du(o) < cn(Ro).

Let « € $Bg and £(Q) < r < 20(Q). If x € 3Bg N Lg (recall that L is the n-plane
minimizing «(Q)), we have

/ hely — @) dH]y, () = 0.

Hence

[ty =) dut)| =| [ 1oty = )l - et )

where Yg, k > 0, are bump smooth functions such that

b Z/@o Xk =1

o [[VXklloo < (@),

® XA(z,2k 1,26+ 1) < Xk < XAz 251 p2k+2 ) fOr k> 1, and
® XB(z,r) <Xo < XB(z,2r)-

As usual A(z,r1,7m2) = {y : r1 < |y — 2| < r2}. Moreover for m € N, Q™ denotes the
ancestor of @ such that £(Q™) = 2™4(Q).
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Set Fi.(y) = hr(r — y)Xx(y), and notice that supp Fj, C Bgr+2. Then

‘/ — T d,u ‘ /F]C - CQk+2/H&Qk+2)(y)‘
k>0
+ Z / CQHIL ch+2H|nLQk+2)(y)‘
k>0
(4.5) < Z HVFkHoo a(ka—i-Q) E(Qk+2)n+l
k>0
+ Y IVFlloo disti, ., (coHy,,, cqreMly L)
k>0
=1L+ I

For y € supp Fj, using (4.1) it follows easily that

oy — )| < - (“Q)>"+€ and  [Vhy(y— o) S (“Q>)>"H+€.

1Q" \ QY = i \ier
Hence
1 1 E(Q) n+e 1 E(Q) n+l+e E(Q)a
WO} IVF~ 5 gaom gy (W)) )G <€(Q’“)> S fQryE

We can now estimate Iy:

1S Y a@ @y i =S e (1)

S g(Qk)n—f—l—l—a - (Qk
(4.7) < UZ . <€(Q)> =
- PeD:PDQ Z(P)

For I, using also [Tol, Lemma 3.4] in the first inequality, we get

LY W)LH( > a(Qj>)e<@k+2>“+1

k>0 0<5j<k+2

<Zli) (5.0@)
k>0 0<j<k+2

0Q)\°

(4.8) < a(p) (49
ZI:QDQ PGD%C:PcR (K(R))

0Q)\°

oo > ()

ReD:RDOP

- z; 0 (i)

I
wM
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Therefore by (4.5), (4.7) and (4.8), for z € 1By N Lg and £(Q) < r < 26(Q),

(49) [n-naw|s ¥ ar(F8)

PeD:POQ

On the other hand, given an arbitrary z € @, let 2’ be its orthogonal projection on L
(notice that 2’ € 1Bg). We have

[ vt =2 anto)] < | [ 1ot - 2y ant| + /rhr@—x)—hxy—x’»du(m

(4.10) / e (g — ) — ho(y — )| dps(y)
R4\ B
=13+ Iy + Is.
For £(Q) < r < 20(Q), by (4.9),
1Q)\°
(4.11) I < op) (LQY
’ P@ZPDQ <£<P>>

We can now estimate Iy and I5 using (4.1). First

(4.12) Ii < /B ;fQ_)i’ldu(w S Wf(@)” _ dist(z, Lg)
Q

Moreover, noticing that if y ¢ Bg and £ € [y — =,y — 2] we have that |y — z| =~ ||,

S [ it sw VO

¢ely—zy—a']
|z — 2| e
4.13 S
(4.13) S0 | WO+ g =2 du(y)
dist(z, L
< dist(, Lo)U(Q) Q)™ % = W

Hence by (4.10), (4.11), (4.12) and (4.13), we get the following pointwise estimate for
r € Qand £(Q) <r <20Q):

. < dist(z, Lo) N HQ)\°
(1.14) ool s g+ 3 alr) (i) -
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Therefore,

L

2
QEDQCRO/ /(2;()Q (PED DQa(P) (igg;)) e(dcg)dﬂ(l‘)

o o (i) o

QED:QCRy

QED QCRo

0Q)\° HQ)\°
+ ) Y a(P)? (5 ) (Q),
QeD:QCRy (PED:PDQ <£(P)) ) (PED:PDQ <£(P)) ) 8

where we used Cauchy-Schwarz for the last inequality. By [Tol, Lemmas 5.2 and 5.4],

3 / dls” LQ du(w) S 1(Ro).

QED:QCRy

Finally,

QEDZQ:CRO (PG;DQQ(P)Q <ﬁ§?g§>a) (PG;DQ <§Eg;>8) 1@
S > ey (ﬁﬁi;)am)

QeD:QCRy PeD:QCPCRy

E 15
! E’DZQCRO PGIDZPDR a(P)Q <£Eg;> M(Q)
l c l c
s > arr ¥ (fm) e X ({2 we)

PeD:PCRy QED:QCP QeD:QCRy

S Y. aP)Y’u(P)+ p(Ro) S p(Ro),
PeD:PCRy

where the last inequality follows from Theorem 2.1. O
Theorem 1.2 now follows from Theorem 3.9, Corollary 3.11 and Theorem 4.1.

5. UNIFORM RECTIFIABILTY IMPLIES BOUNDEDNESS OF SQUARE FUNCTIONS: THE
NON-SMOOTH CASE

By Corollary 3.10 we already know that condition (1.3) implies the uniform n-rectifiability
of p, assuming u to be n-AD-regular. So to complete the proof of Theorem 1.1 it remains
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to show that (1.3) holds for any ball B(zo, R) centered at supp(p) if p is uniformly n-
rectifiable. To this end, we would like to argue as in the preceding section, setting

1
Or = 7"7 XB(0,r) (l‘)a T € Rdv

and
hr = ¢r - ¢2r~

The main obstacle is the lack of smoothness of h,. To solve this problem we will decompose

h, using wavelets as follows.

Consider a family of C' compactly supported orthonormal wavelets in R”. Tensor
products of Daubechies compactly supported wavelets with 3 vanishing moments will
suffice for our purposes, see e.g. [Mal, Section 7.2.3]. We denote this family of functions
by {¥§}reprn),1<e<2n—1, where D(R") is the standard grid of dyadic cubes in R™. Each
¥$ is a C! function supported on 51, which satisfies ||¢)$[|2 = 1, and moreover

1 . 1

where /(I) is the sidelength of the cube I. Recall that any function f € L?(R™) can be
written as

f= > (fuHur

IeD(R™)

To simplify notation and avoid using the € index, we consider 2" — 1 copies of D(R") and
we denote by D(R™) their union. Then we can write

f= > (fvnr,
IeD(R")
with the sum converging in L?(R").
In particular, we have
~ 1
(5.1) h = XB,(0,1) = 50 XBa(0.2) = > aryy
1€D(R™)

where B,,(0,7) stands for the ball centered at 0 with radius r in R™ and

1
aj = <XBH(0,1) ~ 5 XBa(0.2)> ¢I>-
So we have
~ 1 1
hy = o XBn(O,r)(x) - (2 ) XBn( 02r Z ar *wl ( )
I€D(R™)

Notice that we have been talking about wavelets in R™ although the ambient space of
the measure y and the function h,. is Rd, with d > n. We remark that we chose to work
with wavelets in R™ mainly because the functions h, have zero mean in R", while this is
not the case for the functions h, in R<.
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We identify R™ with the “horizontal” subspace of R? given by R™ x {0} x ... x {0} and

we consider the following circular projection IT : R? — R™. For z = (x1,...,14) € R? we
denote ! := (21,...,2,) and ¥ = (2py1,...,2q9). If 2T # 0 we set
|z|
T) = —

If 25 =0, we set II(x) = (|z|,0,...,0), say. Observe that in any case |z| = |II(z)|.
Notice also that

be(2) = 2 X0 T(0)) = s X0 (1) = 3 ar i ().
IED(R")
Thus,
(5.2) hexp(z) = Y Cuwl( ()> ().
I€D(R™)

Observe that the functions v¢; are smooth, and so one can guess that the a coefficients
of [Tol] will be useful to estimate v; ( ))  u(x). Concerning the coefficients a; we have:

Lemma 5.1. For I ¢ ﬁ(R”), we have:
(a) If 51 N (0B, (0,1) UDB,(0,2)) = @, then ar = 0.
(b) If ¢(I) > 1, then |ag| < 0(I)~1—m/2,
(¢) If £(I) < 1, then |ag| < 0(1)™2.

Proof. The first statement follows from the fact that the wavelets ¢); have zero mean in R"
and that h = XB”(OJ)—Q% XB,(0,2) is constant on supp ¢ if 51N (8Bn (0,1)U0B, (0, 2)) =g
The statement (c) is immediate:

lar| = l/?bwldﬂf

Finally (b) follows from the smoothness of ¢y and the fact that I has zero mean. Indeed,

< |Wrlly S €)™ [rll2 = €(1)™2.

lar| =

/ () (Wr(z) — r(0)) de
B"(O,Q)

~ 1
< 2[[VYrllso /hl dr S oD

O

By estimating vy <$) « () in terms of the a(Q)’s, using some arguments in the

spirit of the ones in [MT], below we will prove the following.

Theorem 5.2. Let u be an n-AD-reqular measure in R, If p is uniformly n-rectifiable,
then there exists a constant c such that

R 9 dr
(5.3) I/ e+ ()P dia(2) L < e R,
0 JzeB(zo,R) r

for all xy € supp(p), R > 0.
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5.1. Preliminaries for the proof of Theorem 5.2. It is immediate to check that the
estimate (5.3) holds if and only if for all R € D

)2 dr
(5.4) / /(Q) D g5 @) < eu(R),

QED:QCR

Let 6 > 0 be some small constant to be fixed below. To estimate the preceding integral
we can assume that (1000Q) < §2. Otherwise we have

e ()] < 1 < 2000
and, by Theorem 2.1,
/ / e+ () Pdrda()
(5.5) a(ﬁ)%opcgizs?
S5 Y a(000QPMQ) S 5u(R).
QeD(R)

Since the functions h, are even, we have

hy * p(x) = /hr(y —z)dp(y).

Recalling (5.2), we get

hesple)=— > aI/m( )du(y)-

JeD R™)
By Lemma 5.1, a; = 0 whenever 5I N (9B,(0,1) U 0B,(0, )) = . Therefore it will be
enough to sum over those I such that 51 N (0B,(0,1) U 0B,(0,2)) # @ and the domain
of integration of each 11 <$) is IT=Y(r - 5I).

Notice that 51 stands for the cube from R™ concentric with I with side length equal to
5¢(I). On the other hand, given a set A C R", we write

r-A={r-ceR": z e A}.

So -5 =r-(5]) is a cube in R™ with side length 5r¢(I) which is not concentric with [
unless [ is centered at the origin.
We set

hy * pu(z) = ri” > ar /wf (H(yr_w)> du(y)

IeD(R"):£(I)>1/100

(5.6) . Tin 3 ar / by (W) du(y)

IeD(R™):£(I)<1/100
=: Fr(z) + Gy(x),



22 VASILEIOS CHOUSIONIS, JOHN GARNETT, TRIET LE, AND XAVIER TOLSA

so that
20(Q
|y ()] dp(z)
el st < 5 e
dr
N | ()| du(x)
I / / MO gy
a(1000Q)>52
(5.7) 2@ P e
o // I gy 4

(1000Q) <52

3 @) du(e)

+ // du(x

Oehoch, ‘e
2(1000Q) <52

=: IO+11+12.

As shown in (5.5), we have

1
Iy < 51 n(R).

Thus to prove Theorem 5.2 it is enough to show that I; + Iz < ¢(0) p(R).

5.2. Estimate of the term [; in (5.7). We first need to estimate F;.(x). To this end,
we take @ € D and r > 0 such that z € Q and £(Q) < r < 2¢(Q). We also assume that
L¢ (the best approximating plane for o(Q)) is parallel to R™.

Let I € D(R™) be such that ¢(I) > 1/100 and 5I N (0Bn(0,1) UdB,L(0,2)) # @. Let
P := P(I) € D be some cube containing ) such that ¢(P) ~ r{(I) =~ £(Q)¢(I). Let also
¢p be a smooth bump function such that xsp < ¢p < xBp, [|[Vér|ew <1, and ¢p =1 on
x+ 1~ Y(r-5I). Then

Jor (P dut = [ o (P ) duto) = [ ont v (P dut,

Lemma 5.3. Let I € D(R™) be such that £(I) > 1/100 and 5IN(9B,,(0,1)UIB,(0,2)) # @
and let P = P(I) as above. We have

6= du<y>‘s<ﬁ§§)m W+SGD§5cpa(2s) (py.

Proof. Without loss of generality we assume that x = 0. Let Ly be the plane parallel to
L passing through 0 (that is, Ly = R™) and denote by T+ the orthogonal projection onto
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Lo. Then
[ (P aut) = [ ortrer (M2) dut
= [orw (or (M) o (2 o
(5.9) v [ ort) v (W> A — My, ) ()

=

) e

T 7

Since ¥y (Hl(y)) = (ﬂ) for y € Ly, and ¢p =1 on r- 51, we get

(5.10) Ay = cP/ b1 (g) dy = 0.
51 r
We now proceed to estimate As:
(5.11

)
01 < | [ o0 or (2 dtu ety )

r

er [ onto) v () dr, - L))

) r
o (oo (1)

from the definition of the & numbers and the fact that cp = 1. Using the gradient bounds
for the functions ¢p and 17, and the fact that ¢(P) ~ rf(I) ~ ¢(Q)¢(I), we get

v (o0 v (19 | < 1vonttont+ v (v (19 |

11 1 11 11 (6(@))"/2“

S WP iR T iy S 0Q) d e 6Q) \iP)

We also remark that in the previous estimate we used the fact that ||II*||, < 1, which
does not hold for the spherical projection II.
Furthermore, by [Tol, Lemma 5.2 and Remark 5.3],

diStH(Lp N Bp, Lo N Bp) < diStH(LP N Bp, LQ N Bp) + diSt(O, LQ)
(5.13) < ) a(S)P) +dist(0, Lg).

SeD:QCScP
Therefore, by (5.11), (5.12), and (5.13),

n/2 is
(5.14) 42| S (ﬁg;) (P)" ( 2 a9+ dtf((OI;)LQ)) '

SeD:QCcScP

+

(a(P) £(P)"*! + dist g (Lp N Bp, Lo N Bp)L(P)"),

o0

S ‘

(5.12)
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We now estimate the term Aj:

i = | [orw) (v (M) = (2 i)

(5.15) < WX’ /B M(y) — I (y)| dpa(y)
1 E(Q) n/2+1
S m (f(P)) /BP TI(y) — Hl(yﬂ du(y).

It is easy to check that
(5.16) [TI(y) = T (y)| < dist(y, Lo).
Furthermore, as in (5.13), for y € Bp,
dist(y, Lo) < dist(0, Lg) + dist(y, Lg)
< dist(0, Lg) + dist(y, Lp) + disty(Lp N 3Bp, Lo N 3Bp)

S dist(0, Lo) + dist(y, Lp) + Y. a(S)I(P).
SeD:QCSCP

(5.17)

Therefore, by (5.15), (5.16), and (5.17),

1 E(Q) n/2+1 ' .
| A4 Sm <£(P)> (dlSt(()’LQ)f(P)

+/BP dist(y, Lp) du(y) + L(P)" ™ > a(5>>

SeD:QCScP

0Q)\"™? ( dist(0, L .
s(ﬁi) <€<(P) Q) | 3 a(2S)) oP)y",

(5.18)

SeD:QCcScP

where we used that, by [Tol, Remark 3.3],
| distly: Le)duty) S azP)eP).
Bp

The lemma follows from the estimates (5.9), (5.10), (5.14), and (5.18).
Lemma 5.4. We have

(5.19) B ()] S dlSt )4 > a 49)

) SeD:SDOQ ( )

Proof. Recalling that P = P(I) D @, by (5.8),

1 ¢ 2 dist(x, L .
@ S ggr 2 led(gpay) | et S ee9) [4por

IeD(R™): SeD:
2(1)2(1/12)0 QCScP()
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Using (b) from Lemma 5.1,

£(Q dist(x, L
F@s Y gui()))( DY ()a(QS))

IeD(R™):£(1)>1/100, SeD:QCScP(I

P(1)>Q

< Z Q) | dist(x, Lg) N Z a(25)

- PeD: POQ K(P) E(P) SeD:QCSCP

B dist(z, Lg) ¢(Q) N U(Q)

I P DR NP DR
dist(z, Lg) N @

SThg 2 Iy

SeD:SOQ

Lemma 5.5. The term I; in (5.7) satisfies
I S pu(R).
Proof. By (5.19),

2
(5.20) ns Y /(dm ) 4 3 a(ZS)i((Q))) dyu(z).

QeD(R)

By Cauchy-Schwartz,

(5:21) ( 2 aﬂS)ig;) < > a(QS)zi(Q)' . i((g)).

SeD:SOQ

Since Y gep.so0 7 E—)) S,

ns Y /<dlSt ) + > Y g))(@)

(5.22) QeD(R) QED(R) SED:SDQ
=: 51 + Ss.

By [Tol, Lemmas 5.2 and Lemma 5.4] and Theorem 2.1, we obtain S; < p(R). We now
deal with the term S5:

DI SERTCUC IR DI SERED & )

(5.23) QED(R) SED-QCSCR QeD(R) SED:52R
=: S91 + S22.
Using just that «(2S5) <1,
Q) (Q
(5.24) Soo < Z Z T Z M(Q)EE; 5 N(R).

QED(R) SED:SOR QeD(R)
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Finally, using Fubini and Theorem 2.1,
UQ)

(5:25)  Sm< ) 0@’ >, GEmQI >, a@S)u(s)Su®).
SeD(R) QeD:QCS SeD(R)
By (5.22), (5.23), (5.24), and (5.25) we obtain I < u(R). O

5.3. Estimate of the term I, in (5.7). It remains to show that Io < p(R). Recall that
the cubes in the sum corresponding to I in (5.7) satisfy a(1000Q) < §2.

We need now to estimate G,(x) (see (5.6)) for x € @ and (Q) < r < 2{(Q). Recall
that

(5.26) Gr(z) = 1 > ar /@bl <H(yr—x)> du(y)-

IeD(R™):£(I)<1/100

The arguments will be more involved than the ones we used for F.(z).
To estimate G,(z) we now introduce a stopping time condition for P € D: P belongs

to g[) if
(1) P C 1000 Q, and

(2) Xsep:pcscionog ¥(1005) < 6.

The maximal cubes in D\ Gy may vary significantly in size, even if they are neighbors, and
this would cause problems. For this reason we use a quite standard smoothing procedure.
We define

(5.27) ((y) := inf (¢(P)+dist(y, P)), yeR%,
PegGy

and

5.28 d(z) = inf f(y), zeR™

(5.28) (2) UL ), =

Lemma 5.6. The function £(-) is 1-Lipschitz, and the function d(-) is 3-Lipschitz.

Proof. For simplicity we assume that z = 0. The function ¢(-) is 1-Lipschitz, as the
infimum of the family of 1-Lipschitz functions {¢(P) + dist(-, P)} peg,-

Let us turn our attention to d(-). Let 2,2’ € R" and ¢ > 0. Let y € II"!(z) such that
l(y) < d(z) +e. Consider the points

!
yozﬂy and zp=— z.
|yl

Notice that II(yp) = z0. Let L,, be the n-plane parallel to R™ which contains yy and
consider the point {y'} = II"1(2’) N L,,. That is, ¢/ is the point which fulfils the following
properties:

y
=1, y"= |‘Z,, 2V =y

Observe that
lyo| = [20] = |Z/\ = !y’!.
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Since yy =3V, this implies that |yd!| = |y'¥|. Furthermore,

H 'H 1H
Y Y Yy
v — o) = Iyl — /"] = ||y00||20— ',y,| | = ||y,’||zo—2/|§|zo—z’.
Moreover,
2’|
ly —yol = [z — 20| = T = |l2| = 1| < |z = 2|

Hence,
ly =1 <1y —wol +lyo —y'| < |2 = 2| +]20 - #|
<|z=2|+20—z2|+]z— 7| < 3]z =7
Then, using that ¢ is 1-Lipschitz and (5.3),
d(z) <L) <ly—y'[+Ly) <3|z = 2| +d(2) +e.

Since £ > 0 was arbitrary we deduce that d(z') < 3|z — 2/| + d(z). In the same way one
gets that d(z) < 3|z — 2| + d(Z). O

For ¢ small enough, the condition a/(1000 Q) < §? guarantees that any cube P C 1000 Q
such that ¢(P) = ¢(Q) belongs to Gy, in particular ¢(y) < ¢(Q) for all y € 1000 Q.
Furthermore since Gy # @, we deduce that £(y), d(z) < oo for all y € R?, z € R™.

Now we consider the family F of cubes I € D(R™) such that

(5.29) rdiam(/) < inf d(z).

5000 zer-I

Let Fy C F be the subfamily of F consisting of cubes with maximal length. In particular
the cubes in Fy are pairwise disjoint. Moreover it is easy to check that if I, J € Fy and

(5.30) 201 N20J # @,
then £(1) = ¢(J). B
We denote by G(z,r) the family of cubes I € D(R"™) which satisfy

o UI) < 15
e 5/ N (0B,(0,1)U0B,(0,2)) # o,
° (m + I (r - 5])) Nsupp(u) # &, and
e [ is not contained in any cube from Fj.

We denote by 7 (x,r) the family of cubes I € D(R™) which satisfy
o U(I) < 185,

e 51N (0By(0,1)U0B,(0,2)) # o,

e (z+II"Y(r-5I)) Nsupp(p) # @, and

o [ € Fy.
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Now we write

Gr(:c):— > af/w( )du()

IEQ(JJ )

(531 D I STy Y e P

I€T (z,r) JeD(R®): JCT
= G’r,l( ) + Gr,?( )7

so that
20(Q
dr
ks 2 // 1@ gy @
QED QCR,

«(1000Q) <52

(532) 20(Q 2 dr
+ Z / / du(x)
QED:QCR, E(Q)
«(1000Q) <52
=: Iy + 2.

First we will deal with the term G, 1(x). To this end we need several auxiliary lemmas.
Lemma 5.7. If I € G(z,r), then there exists P := P(I) € D with {(P) =~ r{(I) such that
supp(u) N (z + 17 (r - 51)) C 3P.

Proof. Notice that, by definition, supp(u) N (x +II71(r - 5I)) # @. Observe also that the
conclusion of the lemma holds if £(r - 5I) ~ £(Q) because a(1000Q) < §2.
So assume that £(r - 5I) < ¢(Q) and consider z € r - 51. Since I € G(z,r), I ¢ Fo, and
d is 3-Lipschitz, we have
d(z) < corl(I),
for some absolute constant cz. Take y € x + 171 (r - 5I) such that
U(y) < 2corl(I).
Let € = cor€(I). By definition, there exists some cube P’ € Gy such that
((P') + dist(y, P') < l(y) +¢& < 3ear £(1).
Let A > 10 be some big constant to be fixed below. Suppose that there are two cubes
Py, P1 € D which satisfy the following properties
(i) re(I) < £(Po) = £(Py) < 107(1),
(ii) dist(Py, P1) > AE(PO),
(iii) PN (@ + 117 (r - 51)) # @ for i = 1,2.
Suppose that dist(FPy, P") > dist(Py, P’). Then from (ii) we infer that
diSt(P[), P,) 2 AE(PQ)
Let P” € D such that Py U P’ C 3P” with minimal side length, so that ¢(P") =~
U(Py) +£(P") +dist(Py, P"). Since a(1000Q) < 62 and £(Py),{(P1),{(P") < £(Q), it follows
easily that we must also have ¢(P") < £(Q). It is not difficult to check that either

Bi(P")y> 46, or AL(Lpr,Lg)> 0.
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In either case one has

Yoo a9 >

SeD: P"CSCQ

We deduce that
> a(1008) > 4,

SeD: P'CSCQ

because P’ C 3P”. This contradicts the fact that P’ € Gy.
We have shown that a pair of cubes Py, P; such as the ones above does not exist. Thus,
if Py € D satisfies

rl(1) < L(Ppy) < 10rL(Q),
and
Pon(z+II7(r-51)) # 2,

then any other cube P; for which these properties also hold must be contained in the ball
B(zp,,c3 AUF)), where zp, stands for the center of Py and c3 is some absolute constant.
Hence letting P = P(I) be some suitable ancestor of Py, the lemma follows. (]

Lemma 5.8. Let I € G(z,r) and let P = P(I) € D be the cube from Lemma 5.7, so that
supp(p) N (z + O~Y(r - 5I)) C 3P. We have
(5.33)

o ("D | < (BD) [ 5 g B e

SeD:PCSCQ

Proof. Without loss of generality we assume that £ = 0 and as before we let Ly = R™
be the n-plane parallel to Lg containing 0. Let also yp € Bp Nsupp(u) be such that
dist(yp, Lp) < a(P)¢(P). The existence of such point follows from [Tol, Remark 3.3] and
Chebychev’s inequality. We also denote by L p the n-plane parallel to Ly which contains

yp. We set op = CP’H|”L and op = CP’H‘"Z . Let ¢p be a smooth function such that
P

XBp < qﬁp < x38p and |[Voéplleo < €(P)71. Since a(P) is assumed to be very small, we
have II™X(r - 51) N Lp C Bp. Then we write

[ (") aut) = [ oty or () auto)
(5.34) = /¢P(?J)¢I <r@> (du(y) — dop(y))

+/¢P(y)¢1 (HS/)) (dop(y) — dop(y /¢I ( ) dop(y)

=: A1 + Ay + As.
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Now we turn our attention to Aj:

[orws (H“")) (duly) — dGP@))'
<|lv (W/’f( >>H

(7 <>n/2 i )“PW)M

(P
UQ)
~ (i) " eomer.
where we used that ¢(P) =~ ¢(I)¢(Q) and that |VII||

the subspace HL_l({O}).
We will now estimate the term As. We have

[ ovtwn (M) rpte) - @)
As in [Tol, Lemma 5.2],

L(Lp,Lp)=4(Lp,Lo) S Y.  aS)
SeD:PCSCQ

|A1] =

(5.35)

< 1 on Bp since Bp lies far from

~

|Ag| =

Therefore,

diStH(ZpﬂBp,LpﬁBp) S Z a(S)E(P),
SeD:PCSCQ
and, as in (5.35),

| Ay < Hv <¢pzp1 ( S >>> HOO ¢(P)™ disty (Lp N Bp, Lp N Bp)

@ n/2 . .
5(“)) . > (S)¢(P)".

€D:PCSCQ

(5.36)

We now consider As. Let B be a ball centered in L such that supp v (;) C B and
diam(B) < ¢(P). For some constant ¢, with 0 < ¢, < 1, to be fixed below, we write

(5.37)

o ()0 -

er [or (L) am ) >\

< CP/UJI dIH C*CP/ll)I Hip, (Y )‘
Cx CP/¢I Hip, (y )‘
IVerlloo . n
gﬁdwt (Hﬂ-llL ,ex ML),

where in the last inequality we took into account that ¢, cp < 1 and that [p, 17 (%) dy = 0.
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Notice that the map H‘L Lo need not be affine and so the term dlstB(HﬁHM ,C*HFLO)

requires some careful analysis. Anyway, we claim that, for some appropriate constant
e <1,

~

dist(0, L n
(5.38) dlStB(HﬁHlL yesMry) S < Z a(S) + E((Q)Q)> (P,

SeED:PCSCQ

which implies that

0Q)\™? dist(0, L .

12 (19)7 (g, oS00
SeED:PCSCQ

Notice that the lemma is an immediate consequence of the estimates we have for A;, A

and A3.

To conclude, it remains to prove the claim (5.38). This task requires some preliminary
calculations and we defer it to Lemma 5.9. U

Our next objective consists in comparing the measures II;H™ and 7—[| Lo from the

|Lp

|Lp—Lo
identifying both Lp and Ly with R™, we also denote by II the corresponding mapping in
R", that is II : R® — R". Then, writing h =y, for y = (y1, ..., Yn, h) we have

2 2 2 2
~ yr 44y + |h h
i(y) = yiy | F— n QH =yl + 57— 1 7
yi++un yi+-+un

preceding lemma. To this end, we consider the map Il :=II~ . Abusing notation,

fori=1,...,n. Hence, fori,57 =1,...,n,
lyl  hPyiy Yl < > Yilj >
8H—6 = 0ij — |h|*——— | ,
IvA Tllya P Tyel Y [y lym|?
where ¢;; denotes Kronecker’s delta. For y € P,
= ~ lyl  lypl o| Yiyj YP; YP;
05TTi(y) — 0yTLilyp)| < | — 125+ - -
o o "l lyp iy lyellypt|
Moreover,
yl  lypl S 7 e e 7 e 7
Tl B TR P "2 [y B2
_ Uy P A+ 1RP)yE P — (yB P + [hP)ly"?
lyH 12 [yp |2
_PPAyE P =1 )| P Lyl e | = 1y
‘yH‘Q‘yH‘Q PE
_ 2 ap)
~ T3 )
and in a similar manner we get

r3

lylly?|  lyp|lypH|
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Hence

_ _ 2
(5.39) 0,1L(w) - oL (we) 5 M)

Now we write

(5.40)

n

’Jﬁ( ) JH(yP |_ ngn H 0’(] ngn H a(j) yP

]:

Sup\a i(y) — 0;1Li(yp)| (SZUJP ’ajHi(y”nil + SiuJP 10, (yp) ")

S Sup\ajﬂi y) — 0;1Li(yp)|,
Z?]

where the sum is computed over all permutations of {1,...,n} and sgn(c) denotes the
signature of the permutation o. Moreover, in the last inequality we used again that
|VII||s < 1 on Bp since Bp lies far from the subspace HLfl({O}).

Therefore, by (5.40) and (5.39),

~ ~ hl2¢(P
(5.41) |JTI(y) — JO(yp)| < Hr;) for y € P.

Lemma 5.9. Let B be a ball centered in I1(P) with diam(B) < ¢(P). Then

~

n dist(0, L n
aHti,) S Z a(S) + dist(0, Lo) (Pt

dlStB(Hﬁ’H
SeD:PcScQ E(Q)

ILp’

where ¢, = (JI(yp)) L.

Proof. Let f be 1-Lipschitz with supp f C B. Then, recalling that cp = cP’HlL ,

~ |1 [ r A /f y)aHy,

Cx

‘/fd LAY ) —c*/fd"H|LO

~|L F(I(y))dy — f(y)dy‘
Cx R Rn

= |, /W) Ty = [ F(TL) JTy)dy).

where we changed variables in the last line. Now notice that supp f o Il C B’, where B’
is a ball concentric with B such that diam(B) < ¢(P). In addition, since supp f C B and
IV flloo <1 we also get || f|loo < 4(P). Hence, by (5.41),

[ raaa) . [ gan,

< / L) T (yp) — JTI(y)|dy
< LPZ(P) / g(p)dy < W

r3 r
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Moreover, by [Tol, Remark 5.3] and the choice of yp,
B = dist(yp, Lo) < dist(yp, Lg) + dist(Lo, L) S S a(S)U(S) + dist(0, Lq).
SeD:PCSCQ
Hence
n n ZS’GD:PCSCQ a(S)(Q) + dist(0, Lg) n+1
/fd(HﬁHZP) — c*/de|LO < i) (P)

and the lemma follows. O

)

We denote

G(z,r) ={P(I)}1eg(a,r)-
We need the following auxiliary result.

Lemma 5.10. For every a > 1 and every S € D,
> wP) s us),
Peg(x,’/‘):PCaS

with the tmplicit constant depending on a.

Proof. We assume z = 0 for simplicity. Notice that for every P € G (0,7) such that P C a S
there exists some I € G(0,r) such that r¢(I) ~ ¢(P) and r - I C o' II(Bg) where a’ only
depends on a. Therefore

> p(P) <Y {e(r- D" I €G(0,r); v+ I C a'TI(Bg)}
P€g~(0,r);PCaS

< Z{E(T D" : I e DR); r-ICdll(Bg);r-5IN(0B,(0,r) UdB,(0,2r)) # &}

We can now estimate the term G, ;(z) in (5.31).

Lemma 5.11. We have

d(z, Lq)\ n(P)
(5.42) Gra(2)| S Y (a(aP)+ ,
PG&(M)( Q) >M(Q)

for some absolute constant a > 1.

Proof. Using (5.33) and (c) from Lemma 5.1,

Gl =| % X ar o (M) duty

(543) Ieg(0,r)

S S D DENC R L N

Ieg(0,r) \SeD:P(I)CcSCQ
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Notice that by the definition of G(0,r), for every I € G(0,r)
#{PeD:P=PI)} <1

Then

(5.44) G OIS > D a<5>§P 2 dlswLQ)ﬁEg;Z'

PE&(O,T) SeD:PCSCQ PeG(0,r)

If S € D is such that P C S C @Q, then there exists S € G(0,r), with £(S) ~ £(S), such
that S C aS for some a > 1. In fact, since P € G(0,7) we can find I’ € G(0,r) with
O(r - I') ~ £(S) such that II(S) N7 - I’ # @. Therefore we can take S := P(I).

Hence for P € G(0,r),

(5.45) Yo a9 ). a@s).
SeD:PCSCQ SeG(0,r):
PCaSCaQ

Thus, using also Lemma 5.10,

L(P)" 40
Y3 aOges T3 awSgy

Peg(0,r) SEDPCSCQ PeG(0,r) S€G(0,r):
PCaSCaQ
u(P
(5.46) ~ Z a(aS) E;
S€G(0,r): SCaQ PeG(0,r): PCa S
S a(al) Még))
SE&(O,T):SC@Q .
Together with (5.44), this yields (5.42). O

Now we will deal with the term I»; in (5.32).
Lemma 5.12. We have
I S u(R).

Proof. 0 By Lemmas 5.10 and 5.11, and Cauchy-Schwarz,

) d(x,Lq)\? u(P) u(P)
[Cra@)l" 5 (PZ (ctor+ F?) u(Q)) (PZ u(Q))

d(e, Lo)\? u(P)
> (or+ G5t

Peg(z,r)

A
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Then
20(Q 2
d(l‘,LQ)
Z “Q n+1 / / Z ( W) p(P) drdu(x)
QGD(R Peg(x T)
20(Q 2
d(z,Lg)
2 s L@
QGD(R PCa’Q:
chﬁ(aB(x,r)UaB(m,Qr))7é®
By Fubini,

20Q) d(z,Lo)?
/ Z <a(aP)2 + (E(Q)QQ)> w(P)dr
Z(Q) PCa”Q:
cBpNIB(x,r)#2

d(z,Lo)?
-y <a(aP)2+(x’%)> M(P)/ dr
Pca"Q E(Q) {r:¢cBpNdB(z,r)#a}

d(x,LQ)2
< a(aP)? + S22 u(P)U(P),
g@( 0Q)? )“

where we used the fact that if » > 0 is such that ¢Bp N 0B(x,r) # & then
lzp| — cl(P) <r <|zp|+cl(P),

where zp is the center of Bp. Therefore,

In< ). é /Q < P)? + d(z, LQ)2> {(P)

e (Qy

PC //Q

S>> e ) P) )

QED(R) Pcd’'Q

(5.47) o Lo “r)
+Q6§R)€ /Q UQ)? ) peD;Ca,,Q 4(®)) wP)
a(aP)? 4p) d(z. Lo)®
SPGD;CCL”R Pyt QED;QDP q " EZ(R)/Q Q)2 dp(z)

S u(R).

Finally we turn our attention to Iss. Recall that

20(Q dr
Iy = (z)[2 dp(z).
2= QGEQ:CB / / Q) ™

(1000Q)<6?
For x € supp(u) and 7 > 0 set

far( Z Z ajy (W) ;

IeT(x,r) JeD(R"): JCI
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= in / for(y) du(y)

Lemma 5.13. The functions f,, satisfy
® supp fz,r C UIGT(z,r) 3P(I), where I is the father of I,

so that

hd ||fm rlloe S

Proof. We assume again that z = 0. Notice that supp fr, C II"!(r - 5I) N supp(p) and

since I € Fy, we have I € G(z,r). Therefore by Lemma 5.7, IT=(r-5I) Nsupp(p) € 3P(I).
We will now show that || fzr|lcc S 1. Recalling (5.30) if I,.J € Fy and 201 N 20J # &,

~

then £(I) =~ ¢(J). If I € Fo \ T (z,7) or I C J for some J € Fy \ T (x,r), then by Lemma

5.1 ay = 0. Therefore,
II
P =Y X aw (M),

IeFo jeD®Rn): JCTI

=) an(z)

IeFo JCI

We now consider the function

The second assertion in the lemma follows after checking that ||f|jec < 1. To this end,

~

recall that by (5.1), for any k € Z, we have h= Zleﬁ Rn) arr. We can also write
(5.48) ﬁ(z) = Z Zaij Z 6[¢[
Ieﬁk(Rn) JCI IeDy(R™)
where G = <i~z, ¢r) and the functions ¢ satisfy
e supp ¢y C 71,

i ”(ZS[HOO 5 Z(I;-’VL/27

i HV(ZSIHOO rg g([)r}/2+17

o [lorflz =1.
See [Mal, Theorem 7.9]. We note that supp; C 51 and supp ¢; C 71 since we are taking
Daubechies wavelets with 3 vanishing moments, see [Mal, p. 250].
Now let z € Iy for some Iy € Fy with £(Iy) = 2. Notice that

1Bré1lloe < 1611612 < / o) 61(3)|dy £(1) "2
(5.49)

< ol €112 S 612 60D~/ = 1.
By the finite superposition of supp ¢ for I € Dy, (5.49) implies that

> Bioilz

IeD,(R™)



SQUARE FUNCTIONS AND UNIFORM RECTIFIABILITY 37
Therefore by (5.48) we deduce that

(5.50) SN ani(z)| S

Ieﬁk(Rn) JC1

We will now prove that

f(z ajy(z

]EDk(R") JCI

Together with (5.50), this shows that |f(z)| < 1 and proves the lemma. We have

Z Zaﬂ/’t’(z): Z Zaﬂ/’J(z)— Z Zaﬂh

1D, (Rn) JCI IeFy: JCI 1eD,(R™): JCI
(5.51) €Dr(R™) 5INIy#£D 510707&@
S D lass(2),
JeA1NAs
where

Ay ={J e DR") : J C I, for some I € Fy such that 51 NIy # &}

and
Ay ={J € D(R™) : J C I, for some I € Dj(R") such that 51 N Iy # &}

It follows as in (5.49) that |[aj9s||cc S 1. Therefore,

~

D D as()| S#ASL

IeDy(R?) JCI
This follows from the fact that if I € Fy such that 51 N Iy # @ then ¢(I) = {(Ip). O

Lemma 5.14. We have
Io < pu(R).

Proof. Lemma 5.13 implies that

Grale) S gz [ s )iy ()

As noted earlier, for I € T (z, ), the parent of I, denoted by I, belongs to G(z,7). Observe
also that

rdiam(J) <

£
5000 2, d(2),

because T(z,r) € Fo. So every 2/ € r-I C r- I satisfies d(2') > 50007 diam(I) =
2500 r diam(I). This implies that d(z) > r¢(I) for all z € r- I, because d(-) is 3-Lipschitz.
As a consequence, by the definition of d(-), there exists some y € P(I) such that ¢(y) 2
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r0(I) ~ £(P(I)). Then it follows easily that there exists some descendant U of P(I) with
¢(U) ~ £(P(I)) such that
> a(1008) > 6.
S€D:UCSC1000Q
This clearly implies that either

> «(1008) > g
SeD:P(I)CSC1000Q
or
1)
> a(1008) > -

SeD:UcScP(I)
Since ((U) ~ £(P(I)), from the second condition one infers that a(100P(I)) > ¢d. Hence
in either case, for some small constant ¢ > 0,
(5.52) > a(1008) > ¢o.
SeD:PCSC1000Q
Therefore,

Gro@)| S5 ——— S0 w(P) Y a(100S)

n
UQ) IeT (z,r) SeD:PCSC1000Q

<5 LS up S a(009).

PeG(a,r) SeD:PCSC1000Q

> ﬁ(P)n > a(1008)
PeG(z,r) (Q) SeD:PCSC1000Q

is smaller, modulo the constants 1000 and 100, than the right side in (5.44). Therefore by
the same arguments we used for Ia; we get Izo S p(R). O

Notice that

From Lemmas 5.12 and 5.14 we deduce that Iy < u(R). Together with Lemma 5.5 this
completes the proof of Theorem 5.2.

6. PROOF OF PROPOSITION 1.3

We will only prove the equivalence (a)<(b), as (a)<(c) is very similar.

By Theorem 4.1, it is clear that uniform n-rectifiability implies the boundedness of the
square function in (b) for any positive integer k. As for the converse, next we show that
Lemma 3.1 holds with A, , replaced by Aﬁ,@.

Lemma 6.1. Let k be a positive integer. For all € > 0 there exists § > 0 such that all
n-AD-regular measures p with constant co and 0 € supp(u) such that

o1
[ ikl ar <o
5 JzeB(0,671) '

dist p(o,1) (11, U(¢p, c0)) < &.

satisfy
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Proof. Suppose that there exists an € > 0, and for each m > 1 there exists an n-AD-regular
measure fi,, such that 0 € supp(pm),

m 1
6.1 / / AF x, )| dppm () dr < —,
(6.1) U xeg(o’m)\ tomsip (T )| dpin () -
and
(6.2) dist g(0,1) (1tm, U(p, co)) = €

By (1.1) we can replace {i,,} by a subsequence converging weak * (i.e. when tested
against compactly supported continuous functions) to a measure p and it is easy to check
that 0 € supp(u) and that p is also n-dimensional AD-regular with constant c¢y. We claim

that
/ / ]Az(p(as,r)ldu(:ﬂ) dr = 0.
0 JzeRd

The proof of this statement is elementary and is almost the same as the analogous one
in Lemma 3.1. We leave the details for the reader.

Our next objective consists in showing that p € U(p, cp). To this end, denote by G the
subset of those points x € supp(u) such that

(6.3) /0 AE ()| dr = 0,

It is clear that G has full y-measure. For x € G and r > 0, consider the function
fz(r) = ¢r * p(x). Then f, : (0,400) — R is bounded and C'*°, and it follows from (6.3)
that f, is a polynomial in r of degree at most k& — 1, whose coefficients may depend on =x.
However, since u is n-AD-regular, it follows easily that there exists some constant ¢ such
that

|fo(r)| = |pr * p(x)| < ¢ for all 7 > 0.
Thus f,; must be constant on r. So for all x € G and 0 < R; < Ra,
PRy * 1(T) = PRy * ().

This is the same estimate we obtained in (3.11) in Lemma 3.1. So proceeding exactly in
the same way as there we deduce then that

©r, * W(x) = ppr, * u(y) for all z,y € suppp and all 0 < Ry < Ra.
That is, u € U(p, cg). However, by condition (6.2), letting m — oo, we have
diStB(O,l)(:u’u(Soa CO)) > €,

because distp(o,1)(-,U(,co)) is continuous under the weak * topology. So u & U(p,co),
which is a contradiction. O

Applying the previous lemma and arguing in the same way as in Section 3 one proves
the implication (b)=-(a) of Proposition 1.3.
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