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Abstract. In this paper it is shown that an Ahlfors-David n-dimensional measure µ on
Rd is uniformly n-rectifiable if and only if for any ball B(x0, R) centered at supp(µ),∫ R

0

∫
x∈B(x0,R)

∣∣∣∣µ(B(x, r))

rn
− µ(B(x, 2r))

(2r)n

∣∣∣∣2 dµ(x)
dr

r
≤ cRn.

Other characterizations of uniform n-rectifiability in terms of smoother square functions
are also obtained.

1. Introduction

Given integers 0 < n < d, a Borel set E ⊂ Rd is said to be n-rectifiable if it is contained in
a countable union of n-dimensional C1 manifolds and a set of zero n-dimensional Hausdorff
measureHn. On the other hand, a Borel measure µ in Rd is called n-rectifiable if it is of the
form µ = gHn|E , where E is a Borel n-rectifiable set and g is positive andHn integrable on
E. Rectifiability is a qualitative notion, but David and Semmes in their landmark works
[DS1] and [DS2] introduced the more quantitative notion of uniform rectifiability. To
define uniform rectifiability we need first to recall the notion of Ahlfors-David regularity.

We say a Radon measure µ in Rd is n-dimensional Ahlfors-David regular with constant
c0 if

(1.1) c−1
0 rn ≤ µ(B(x, r)) ≤ c0 r

n for all x ∈ supp(µ), 0 < r ≤ diam(supp(µ)).

For short, we sometimes omit the constant c0 and call µ n-AD-regular. It follows easily
that such a measure µ must be of the form µ = hHn|supp(µ), where h is a positive function
bounded from above and from below.

An n-AD-regular measure µ is uniformly n-rectifiable if there exist θ,M > 0 such that
for all x ∈ supp(µ) and all r > 0 there exists a Lipschitz mapping ρ from the ball Bn(0, r)
in Rn to Rd with Lip(ρ) ≤M such that

µ(B(x, r) ∩ ρ(Bn(0, r))) ≥ θrn.
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When n = 1, µ is uniformly 1-rectifiable if and only if supp(µ) is contained in a rectifiable
curve in Rd on which the arc length measure satisfies (1.1). A Borel set E ⊂ Rd is n-AD-
regular if µ = Hn|E is n-AD-regular, and it is called uniformly n-rectifiable if, further,
Hn|E is uniformly n-rectifiable. Thus µ is an uniformly n-rectifiable measure if and only if
µ = hHn|E where h > 0 is bounded above and below and E is an uniformly n-rectifiable
closed set.

Uniform rectifiability is closely connected to the geometric study of singular integrals.
In [Da1] David proved that if E ⊂ Rd is uniformly n-rectifiable, then for any convolution
kernel K : Rd \ {0} → R satisfying

(1.2) K(−x) = −K(x) and
∣∣∇jK(x)

∣∣ ≤ cj |x|−n−j , for x ∈ Rd \ {0}, j = 0, 1, 2, . . . ,

the associated singular integral operator TKf(x) =
∫
K(x−y) f(y) dHn|E(y) is bounded in

L2(Hn|E). David and Semmes in [DS1] proved conversely that the L2(Hn|E)-boundedness
of all singular integrals TK with kernels satisfying (1.2) implies that E is uniformly n-
rectifiable. However if one only assumes the boundedness of some particular singular
integral operators satisfying (1.2), then the situation becomes much more delicate.

In [MMV] Mattila, Melnikov and Verdera proved that if E is an 1-AD regular set, the
Cauchy transform is bounded in L2(Hn|E) if and only if E is uniformly 1-rectifiable. It is
remarkable that their proof depends crucially on a special subtle positivity property of the
Cauchy kernel related to the so-called Menger curvature. See [CMPT] for other examples
of 1-dimensional homogeneous convolution kernels whose L2-boundedness is equivalent
to uniform rectifiability, again because of Menger curvature. Recently in [NToV] it was
shown that in the codimension 1 case, that is, for n = d − 1, if E is n-AD-regular, then
the vector valued Riesz kernel x/|x|n+1 defines a bounded operator on L2(Hn|E) if and
only if E is uniformly n-rectifiable. In this case, the notion of Menger curvature is not
applicable and the proof relies instead on the harmonicity of the kernel x/|x|n+1. It is an
open problem if the analogous result holds for 1 < n < d− 1.

In this paper we prove several characterizations of uniform n-rectifiability in terms of
square functions. Our first characterization involves the following difference of densities

∆µ(x, r) :=
µ(B(x, r))

rn
− µ(B(x, 2r))

(2r)n

and reads as follows.

Theorem 1.1. Let µ be an n-AD-regular measure. Then µ is uniformly n-rectifiable if
and only if there exists a constant c such that, for any ball B(x0, R) centered at supp(µ),

(1.3)

∫ R

0

∫
x∈B(x0,R)

|∆µ(x, r)|2 dµ(x)
dr

r
≤ cRn.

Recall that a celebrated theorem of Preiss [Pr] asserts that a Borel measure µ in Rd

is n-rectifiable if and only if the density limr→0
µ(B(x, r))

rn
exists and is positive for µ-

a.e. x ∈ Rd. In a sense, Theorem 1.1 can be considered as a square function version of
Preiss’ theorem for uniform rectifiability. On the other hand, let us mention that the “if”
implication in our theorem relies on some of the deep results by Preiss in [Pr].

It is also worth comparing Theorem 1.1 to some earlier results from Kenig and Toro
[KT], David, Kenig and Toro [DKT] and Preiss, Tolsa and Toro [PTT]. In these works
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it is shown among other things that, given α > 0, there exists β(α) > 0 such that if µ is
n-AD-regular and for each compact set K there exists some constant cK such that∣∣∣∣µ(B(x, r))

rn
− µ(B(x, tr))

(tr)n

∣∣∣∣ ≤ cK rα for 1 < t ≤ 2, x ∈ K ∩ supp(µ), 0 < r ≤ 1,

then µ is supported on an C1+β n-dimensional manifold union a closed set with zero µ-
measure. This result can be thought of as the Hölder version of one of the implications in
Theorem 1.1.

We also want to mention the forthcoming work [ADT] by Azzam, David and Toro
for some other conditions on a doubling measure which imply rectifiability. One of the
conditions in [ADT] quantifies the difference of the measure at different close scales in
terms of the Wasserstein distance W1. In our case, the square function in Theorem 1.1
just involves the difference of the n-dimensional densities of two concentric balls such that
the largest radius doubles the smallest one.

Motivated by the recent work [LM] studying local scales on curves and surfaces, which
was the starting point of this paper’s research, we also prove smooth versions of Theorem
1.1. For any Borel function ϕ : Rd → R let

ϕt(x) =
1

tn
ϕ
(x
t

)
, t > 0

and define

∆µ,ϕ(x, t) :=

∫ (
ϕt(y − x)− ϕ2t(y − x)

)
dµ(y),

whenever the integral makes sense. If ϕ is smooth, let

∂ϕ(x, t) = t∂t ϕt(x)

and define

∆̃µ,ϕ(x, t) :=

∫
∂ϕ(y − x, t) dµ(y),

again whenever the integral makes sense. Our second theorem characterizes uniform n-
rectifiable n-AD-regular measures using the square functions associated with ∆µ,ϕ and

∆̃µ,ϕ.

Theorem 1.2. Let ϕ : Rd → R be of the form e−|x|
2N

, with N ∈ N, or (1 + |x|2)−a, with
a > n/2. Let µ be an n-AD-regular measure in Rd. The following are equivalent:

(a) µ is uniformly n-rectifiable.
(b) There exists a constant c such that for any ball B(x0, R) centered at supp(µ),

(1.4)

∫ R

0

∫
x∈B(x0,R)

|∆µ,ϕ(x, r)|2 dµ(x)
dr

r
≤ cRn.

(c) There exists a constant c such that for any ball B(x0, R) centered at supp(µ),

(1.5)

∫ R

0

∫
x∈B(x0,R)

|∆̃µ,ϕ(x, r)|2 dµ(x)
dr

r
≤ cRn.

The functions ϕt above are radially symmetric and (constant multiples of) approximate

identities on any n-plane containing the origin. The definitions of ∆µ,ϕ(x, t) and ∆̃µ,ϕ(x, t)
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arise from convolving the measure µ with the kernels ϕt(x)− ϕ2t(x) and ∂ϕ(x, t), respec-
tively. Note that ϕt(x) − ϕ2t(x) is a discrete approximation to ∂ϕ(x, t). Note also that

the quantities ∆µ(x, t), ∆µ,ϕ(x, t) and ∆̃µ,ϕ(x, r) are identically zero whenever µ = Hn|L,
L is an n-plane, and x ∈ L.

For each integer k > 0, let

∆̃k
µ,ϕ(x, t) =

∫
∂kϕ(y − x, t) dµ(y), where ∂kϕ(x, t) = tk∂kt ϕt(x).

Similarly, let

∆k
µ,ϕ(x, t) =

∫
Dk [ϕt] (y − x) dµ(y),

where

Dk[ϕt](x) = Dk−1[Dϕt](x), and Dϕt(x) = ϕt(x)− ϕ2t(x).

By arguments analogous to the ones of Theorem 1.2, we obtain the following equivalent
square function conditions for uniform rectifiability.

Proposition 1.3. Let ϕ : Rd → R be of the form e−|x|
2N

, with N ∈ N, or (1 + |x|2)−a,
with a > n/2. Let µ be an n-AD-regular measure in Rd and k > 0. The following are
equivalent:

(a) µ is uniformly n-rectifiable.
(b) There exists a constant ck such that for any ball B(x0, R) centered at suppµ,

(1.6)

∫ R

0

∫
x∈B(x0,R)

|∆k
µ,ϕ(x, r)|2 dµ(x)

dr

r
≤ ck Rn.

(c) There exists a constant ck such that for any ball B(x0, R) centered at suppµ,

(1.7)

∫ R

0

∫
x∈B(x0,R)

|∆̃k
µ,ϕ(x, r)|2 dµ(x)

dr

r
≤ ck Rn.

Proposition 1.3 is in the same spirit as the characterization of Lipschitz function spaces
in Chapter V, Section 4 of [St].

There are other characterizations of uniform n-rectifiability via square functions in the
literature. Among the most relevant of these is a condition in terms of the β-numbers of
Peter Jones. For x ∈ supp(µ) and r > 0, consider the coefficient

βµ1 (x, r) = inf
L

∫
B(x,r)

dist(y, L)

rn+1
dµ(y),

where the infimum is taken over all n-planes L. Like ∆µ(x, r), βµ1 (x, r) is a dimensional
coefficient, but while βµ1 (x, r) measures how close supp(µ) is to some n-plane, ∆µ(x, r)
measures the oscillations of µ. In [DS1], David and Semmes proved that µ is uniformly
n-rectifiable if and only if βµ1 (x, r)2dxdrr is a Carleson measure on supp(µ)× (0,∞), that
is, (1.3) is satisfied with ∆µ(x, r) replaced by βµ1 (x, r).

The paper is organized as follows. In Section 2 we provide the preliminaries for the
proofs of Theorems 1.1 and 1.2. In Section 3 we show first that the boundedness of
the smooth square functions in (1.4) implies uniform rectifiability. We then show, using
convex combinations, that (1.3) implies (1.4), and thereby establish one of the implications
in Theorem 1.1. Then we show by a simple argument that (1.5) implies (1.4) and thereby
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establish another of the implications in Theorem 1.2. In Section 4 we prove that uniform
n-rectifiability implies (1.4) and (1.5), and thus complete the proof of Theorem 1.2. In
Section 5 we prove that (1.3) holds if µ is uniform n-rectifiable; this is the most delicate part
of the paper because of complications which arise from the non-smoothness of the function
r−nχB(0,r) − (2r)−nχB(0,2r). Finally, in Section 6 we outline the proof for Proposition 1.3.

Throughout the paper the letter C stands for some constant which may change its value
at different occurrences. The notation A . B means that there is some fixed constant C
such that A ≤ CB, with C as above. Also, A ≈ B is equivalent to A . B . A.

2. Preliminaries

2.1. The David cubes. Below we will need to use the David lattice D of “cubes”
associated with µ (see [Da2, Appendix 1], for example). Suppose for simplicity that
µ(Rd) = ∞. In this case, D =

⋃
j∈ZDj and each set Q ∈ Dj , which is called a cube,

satisfies µ(Q) ≈ 2−jn and diam(Q) ≈ 2−j . In fact, we will assume that

c−12−j ≤ diam(Q) ≤ 2−j .

We set `(Q) := 2−j . For R ∈ D, we denote by D(R) the family of all cubes Q ∈ D
which are contained in R. In the case when µ(Rd) < ∞ and diam(supp(µ)) ≈ 2−j0 , then
D =

⋃
j≥j0 Dj . The other properties of the lattice D are the same as in the previous case.

2.2. The α coefficients. The so called α coefficients from [To1] play a crucial role in our
proofs. They are defined as follows. Given a closed ball B ⊂ Rd which intersects supp(µ),
and two finite Borel measures σ and ν in Rd , we set

distB(σ, ν) := sup
{∣∣∣∫ f dσ − ∫ f dν∣∣∣ : Lip(f) ≤ 1, supp f ⊂ B

}
,

where Lip(f) stands for the Lipschitz constant of f . It is easy to check that this is indeed
a distance in the space of finite Borel measures supported in the interior of B. See [Ma,
Chapter 14] for other properties of this distance. Given a subset A of Borel measures, we
set

distB(µ,A) := inf
σ∈A

distB(µ, σ).

We define

αnµ(B) :=
1

r(B)n+1
inf
c≥0,L

distB(µ, cHn|L),

where r(B) stands for the radius of B and the infimum is taken over all the constants
c ≥ 0 and all the n-planes L such that L ∩ 1

2B 6= ∅. To simplify notation, we will write
α(B) instead of αnµ(B).

Given a cube Q ∈ D, let BQ be a ball with radius 10`(Q) with the same center as Q.
We denote

α(Q) := α(BQ).

We also denote by cQ and LQ a constant and an n-plane minimizing α(Q).
The following is shown in [To1].
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Theorem 2.1. Let µ be an n-AD-regular measure in Rd. If µ is uniformly n-rectifiable,
then there exists a constant c such that

(2.1)
∑
Q⊂R

α(Q)2 µ(Q) ≤ c µ(R) for all R ∈ D.

2.3. The weak constant density condition. Given µ satisfying (1.1), we denote by
G(C, ε) the subset of those (x, r) ∈ supp(µ)×(0,∞) for which there exists a Borel measure
σ = σx,r satisfying

(1) supp(σ) = supp(µ),

(2) the AD-regularity condition (1.1) with constant C,

(3) |σ(B(y, t))− tn| ≤ εrn for all y ∈ supp(µ) ∩B(x, r) and all 0 < t < r.

We remark that the error term in (3) is in terms of rn and not of tn.

Definition 2.2. A Borel measure µ satisfies the weak constant density condition (WCD)
if there exists a positive constant C such that the set

G(C, ε)c := [supp(µ)× (0,∞)] \G(C, ε)

is a Carleson set for every ε > 0, that is, for every ε > 0 there exists a constant C(ε) such
that

(2.2)

∫ R

0

∫
B(x0,R)

χG(C,ε)c(x, r) dµ(x)
dr

r
≤ C(ε)Rn

for all x0 ∈ supp(µ) and R > 0.

Theorem 2.3. Let n ∈ (0, d) be an integer. An n-AD-regular measure µ in Rd is uniformly
n-rectifiable if and only if it satisfies the weak constant density condition.

David and Semmes in [DS1, Chapter 6] showed that if µ is uniformly n-rectifiable,
then it satisfies the WCD. In [DS2, Chapter III.5], they also proved the converse in the
cases when n = 1, 2, d − 1. The proof of the converse for all codimensions was obtained
very recently in [To2]. The arguments rely on two essential and deep ingredients: the
so called bilateral weak geometric lemma of David and Semmes [DS2], and the (partial)
characterization of uniform measures by Preiss [Pr].

3. Boundedness of square functions implies uniform rectifiability

In this section we assume that either ϕ(x) = e−|x|
2N

, with N ∈ N, or ϕ(x) = (1+|x|2)−a,
with a > n/2, as in Theorem 1.2. We will show that if (1.3), (1.4) or (1.5) holds, then µ
is uniformly n-rectifiable. We work first with the case of (1.4) and afterward derive the
other two cases from it.

We denote by U(ϕ, c0) the family of n-AD-regular measures with constant c0 in Rd such
that

∆µ,ϕ(x, r) = 0 for all r > 0 and all x ∈ supp(µ).

Lemma 3.1. For all ε > 0 there exists δ > 0 such that all n-AD-regular measures µ with
constant c0 and 0 ∈ supp(µ) such that∫ δ−1

δ

∫
x∈B̄(0,δ−1)

|∆µ,ϕ(x, r)| dµ(x) dr ≤ δ,
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satisfy
distB(0,1)(µ,U(ϕ, c0)) < ε.

Proof. Suppose that there exists an ε > 0, and for each m ≥ 1 there exists an n-AD-regular
measure µm with constant c0 such that 0 ∈ supp(µm),

(3.1)

∫ m

1/m

∫
x∈B̄(0,m)

|∆µm,ϕ(x, r)| dµm(x) dr ≤ 1

m
,

and

(3.2) distB(0,1)(µm,U(ϕ, c0)) ≥ ε.
By (1.1), we can replace {µm} by a subsequence converging weak * (i.e. when tested

against compactly supported continuous functions) to a measure µ and it is easy to check
that 0 ∈ supp(µ) and that µ is also n-dimensional AD-regular with constant c0. We claim
that

(3.3)

∫ ∞
0

∫
x∈Rd

|∆µ,ϕ(x, r)| dµ(x) dr = 0.

The proof of (3.3) is elementary. Fix m0 and let η > 0. Because of (1.1) and the decay
conditions assumed for ϕ there exists A > 2m0 so that

(3.4) sup
1/m0≤t≤m0

∫
B̄(0,2m0)

∫
|x−y|>A

|ϕt(x− y)− ϕ2t(x− y)|dν(y)dν(x) <
η

m0

whenever ν satisfies (1.1) with constant c0. Set K = [1/m0, m0] × B̄(0, 2m0) and let χ̃
be a continuous function with compact support such that χB(0,A) ≤ χ̃ ≤ 1. Then, writing
ψt(x) = ϕt(x)− ϕ2t(x) we have by (3.4)∫∫

K
|((1− χ̃)ψt) ∗ µ(x)|dµ(x)dt < η,

and by (3.1) ∫∫
K
|(χ̃ψt) ∗ µm(x)|dµm(x)dt < η +

1

m
.

Now {y → χ̃(x − y)ψt(x − y), (t, x) ∈ K} is an equicontinuous family of continuous
functions supported inside a fixed compact set, which implies that (χ̃ψt)∗µm(x) converges
to (χ̃ψt) ∗ µ(x) uniformly on K. It therefore follows that

(3.5)

∫∫
K
|ψt∗µ(x)|dµ(x)dt ≤ η+lim sup

m

∫ m0

1/m0

∫
x∈B̄(0,m0)

|(χ̃ψt)∗µm(x)|dµm(x)dt ≤ 2η.

Since η is arbitrary the left side of (3.5) vanishes, and since this holds for any m0 ≥ 1, our
claim (3.3) proved.

By continuity it follows that ϕr ∗ µ(x) is constant on (0,∞)× supp(µ). In other words,
µ ∈ U(ϕ, c0). However, by condition (3.2), letting m→∞, we have

distB(0,1)(µ,U(ϕ, c0)) ≥ ε,
because distB(0,1)(·,U(ϕ, c0)) is continuous under the weak * topology, see [Ma, Lemma
14.13]. So µ 6∈ U(ϕ, c0), which is a contradiction. �

By renormalizing the preceding lemma we get:
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Lemma 3.2. Let µ be an n-AD-regular measure such that x0 ∈ supp(µ). For all ε > 0
and r > 0 there exists a constant δ > 0 such that if∫ δ−1 r

δ r

∫
x∈B̄(x0,δ−1r)

|∆µ,ϕ(x, t)| dµ(x) dt ≤ δ rn+1,

then

distB(x0,r)(µ,U(ϕ, c0)) < ε rn+1.

Proof. Let T : Rd → Rd be an affine map which maps B(x0, r) to B(0, 1). Consider
the image measure σ = 1

rn T#µ, where as usual T#µ(E) := µ(T−1(E)), and apply the
preceding lemma to σ. �

Definition 3.3. Given n > 0, a Borel measure µ in Rd is called n-uniform if there exists
a constant c > 0 such that

µ(B(x, r)) = c rn for all x ∈ supp(µ) and r > 0.

We will denote by U(c) the collection of all n-uniform measures with constant c. By
the following lemma, it turns out that U(ϕ, ·) and U(·) coincide.

Lemma 3.4. Let f : [0,∞)→ [0,∞) be defined either by f(x) = e−x
N

, for some N ∈ N,
or by f(x) = (1 + x)−a, for a > 1. Let µ be a n-dimensional AD-regular Borel measure in
Rd. Then µ is n-uniform if and only if there exists some constant c > 0 such that

(3.6)

∫
f

(
|x− y|2

t2

)
dµ(y) = c tn for all x ∈ supp(µ) and t > 0.

Proof. For f(x) = e−x this lemma is due to De Lellis (see [DeL, pp. 60-61]) and an

identical proof works for the functions of the form f(x) = e−x
N

. We provide a similar
proof for the case f(x) ≡ fa(x) = (1 + x)−a. It is clear that (3.6) holds if µ is n-uniform.
Now assume (3.6) and set Df(x) = x f ′(x). We claim that

(3.7) span
{
Dmf : m ≥ 0

}
is dense in L1((0,∞)).

To verify (3.7) we note that

fa(x) +
1

a
Dfa(x) = (1 + x)−1−a = fa+1(x),

so that fa+1 ∈ span
{
Dmfa : m ≥ 0

}
. Hence by induction we see that whenever P is a

polynomial with P (0) = 0,

(3.8) (1 + x)−1−aP ((1 + x)−1) ∈ span
{
Dmfa : m ≥ 0

}
.

Moreover if P is the algebra of functions of the form P ((1+x)−1) where P is a polynomial
with P (0) = 0, an application of the Weierstrass approximation theorem as in [DeL,
Lemma 6.14] shows that P is dense in C0((0,∞)). Therefore for any ε > 0 and any
h ∈ C0((0,∞)) there exists some P ∈ P such that

‖P − (1 + x)a+1 h‖∞ < ε.

Hence we deduce that the functions on the left side of (3.8) form a dense subset of
L1((0,∞)), and (3.7) follows.
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Now let B be the set of g ∈ L1((0,∞)) for which there is a constant cg such that∫
g

(
|x− y|2

t2

)
dµ(y) = cgt

n.

Then f ∈ B, by the hypothesis (3.6). Differentiating (3.6) with respect to t shows that
Df(x) = x f ′(x) ∈ B with constant −2cn independent of x. Then by induction and (3.7)
B contains a dense subset of L1((0,∞)). Since B is closed in L1((0,∞)), it follows that
χ(0,1) ∈ B and the lemma is proved. �

Lemma 3.5. If µ ∈ U(ϕ, c0) then µ is supported on an n-rectifiable set.

Proof. Since µ ∈ U(ϕ, c0) we have

(3.9) ϕ2−k ∗ µ(x)− ϕ2k ∗ µ(x) = 0 for all k > 0 and all x ∈ supp(µ).

Now consider the function F : Rd → R defined by

F (x) =
∑
k>0

2−k
(
ϕ2−k ∗ µ(x)− ϕ2k ∗ µ(x)

)2
.

Taking into account that |ϕ2−k ∗ µ(x) − ϕ2k ∗ µ(x)| ≤ c for all x ∈ Rd and k ∈ N, we see
that F (x) <∞ for all x ∈ Rd, and so F is well defined. Moreover, by (3.9) we have F = 0
on supp(µ).

Now we claim that F (x) > 0 for all x ∈ Rd \ supp(µ). Indeed, it follows easily that

lim
k→∞

ϕ2−k ∗ µ(x) = 0 for all x ∈ Rd \ supp(µ),

while, by the n-AD-regularity of µ,

lim inf
k→∞

ϕ2k ∗ µ(x) ≥ c c−1
0 for all x ∈ Rd.

Thus if x ∈ Rd \ supp(µ) we have ϕ2−k ∗ µ(x) − ϕ2k ∗ µ(x) 6= 0 for all large k > 0, which
implies that F (x) > 0 and proves our claim.

We have shown that for µ ∈ U(ϕ, c0), supp(µ) = F−1(0). Next we will show F−1(0)
is a real analytic variety. Notice that the lemma will follow from this assertion because
supp(µ) has locally finite Hn measure, so that the analytic variety F−1(0) is n-dimensional
and any n-dimensional real analytic variety is n-rectifiable.

To prove that the zero set of F is a real analytic variety it is enough to check that
ϕ2−k ∗ µ − ϕ2k ∗ µ is a real analytic function for each k > 0, because the zero set of a
real analytic function is a real analytic variety and the intersection of any family of real
analytic varieties is again a real analytic variety; see [Na]. So it is enough to show that
ϕr ∗ µ is a real analytic function for every r > 0.

In the case ϕ(x) = e−|x|
2N

, consider the function f : Cd → C defined by

f(z1, . . . , zd) =
1

rn

∫
exp

(
−r−2N

( d∑
i=1

(yi − zi)2

)N)
dµ(y).

It is easy to check that f is well defined and holomorphic in the whole Cd, and thus
ϕr ∗ µ = f |Rd is real analytic.
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In the case ϕ(x) = (1 + |x|2)−a, a > n/2, for (z1, . . . , zd) ∈ Cd we take

f(z1, . . . , zd) =
1

rn

∫ (
1 + r−2

d∑
i=1

(yi − zi)2

)−a
dµ(y).

This is a holomorphic function in the open set

V =
{
z ∈ Cd : |Im zi| <

r

2d1/2
for 1 ≤ i ≤ d

}
.

Indeed, for z ∈ V , we have

Re

(
1+r−2

d∑
i=1

(yi−zi)2

)
= 1+r−2

d∑
i=1

(
(yi−Re zi)

2−(Im zi)
2
)
≥ 1−r−2

d∑
i=1

(Im zi)
2 >

3

4
.

Thus f is well defined and holomorphic in V , and so ϕr ∗ µ = f |Rd is real analytic. �

Theorem 3.6. If µ ∈ U(ϕ, c0) then µ is n-uniform.

Proof. If µ ∈ U(ϕ, c0), then ϕr ∗ µ(x) = ϕ2r ∗ µ(x) for all x ∈ supp(µ) and all r > 0, and
consequently

(3.10) ϕ2kr ∗ µ(x) = ϕr ∗ µ(x) for all 1 ≤ r < 2, all k ∈ Z, and all x ∈ supp(µ).

By the preceding lemma µ is of the form

µ = ρHnbE,
where ρ is some positive function on E bounded from above and below and E ⊂ Rd is an
n-rectifiable set. This implies that the density

Θn(x, µ) = lim
ε→0

µ(B(x, ε))

(2ε)n

exists at µ-a.e. x ∈ Rd; see [Ma, Theorem 16.2]. It then follows easily that

lim
ε→0

ϕε ∗ µ(x) exists at µ-a.e. x ∈ Rd

and with (3.10) this implies that

(3.11) ϕR1 ∗ µ(x) = ϕR2 ∗ µ(x) for all R1, R2 > 0 and µ-a.e. x ∈ Rd.
Notice that

∇(ϕR ∗ µ)(x) =

∫
∇ϕR(x− y) dµ(y),

and by decomposing this integral into annuli centered at x, using the fast decay of ∇ϕR
at ∞ and the fact that µ(B(x, r)) ≤ c0 r

n for all r > 0, we easily see that

(3.12) ‖∇(ϕR ∗ µ)‖∞ ≤
c

R
,

with c depending on c0. Thus as R → ∞ the right side of (3.12) tends to 0 and we
conclude that from (3.11) that

ϕR1 ∗ µ(x) = ϕR2 ∗ µ(y) for all R1, R2 > 0 and all x, y ∈ supp(µ).

Therefore, by Lemma 3.4, µ is n-uniform. �

We return to Lemma 3.2 and the proof that (1.4) implies uniform n-rectifiability.
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Lemma 3.7. Let µ be an n-AD-regular measure in Rd such that x0 ∈ supp(µ). For all
ε > 0, there exists a constant δ := δ(ε) > 0 such that if, for some r > 0,∫ δ−1 r

δ r

∫
x∈B̄(x0,δ−1r)

|∆µ,ϕ(x, t)|2 dµ(x)
dt

t
≤ δn+4 rn,

then there exists some constant c1 > 0 such that

(3.13) |µ(B(y, t))− c1t
n| < εrn

for all y ∈ B(x0, r) ∩ supp(µ) and 0 < t ≤ r.

Proof. Let ε > 0. By Cauchy-Schwarz, we have∫ δ−1 r

δ r

∫
x∈B̄(x0,δ−1r)

|∆µ,ϕ(x, t)| dµ(x) dt

≤

[∫ δ−1 r

δ r

∫
x∈B̄(x0,δ−1r)

|∆µ,ϕ(x, t)|2 dµ(x)
dt

t

]1/2 [∫ δ−1 r

δ r

∫
x∈B̄(x0,δ−1r)

t dµ(x) dt

]1/2

≤ c
[
δn+4 rn

]1/2 [
δ−2 r2 µ(B(x0, δ

−1r))
]1/2

≤ c
[
δ(n+4)/2 rn/2

] [
δ−(n+2)/2 r(n+2)/2

]
= c δ rn+1.

Hence for any ε1 > 0 we see that if δ is small enough then by Lemma 3.2,

distB(x0,3r)(µ,U(ϕ, c0)) < ε1 r
n+1

and there exists σ ∈ U(c1) such that distB(x0,3r)(µ, σ) < ε1 r
n+1 for a suitable constant c1.

Let y ∈ B(x0, r) and for 0 < t ≤ r consider a smooth bump function χ̃y,t such that
χB(y,t) ≤ χ̃y,t ≤ χB(y,t(1+η)) and ‖∇χ̃y,t‖∞ ≤ c

tη , where η is some small constant to be

determined later. For y ∈ B(x0, r) and for 0 < t ≤ r, we have∣∣∣∣∫ χ̃y,t(x)dµ(x)−
∫
χ̃y,t(x)dσ(x)

∣∣∣∣
≤ ‖∇χ̃y,t‖∞ distB(x0,3r)(µ, σ) ≤ cε1 r

n+1

η t
.

(3.14)

Therefore by (3.14) and Lemma 3.4, for 0 < t ≤ r,

µ(B(y, t)) ≤
∫
χ̃y,t(x) dµ(x) ≤

∫
χ̃y,t(x) dσ(x) + c

ε1 r
n+1

η t

≤ c1t
n(1 + η)n + c

ε1 r
n+1

η t
,

(3.15)

and

µ(B(y, t)) ≥
∫
χ̃y, t

1+η
(x) dµ(x) ≥

∫
χ̃y, t

1+η
(x) dσ(x)− cε1 r

n+1

η t

≥ c1
tn

(1 + η)n
− cε1 r

n+1

η t
.

(3.16)
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Choosing η and ε1 appropriately, we get that for some small ε2 := ε2(ε1, η),

(3.17) |µ(B(y, t))− c1t
n| ≤ ε2

(
rn+1

t
+ tn

)
.

Hence if t > ε2
1/2r, then because tn ≤ rn+1/t,

|µ(B(y, t))− c1t
n| ≤ c ε2

rn+1

ε2
1/2r

≤ c ε1/2
2 rn.

On the other hand, if t ≤ ε2
1/2r, then by the AD-regularity of µ,

|µ(B(y, t))− c1t
n| ≤ µ(B(y, t)) + c1t

n ≤ c(ε2
1/2)n rn.

Therefore, since limε1→0,η→0 ε2 = 0, (3.13) holds if ε1 and η are sufficiently small. �

Lemma 3.8. Let µ be an n-AD-regular measure. Assume that |∆µ,ϕ(x, r)|2 dµ(x) drr is a
Carleson measure on supp(µ) × (0,∞). Then the weak constant density condition holds
for µ.

Proof. Let ε > 0 and let A := Aε ⊂ Rd × R consist of those pairs (x, r) such that (3.13)
does not hold. We have to show that∫ R

0

∫
x∈B(z,R)

χA(x, r) dµ(x)
dr

r
≤ c(ε)Rn for all z ∈ supp(µ), r > 0.

To this end, notice that if (x, r) ∈ A, then∫ δ−1 r

δ r

∫
y∈B̄(x,δ−1r)

|∆µ,ϕ(y, t)|2 dµ(y)
dt

t
≥ δn+4 rn,

where δ = δ(ε) is as in Lemma 3.7. Then by Chebychev’s inequality,∫ R

0

∫
x∈B(z,R)

χA(x, r) dµ(x)
dr

r

≤
∫ R

0

∫
x∈B(z,R)

1

δn+4 rn

(∫ δ−1 r

δ r

∫
y∈B̄(x,δ−1r)

|∆µ,ϕ(y, t)|2 dµ(y)
dt

t

)
dµ(x)

dr

r

≤
∫ δ−1R

0

∫
|y−z|≤(1+δ−1)R

|∆µ,ϕ(y, t)|2
∫ δ−1t

δ t

µ(B̄(y, δ−1r))

δn+4 rn+1
dr dµ(y)

dt

t
.

But since ∫ δ−1t

δ t

µ(B(y, δ−1r))

δn+4 rn+1
dr ≤ c0 δ

−2(n+2)

∫ δ−1t

δ t

dr

r
≤ c0 δ

−2(n+3),

we then get∫ R

0

∫
x∈B(z,R)

χA(x, r) dµ(x)
dr

r

≤ c0 δ
−2(n+3)

∫ δ−1R

0

∫
|y−z|≤(1+δ−1)R

|∆µ,ϕ(y, t)|2 dµ(y)
dt

t
≤ c δ−3n−7Rn,

which is what we needed to show. �

As an immediate corollary of Theorem 2.3 and Lemma 3.8 we obtain the following.
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Theorem 3.9. If µ is an n-AD-regular measure in Rd and if c is a constant such that for
any ball B(x0, R) with center x0 ∈ supp(µ),∫ R

0

∫
x∈B(x0,R)

|∆µ,ϕ(x, r)|2 dµ(x)
dr

r
≤ cRn,

then µ is uniformly n-rectifiable.

Corollary 3.10. Suppose that for any ball B(x0, R) centered at supp(µ)∫ R

0

∫
x∈B(x0,R)

|∆µ(x, r)|2 dµ(x)
dr

r
≤ cRn.

Then µ is uniformly n-rectifiable.

Proof. We will show that (1.3) implies (1.4), by taking a suitable convex combination, and
then apply Theorem 3.9.

For R > 0 we seek a function ϕ̃R : (0,∞)→ (0,∞) such that

(3.18)
1

Rn
e
−s2
R2 =

∫ ∞
0

1

rn
χ[0,r](s)ϕ̃R(r) dr =

∫ ∞
s

ϕ̃R(r)

rn
dr, for s > 0.

Differentiating with respect to s we get

− 2s

Rn+2
e
−s2
R2 = − ϕ̃R(s)

sn
.

Hence (3.18) is solved for R > 0 and s > 0 by

ϕ̃R(s) =
2sn+1

Rn+2
e
−s2
R2 .

Using (3.18) we can now write, for x ∈ supp(µ), and any R1 > 0,∫ ∞
0
|∆µ,ϕ(x,R)|2 dR

R
=

∫ ∞
0
|(ϕR − ϕ2R) ∗ µ(x)|2 dR

R

=

∫ ∞
0

∣∣∣ (∫ ∞
0

1

rn
χ[0,r](| · |)ϕ̃R(r) dr)

)
∗ µ(x)−

(∫ ∞
0

1

rn
χ[0,r](| · |)ϕ̃2R(r) dr

)
∗ µ(x)

∣∣∣2 dR
R
.

By a change of variables we get∫ ∞
0

1

rn
χ[0,r](|y − x|)ϕ̃2R(r) dr =

∫ ∞
0

1

(2r)n
χ[0,2r](|y − x|)ϕ̃R(r) dr.

Therefore, using Cauchy-Schwarz and the fact that
∫∞

0 ϕ̃R(r) dr . 1, we obtain∫ ∞
0
|∆µ,ϕ(x,R)|2 dR

R
=

∫ ∞
0

∣∣∣∣∫ ∞
0

(
1

rn
χB(0,r)(·)−

1

(2r)n
χB(0,2r)(·)

)
∗ µ(x) ϕ̃R(r) dr

∣∣∣∣2 dR

R

.
∫ ∞

0

∫ ∞
0
|∆µ(x, r)|2ϕ̃R(r) dr

dR

R

.
∫ ∞

0

(∫ ∞
0

ϕ̃R(r)
dR

R

)
|∆µ(x, r)|2 dr.

Moreover, ∫ ∞
0

ϕ̃R(r)
dR

R
= 2

∫ ∞
0

( r
R

)n+1
e
−r2
R2

dR

R2
=

2

r

∫ ∞
0

tn+1e−t
2
dt .

1

r
.
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Hence we infer that ∫ ∞
0
|∆µ,ϕ(x, r)|2 dr

r
.
∫ ∞

0
|∆µ(x, r)|2 dr

r
,

which shows that (1.3) implies (1.4). �

Corollary 3.11. Suppose that for any ball B(x0, R) centered at supp(µ)∫ R

0

∫
x∈B(x0,R)

|∆̃µ(x, r)|2 dµ(x)
dr

r
≤ cRn.

Then µ is uniformly n-rectifiable.

Proof. We will show that (1.5) implies (1.4) by calculus and Cauchy-Schwarz and Theorem
3.9 again.

By calculus

∆µ,ϕ(x, r) =

∫ 2r

r
∆̃µ,ϕ(x, t)

dt

t

so that by Cauchy-Schwarz

|∆µ,ϕ(x, r)|2 ≤
∫ 2r

r

dt

t

∫ 2r

r
|∆̃µ,ϕ(x, t)|2 dt

t
≤ log 2

∫ 2r

r
|∆̃µ,ϕ(x, t)|2 dt

t
.

Therefore∫ R

0

∫
B(x0,R)

|∆µ,ϕ(x, r)|2dµ(x)
dr

r
≤ log 2

∫
B(x0,R)

∫ R

0

∫ 2r

r
|∆̃µ,ϕ(x, t)|2dt

t

dr

r
dµ(x)

≤ log 2

∫
B(x0,R)

∫ 2R

0

(∫ 2t

t

dr

r

)
|∆̃µ,ϕ(x, t)|2dt

t
dµ(x).

≤ (log 2)2

∫
B(x0,2R)

∫ 2R

0
|∆̃µ,ϕ(x, t)|2dt

t
dµ(x),

so that (1.5) implies (1.4). �

4. Uniform rectifiabilty implies boundedness of smooth square functions

Let h : Rd → R be a smooth function for which there exist positive constants c and ε
such that

(4.1) |h(x)| ≤ c

(1 + |x|)n+ε
and |∇h(x)| ≤ c

(1 + |x|)n+1+ε
,

for all x ∈ Rd. Furthermore assume that

(4.2)

∫
h(y − x)dHn|L(y) = 0

for every n-plane L and every x ∈ L. For r > 0, denote

hr(x) =
1

rn
h
(x
r

)
.
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Theorem 4.1. Let µ be an n-AD-regular measure in Rd. If µ is uniformly n-rectifiable,
then there exists a constant c such that

(4.3)

∫ R

0

∫
x∈B(x0,R)

|hr ∗ µ(x)|2 dµ(x)
dr

r
≤ cRn,

for all x0 ∈ supp(µ), R > 0.

Because the functions ϕt(x)−ϕ2t(x) and ∂ϕ(x, t) have the form ht for functions with h
satisfying (4.1) and (4.2), Theorem 4.1 establishes the remaining parts of Theorem 1.2.

Proof. It is immediate to check that the estimate (4.3) holds if and only if for all R0 ∈ D

(4.4)
∑

Q∈D:Q⊂R0

∫
Q

∫ 2`(Q)

`(Q)
|hr ∗ µ(x)|2 dr

`(Q)
dµ(x) ≤ c µ(R0).

Let x ∈ 1
2BQ and `(Q) ≤ r ≤ 2`(Q). If x ∈ 1

2BQ ∩ LQ (recall that LQ is the n-plane
minimizing α(Q)), we have

∫
hr(y − x) dHn|LQ(y) = 0.

Hence ∣∣∣∣∫ hr(y − x) dµ(y)

∣∣∣∣ =

∣∣∣∣∫ hr(y − x) d(µ− cQHn|LQ)(y)

∣∣∣∣
=

∣∣∣∣∣∣
∫ ∑

k≥0

χ̃k(y)hr(y − x) d(µ− cQHn|LQ)(y)

∣∣∣∣∣∣
≤
∑
k≥0

∣∣∣∣∫ χ̃k(y)hr(y − x) d(µ− cQHn|LQ)(y)

∣∣∣∣ ,
where χ̃k, k ≥ 0, are bump smooth functions such that

•
∑

k≥0 χ̃k = 1

• ‖∇χ̃k‖∞ ≤ `(Qk)−1,
• χA(x,2k r,2k+1 r) ≤ χ̃k ≤ χA(x,2k−1 r,2k+2 r) for k ≥ 1, and
• χB(x,r) ≤ χ̃0 ≤ χB(x,2r).

As usual A(x, r1, r2) = {y : r1 ≤ |y − x| < r2}. Moreover for m ∈ N, Qm denotes the
ancestor of Q such that `(Qm) = 2m`(Q).
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Set Fk(y) = hr(x− y)χ̃k(y), and notice that suppFk ⊂ BQk+2 . Then∣∣∣∣∫ hr(y − x) dµ(y)

∣∣∣∣ ≤∑
k≥0

∣∣∣∣∫ Fk(y)d(µ− cQk+2Hn|L
Qk+2

)(y)

∣∣∣∣
+
∑
k≥0

∣∣∣∣∫ Fk(y)d(cQHn|LQ − cQk+2Hn|L
Qk+2

)(y)

∣∣∣∣
≤
∑
k≥0

‖∇Fk‖∞ α(Qk+2) `(Qk+2)n+1

+
∑
k≥0

‖∇Fk‖∞ distB
Qk+2

(cQHn|LQ , cQk+2Hn|L
Qk+2

)

:= I1 + I2

(4.5)

For y ∈ suppFk using (4.1) it follows easily that

|hr(y − x)| . 1

`(Q)n

(
`(Q)

`(Qk)

)n+ε

and |∇hr(y − x)| . 1

`(Q)n+1

(
`(Q)

`(Qk)

)n+1+ε

.

Hence

‖∇Fk‖∞ .
1

`(Qk)

1

`(Q)n

(
`(Q)

`(Qk)

)n+ε

+
1

`(Q)n+1

(
`(Q)

`(Qk)

)n+1+ε

.
`(Q)ε

`(Qk)n+1+ε
.(4.6)

We can now estimate I1:

I1 .
∑
k≥0

α(Qk+2)`(Qk)n+1 `(Q)ε

`(Qk)n+1+ε
=
∑
k≥0

α(Qk+2)

(
`(Q)

`(Qk)

)ε
.

∑
P∈D:P⊃Q

α(P )

(
`(Q)

`(P )

)ε
.

(4.7)

For I2, using also [To1, Lemma 3.4] in the first inequality, we get

I2 .
∑
k≥0

`(Q)ε

`(Qk)n+1+ε

( ∑
0≤j≤k+2

α(Qj)

)
`(Qk+2)n+1

.
∑
k≥0

(
`(Q)

`(Qk)

)ε( ∑
0≤j≤k+2

α(Qj)

)

.
∑

R∈D:R⊃Q

∑
P∈D:Q⊂P⊂R

α(P )

(
`(Q)

`(R)

)ε
=

∑
P∈D:P⊃Q

α(P )
∑

R∈D:R⊃P

(
`(Q)

`(R)

)ε
≈

∑
P∈D:P⊃Q

α(P )

(
`(Q)

`(P )

)ε
.

(4.8)
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Therefore by (4.5), (4.7) and (4.8), for x ∈ 1
2BQ ∩ LQ and `(Q) ≤ r ≤ 2`(Q),

(4.9)

∣∣∣∣∫ hr(y − x) dµ(y)

∣∣∣∣ . ∑
P∈D:P⊃Q

α(P )

(
`(Q)

`(P )

)ε
.

On the other hand, given an arbitrary x ∈ Q, let x′ be its orthogonal projection on LQ
(notice that x′ ∈ 1

2BQ). We have

∣∣∣∣∫ hr(y − x) dµ(y)

∣∣∣∣ ≤ ∣∣∣∣∫ hr(y − x′) dµ(y)

∣∣∣∣+

∫
BQ

|hr(y − x)− hr(y − x′)| dµ(y)

+

∫
Rd\BQ

|hr(y − x)− hr(y − x′)| dµ(y)

:= I3 + I4 + I5.

(4.10)

For `(Q) ≤ r ≤ 2`(Q), by (4.9),

(4.11) I3 .
∑

P∈D:P⊃Q
α(P )

(
`(Q)

`(P )

)ε
.

We can now estimate I4 and I5 using (4.1). First

(4.12) I4 .
∫
BQ

|x− x′|
`(Q)n+1

dµ(y) .
dist(x, LQ)

`(Q)n+1
`(Q)n =

dist(x, LQ)

`(Q)
.

Moreover, noticing that if y /∈ BQ and ξ ∈ [y − x, y − x′] we have that |y − x| ≈ |ξ|,

I5 .
∫
|x− x′|
`(Q)n+1

sup
ξ∈[y−x,y−x′]

|∇(hr)(ξ)|dµ(y)

.
|x− x′|
`(Q)n+1

∫
`(Q)n+1+ε

(`(Q) + |y − x|)n+1+ε
dµ(y)

. dist(x, LQ)`(Q)ε`(Q)−1−ε =
dist(x, LQ)

`(Q)
.

(4.13)

Hence by (4.10), (4.11), (4.12) and (4.13), we get the following pointwise estimate for
x ∈ Q and `(Q) ≤ r ≤ 2`(Q):

(4.14) |hr ∗ µ(x)| .
dist(x, LQ)

`(Q)
+

∑
P∈D:P⊃Q

α(P )

(
`(Q)

`(P )

)ε
.
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Therefore,∑
Q∈D:Q⊂R0

∫
Q

∫ 2`(Q)

`(Q)
|hr ∗ µ(x)|2 dr

`(Q)
dµ(x)

.
∑

Q∈D:Q⊂R0

∫
Q

∫ 2`(Q)

`(Q)

(
dist(x, LQ)

`(Q)

)2 dr

`(Q)
dµ(x)

+
∑

Q∈D:Q⊂R0

∫
Q

∫ 2`(Q)

`(Q)

 ∑
P∈D:P⊃Q

α(P )

(
`(Q)

`(P )

)ε2

dr

`(Q)
dµ(x)

.
∑

Q∈D:Q⊂R0

∫
Q

(
dist(x, LQ)

`(Q)

)2

dµ(x)+

+
∑

Q∈D:Q⊂R0

 ∑
P∈D:P⊃Q

α(P )2

(
`(Q)

`(P )

)ε ∑
P∈D:P⊃Q

(
`(Q)

`(P )

)εµ(Q),

where we used Cauchy-Schwarz for the last inequality. By [To1, Lemmas 5.2 and 5.4],∑
Q∈D:Q⊂R0

∫
Q

dist(x, LQ)2

`(Q)2
dµ(x) . µ(R0).

Finally,

∑
Q∈D:Q⊂R0

 ∑
P∈D:P⊃Q

α(P )2

(
`(Q)

`(P )

)ε ∑
P∈D:P⊃Q

(
`(Q)

`(P )

)εµ(Q)

.
∑

Q∈D:Q⊂R0

∑
P∈D:Q⊂P⊂R0

α(P )2

(
`(Q)

`(P )

)ε
µ(Q)

+
∑

Q∈D:Q⊂R0

∑
P∈D:P⊃R0

α(P )2

(
`(Q)

`(P )

)ε
µ(Q)

.
∑

P∈D:P⊂R0

α(P )2
∑

Q∈D:Q⊂P

(
`(Q)

`(P )

)ε
µ(Q) +

∑
Q∈D:Q⊂R0

(
`(Q)

`(R0)

)ε
µ(Q)

.
∑

P∈D:P⊂R0

α(P )2µ(P ) + µ(R0) . µ(R0),

where the last inequality follows from Theorem 2.1. �

Theorem 1.2 now follows from Theorem 3.9, Corollary 3.11 and Theorem 4.1.

5. Uniform rectifiabilty implies boundedness of square functions: the
non-smooth case

By Corollary 3.10 we already know that condition (1.3) implies the uniform n-rectifiability
of µ, assuming µ to be n-AD-regular. So to complete the proof of Theorem 1.1 it remains
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to show that (1.3) holds for any ball B(x0, R) centered at supp(µ) if µ is uniformly n-
rectifiable. To this end, we would like to argue as in the preceding section, setting

φr =
1

rn
χB(0,r)(x), x ∈ Rd,

and

hr = φr − φ2r.

The main obstacle is the lack of smoothness of hr. To solve this problem we will decompose
hr using wavelets as follows.

Consider a family of C1 compactly supported orthonormal wavelets in Rn. Tensor
products of Daubechies compactly supported wavelets with 3 vanishing moments will
suffice for our purposes, see e.g. [Mal, Section 7.2.3]. We denote this family of functions
by {ψεI}I∈D(Rn),1≤ε≤2n−1, where D(Rn) is the standard grid of dyadic cubes in Rn. Each

ψεI is a C1 function supported on 5I, which satisfies ‖ψεI‖2 = 1, and moreover

‖ψεI‖∞ .
1

`(I)n/2
, ‖∇ψεI‖∞ .

1

`(I)1+n/2
for all I ∈ D(Rn) and 1 ≤ ε ≤ 2n − 1,

where `(I) is the sidelength of the cube I. Recall that any function f ∈ L2(Rn) can be
written as

f =
∑

I∈D(Rn)

〈f, ψεI〉ψεI .

To simplify notation and avoid using the ε index, we consider 2n − 1 copies of D(Rn) and

we denote by D̃(Rn) their union. Then we can write

f =
∑

I∈D̃(Rn)

〈f, ψI〉ψI ,

with the sum converging in L2(Rn).
In particular, we have

(5.1) h̃ := χBn(0,1) −
1

2n
χBn(0,2) =

∑
I∈D̃(Rn)

aI ψI ,

where Bn(0, r) stands for the ball centered at 0 with radius r in Rn and

aI =
〈
χBn(0,1) −

1

2n
χBn(0,2), ψI

〉
.

So we have

h̃r :=
1

rn
χBn(0,r)(x)− 1

(2r)n
χBn(0,2r)(x) =

∑
I∈D̃(Rn)

aI
1

rn
ψI

(x
r

)
.

Notice that we have been talking about wavelets in Rn although the ambient space of
the measure µ and the function hr is Rd, with d ≥ n. We remark that we chose to work
with wavelets in Rn mainly because the functions h̃r have zero mean in Rn, while this is
not the case for the functions hr in Rd.
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We identify Rn with the “horizontal” subspace of Rd given by Rn×{0}× . . .×{0} and
we consider the following circular projection Π : Rd → Rn. For x = (x1, . . . , xd) ∈ Rd we
denote xH := (x1, . . . , xn) and xV = (xn+1, . . . , xd). If xH 6= 0 we set

Π(x) =
|x|
|xH |

xH .

If xH = 0, we set Π(x) = (|x|, 0, . . . , 0), say. Observe that in any case |x| = |Π(x)|.
Notice also that

hr(x) =
1

rn
χBn(0,r)(Π(x))− 1

(2r)n
χBn(0,2r)(Π(x)) =

∑
I∈D̃(Rn)

aI
1

rn
ψI

(
Π(x)

r

)
.

Thus,

(5.2) hr ∗ µ(x) =
∑

I∈D̃(Rn)

aI
1

rn
ψI

(
Π(·)
r

)
∗ µ(x).

Observe that the functions ψI are smooth, and so one can guess that the α coefficients

of [To1] will be useful to estimate ψI

(
Π(·)
r

)
∗µ(x). Concerning the coefficients aI we have:

Lemma 5.1. For I ∈ D̃(Rn), we have:

(a) If 5I ∩
(
∂Bn(0, 1) ∪ ∂Bn(0, 2)

)
= ∅, then aI = 0.

(b) If `(I) & 1, then |aI | . `(I)−1−n/2.

(c) If `(I) . 1, then |aI | . `(I)n/2.

Proof. The first statement follows from the fact that the wavelets ψI have zero mean in Rn
and that h̃ = χBn(0,1)− 1

2n χBn(0,2) is constant on suppψI if 5I∩
(
∂Bn(0, 1)∪∂Bn(0, 2)

)
= ∅.

The statement (c) is immediate:

|aI | =
∣∣∣∣∫ h̃ ψI dx

∣∣∣∣ ≤ ‖ψI‖1 . `(I)n/2 ‖ψI‖2 = `(I)n/2.

Finally (b) follows from the smoothness of ψI and the fact that h̃ has zero mean. Indeed,

|aI | =

∣∣∣∣∣
∫
Bn(0,2)

h̃(x) (ψI(x)− ψI(0)) dx

∣∣∣∣∣ ≤ 2‖∇ψI‖∞
∫
|h̃| dx . 1

`(I)1+n/2
.

�

By estimating ψI

(
Π(·)
r

)
∗ µ(x) in terms of the α(Q)’s, using some arguments in the

spirit of the ones in [MT], below we will prove the following.

Theorem 5.2. Let µ be an n-AD-regular measure in Rd. If µ is uniformly n-rectifiable,
then there exists a constant c such that

(5.3)

∫ R

0

∫
x∈B(x0,R)

|hr ∗ µ(x)|2 dµ(x)
dr

r
≤ cRn,

for all x0 ∈ supp(µ), R > 0.
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5.1. Preliminaries for the proof of Theorem 5.2. It is immediate to check that the
estimate (5.3) holds if and only if for all R ∈ D

(5.4)
∑

Q∈D:Q⊂R

∫
Q

∫ 2`(Q)

`(Q)
|hr ∗ µ(x)|2 dr

`(Q)
dµ(x) ≤ c µ(R).

Let δ > 0 be some small constant to be fixed below. To estimate the preceding integral
we can assume that α(1000Q) ≤ δ2. Otherwise we have

|hr ∗ µ(x)| . 1 ≤ α(1000Q)

δ2

and, by Theorem 2.1, ∑
Q∈D(R)

α(1000Q)≥δ2

1

`(Q)

∫
Q

∫ 2`(Q)

`(Q)
|hr ∗ µ(x)|2drdµ(x)

.
1

δ4

∑
Q∈D(R)

α(1000Q)2µ(Q) .
1

δ4
µ(R).

(5.5)

Since the functions hr are even, we have

hr ∗ µ(x) =

∫
hr(y − x)dµ(y).

Recalling (5.2), we get

hr ∗ µ(x) =
1

rn

∑
I∈D̃(Rn)

aI

∫
ψI

(
Π(y − x)

r

)
dµ(y).

By Lemma 5.1, aI = 0 whenever 5I ∩
(
∂Bn(0, 1) ∪ ∂Bn(0, 2)

)
= ∅. Therefore it will be

enough to sum over those I such that 5I ∩
(
∂Bn(0, 1) ∪ ∂Bn(0, 2)

)
6= ∅ and the domain

of integration of each ψI

(
Π(·)
r

)
is Π−1(r · 5I).

Notice that 5I stands for the cube from Rn concentric with I with side length equal to
5`(I). On the other hand, given a set A ⊂ Rn, we write

r ·A = {r · x ∈ Rn : x ∈ A}.

So r · 5I = r · (5I) is a cube in Rn with side length 5r`(I) which is not concentric with I
unless I is centered at the origin.

We set

hr ∗ µ(x) =
1

rn

∑
I∈D̃(Rn):`(I)≥1/100

aI

∫
ψI

(
Π(y − x)

r

)
dµ(y)

+
1

rn

∑
I∈D̃(Rn):`(I)<1/100

aI

∫
ψI

(
Π(y − x)

r

)
dµ(y)

=: Fr(x) +Gr(x),

(5.6)
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so that

∑
Q∈D:Q⊂R

∫
Q

∫ 2`(Q)

`(Q)
|hr ∗ µ(x)|2 dr

`(Q)
dµ(x)

.
∑

Q∈D:Q⊂R,
α(1000Q)≥δ2

∫
Q

∫ 2`(Q)

`(Q)
|hr ∗ µ(x)|2 dr

`(Q)
dµ(x)

+
∑

Q∈D:Q⊂R,
α(1000Q)≤δ2

∫
Q

∫ 2`(Q)

`(Q)
|Fr(x)|2 dr

`(Q)
dµ(x)

+
∑

Q∈D:Q⊂R,
α(1000Q)≤δ2

∫
Q

∫ 2`(Q)

`(Q)
|Gr(x)|2 dr

`(Q)
dµ(x)

=: I0 + I1 + I2.

(5.7)

As shown in (5.5), we have

I0 .
1

δ4
µ(R).

Thus to prove Theorem 5.2 it is enough to show that I1 + I2 ≤ c(δ)µ(R).

5.2. Estimate of the term I1 in (5.7). We first need to estimate Fr(x). To this end,
we take Q ∈ D and r > 0 such that x ∈ Q and `(Q) ≤ r < 2`(Q). We also assume that
LQ (the best approximating plane for α(Q)) is parallel to Rn.

Let I ∈ D̃(Rn) be such that `(I) ≥ 1/100 and 5I ∩
(
∂Bn(0, 1) ∪ ∂Bn(0, 2)

)
6= ∅. Let

P := P (I) ∈ D be some cube containing Q such that `(P ) ≈ r`(I) ≈ `(Q)`(I). Let also
φP be a smooth bump function such that χ3P ≤ φP ≤ χBP , ‖∇φP ‖∞ ≤ 1, and φP = 1 on
x+ Π−1(r · 5I). Then∫

ψI

(
Π(y − x)

r

)
dµ(y) =

∫
3P
ψI

(
Π(y − x)

r

)
dµ(y) =

∫
φP (y)ψI

(
Π(y − x)

r

)
dµ(y).

Lemma 5.3. Let I ∈ D̃(Rn) be such that `(I) ≥ 1/100 and 5I∩
(
∂Bn(0, 1)∪∂Bn(0, 2)

)
6= ∅

and let P = P (I) as above. We have
(5.8)∣∣∣∣∫ ψI

(
Π(y − x)

r

)
dµ(y)

∣∣∣∣ . (`(Q)

`(P )

)n/2dist(x, LQ)

`(P )
+

∑
S∈D:Q⊂S⊂P

α(2S)

 `(P )n.

Proof. Without loss of generality we assume that x = 0. Let L0 be the plane parallel to
LQ passing through 0 (that is, L0 = Rn) and denote by Π⊥ the orthogonal projection onto



SQUARE FUNCTIONS AND UNIFORM RECTIFIABILITY 23

L0. Then ∫
ψI

(
Π(y)

r

)
dµ(y) =

∫
φP (y)ψI

(
Π(y)

r

)
dµ(y)

=

∫
φP (y)

(
ψI

(
Π(y)

r

)
− ψI

(
Π⊥(y)

r

))
dµ(y)

+

∫
φP (y) ψI

(
Π⊥(y)

r

)
d(µ− cPHn|L0

)(y)

+ cP

∫
L0

φP (y) ψI

(
Π⊥(y)

r

)
dHn(y)

=: A1 +A2 +A3.

(5.9)

Since ψI

(
Π⊥(y)
r

)
= ψI

(y
r

)
for y ∈ L0, and φP = 1 on r · 5I, we get

(5.10) A3 = cP

∫
5I
ψI

(y
r

)
dy = 0.

We now proceed to estimate A2:

|A2| ≤
∣∣∣∣∫ φP (y) ψI

(
Π⊥(y)

r

)
d(µ− cPHn|LP )(y)

∣∣∣∣
+

∣∣∣∣cP ∫ φP (y) ψI

(
Π⊥(y)

r

)
d(Hn|LP −H

n
|L0

)(y)

∣∣∣∣
.

∥∥∥∥∇(φP ψI

(
Π⊥(·)
r

))∥∥∥∥
∞

(
α(P ) `(P )n+1 + distH(LP ∩BP , L0 ∩BP )`(P )n

)
,

(5.11)

from the definition of the α numbers and the fact that cP ≈ 1. Using the gradient bounds
for the functions φP and ψI , and the fact that `(P ) ≈ r`(I) ≈ `(Q)`(I), we get∥∥∥∥∇(φP ψI

(
Π⊥(·)
r

))∥∥∥∥
∞
. ‖∇φP ‖∞‖ψI‖∞ +

∥∥∥∥∇(ψI (Π⊥(·)
r

))∥∥∥∥
∞

.
1

`(P )

1

`(I)n/2
+

1

`(I)n/2+1

1

r
≈ 1

`(Q)

1

`(I)n/2+1
≈ 1

`(Q)

(
`(Q)

`(P )

)n/2+1

.

(5.12)

We also remark that in the previous estimate we used the fact that ‖Π⊥‖∞ ≤ 1, which
does not hold for the spherical projection Π.

Furthermore, by [To1, Lemma 5.2 and Remark 5.3],

distH(LP ∩BP , L0 ∩BP ) ≤ distH(LP ∩BP , LQ ∩BP ) + dist(0, LQ)

≤
∑

S∈D:Q⊂S⊂P
α(S)`(P ) + dist(0, LQ).(5.13)

Therefore, by (5.11), (5.12), and (5.13),

(5.14) |A2| .
(
`(Q)

`(P )

)n/2
`(P )n

 ∑
S∈D:Q⊂S⊂P

α(S) +
dist(0, LQ)

`(P )

 .
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We now estimate the term A1:

|A1| =
∣∣∣∣∫ φP (y)

(
ψI

(
Π(y)

r

)
− ψI

(
Π⊥(y)

r

))
dµ(y)

∣∣∣∣
.
‖∇ψI‖∞

r

∫
BP

|Π(y)−Π⊥(y)| dµ(y)

.
1

`(Q)

(
`(Q)

`(P )

)n/2+1 ∫
BP

|Π(y)−Π⊥(y)| dµ(y).

(5.15)

It is easy to check that

(5.16) |Π(y)−Π⊥(y)| . dist(y, L0).

Furthermore, as in (5.13), for y ∈ BP ,

dist(y, L0) ≤ dist(0, LQ) + dist(y, LQ)

≤ dist(0, LQ) + dist(y, LP ) + distH(LP ∩ 3BP , LQ ∩ 3BP )

. dist(0, LQ) + dist(y, LP ) +
∑

S∈D:Q⊂S⊂P
α(S)`(P ).

(5.17)

Therefore, by (5.15), (5.16), and (5.17),

|A1| .
1

`(Q)

(
`(Q)

`(P )

)n/2+1 (
dist(0, LQ) `(P )n

+

∫
BP

dist(y, LP ) dµ(y) + `(P )n+1
∑

S∈D:Q⊂S⊂P
α(S)

)

.

(
`(Q)

`(P )

)n/2dist(0, LQ)

`(P )
+

∑
S∈D:Q⊂S⊂P

α(2S)

 `(P )n,

(5.18)

where we used that, by [To1, Remark 3.3],∫
BP

dist(y, LP )dµ(y) . α(2P )`(P )n+1.

The lemma follows from the estimates (5.9), (5.10), (5.14), and (5.18). �

Lemma 5.4. We have

|Fr(x)| .
dist(x, LQ)

`(Q)
+

∑
S∈D:S⊃Q

α(2S)
`(Q)

`(S)
.(5.19)

Proof. Recalling that P = P (I) ⊃ Q, by (5.8),

|Fr(x)| . 1

`(Q)n

∑
I∈D̃(Rn):
`(I)≥1/100

|aI |
(

`(Q)

`(P (I))

)n/2dist(x, LQ)

`(P (I))
+

∑
S∈D:

Q⊂S⊂P (I)

α(2S)

 `(P (I))n.
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Using (b) from Lemma 5.1,

|Fr(x)| .
∑

I∈D̃(Rn):`(I)≥1/100,
P (I)⊃Q

`(Q)

`(P (I))

dist(x, LQ)

`(P (I))
+

∑
S∈D:Q⊂S⊂P (I)

α(2S)



.
∑

P∈D:P⊃Q

`(Q)

`(P )

dist(x, LQ)

`(P )
+

∑
S∈D:Q⊂S⊂P

α(2S)


=

∑
P∈D:P⊃Q

dist(x, LQ) `(Q)

`(P )2
+

∑
S∈D:S⊃Q

α(2S)
∑

P∈D:P⊃S

`(Q)

`(P )

.
dist(x, LQ)

`(Q)
+

∑
S∈D:S⊃Q

α(2S)
`(Q)

`(S)
.

�

Lemma 5.5. The term I1 in (5.7) satisfies

I1 . µ(R).

Proof. By (5.19),

(5.20) I1 .
∑

Q∈D(R)

∫
Q

dist(x, LQ)

`(Q)
+

∑
S∈D:S⊃Q

α(2S)
`(Q)

`(S)

2

dµ(x).

By Cauchy-Schwartz,

(5.21)

 ∑
S∈D:S⊃Q

α(2S)
`(Q)

`(S)

2

≤
∑

S∈D:S⊃Q
α(2S)2 `(Q)

`(S)
·
∑

S∈D:S⊃Q

`(Q)

`(S)
.

Since
∑

S∈D:S⊃Q
`(Q)
`(S) . 1,

I1 .
∑

Q∈D(R)

∫
Q

(
dist(x, LQ)

`(Q)

)2

dµ(x) +
∑

Q∈D(R)

∑
S∈D:S⊃Q

α(2S)2 `(Q)

`(S)
µ(Q)

=: S1 + S2.

(5.22)

By [To1, Lemmas 5.2 and Lemma 5.4] and Theorem 2.1, we obtain S1 . µ(R). We now
deal with the term S2:

S2 =
∑

Q∈D(R)

∑
S∈D:Q⊂S⊂R

α(2S)2 `(Q)

`(S)
µ(Q) +

∑
Q∈D(R)

∑
S∈D:S)R

α(2S)2 `(Q)

`(S)
µ(Q)

=: S21 + S22.

(5.23)

Using just that α(2S) . 1,

(5.24) S22 .
∑

Q∈D(R)

∑
S∈D:S⊃R

`(Q)

`(S)
µ(Q) .

∑
Q∈D(R)

µ(Q)
`(Q)

`(R)
. µ(R).
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Finally, using Fubini and Theorem 2.1,

(5.25) S21 ≤
∑

S∈D(R)

α(2S)2
∑

Q∈D:Q⊂S

`(Q)

`(S)
µ(Q) .

∑
S∈D(R)

α(2S)2µ(S) . µ(R).

By (5.22), (5.23), (5.24), and (5.25) we obtain I1 . µ(R). �

5.3. Estimate of the term I2 in (5.7). It remains to show that I2 . µ(R). Recall that
the cubes in the sum corresponding to I2 in (5.7) satisfy α(1000Q) ≤ δ2.

We need now to estimate Gr(x) (see (5.6)) for x ∈ Q and `(Q) ≤ r < 2`(Q). Recall
that

(5.26) Gr(x) =
1

rn

∑
I∈D̃(Rn):`(I)<1/100

aI

∫
ψI

(
Π(y − x)

r

)
dµ(y).

The arguments will be more involved than the ones we used for Fr(x).
To estimate Gr(x) we now introduce a stopping time condition for P ∈ D: P belongs

to G0 if

(1) P ⊂ 1000Q, and
(2)

∑
S∈D:P⊂S⊂1000Q α(100S) ≤ δ.

The maximal cubes in D\G0 may vary significantly in size, even if they are neighbors, and
this would cause problems. For this reason we use a quite standard smoothing procedure.
We define

(5.27) `(y) := inf
P∈G0

(`(P ) + dist(y, P )), y ∈ Rd,

and

(5.28) d(z) := inf
y∈Π−1(z)

`(y), z ∈ Rn.

Lemma 5.6. The function `(·) is 1-Lipschitz, and the function d(·) is 3-Lipschitz.

Proof. For simplicity we assume that x = 0. The function `(·) is 1-Lipschitz, as the
infimum of the family of 1-Lipschitz functions {`(P ) + dist(·, P )}P∈G0 .

Let us turn our attention to d(·). Let z, z′ ∈ Rn and ε > 0. Let y ∈ Π−1(z) such that
`(y) ≤ d(z) + ε. Consider the points

y0 =
|z′|
|y|

y and z0 =
|z′|
|z|

z.

Notice that Π(y0) = z0. Let Ly0 be the n-plane parallel to Rn which contains y0 and
consider the point {y′} = Π−1(z′)∩Ly0 . That is, y′ is the point which fulfils the following
properties:

|y′| = |z′|, y′H =
|y′H |
|z′|

z′, y′V = yV0 .

Observe that

|y0| = |z0| = |z′| = |y′|.
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Since yV0 = y′V , this implies that |yH0 | = |y′H |. Furthermore,

|y0 − y′| = |yH0 − y′H | =
∣∣∣∣ |yH0 ||y0|

z0 −
|y′H |
|y′|

z′
∣∣∣∣ =
|y′H |
|y′|
|z0 − z′| ≤ |z0 − z′|.

Moreover,

|y − y0| = |z − z0| =
∣∣∣∣z − |z′||z| z

∣∣∣∣ =
∣∣|z| − |z′|∣∣ ≤ |z − z′|.

Hence,

|y − y′| ≤ |y − y0|+ |y0 − y′| ≤ |z − z′|+ |z0 − z′|
≤ |z − z′|+ |z0 − z|+ |z − z′| ≤ 3|z − z′|.

Then, using that ` is 1-Lipschitz and (5.3),

d(z′) ≤ `(y′) ≤ |y − y′|+ `(y) ≤ 3|z − z′|+ d(z) + ε.

Since ε > 0 was arbitrary we deduce that d(z′) ≤ 3|z − z′| + d(z). In the same way one
gets that d(z) ≤ 3|z − z′|+ d(z′). �

For δ small enough, the condition α(1000Q) ≤ δ2 guarantees that any cube P ⊂ 1000Q
such that `(P ) = `(Q) belongs to G0, in particular `(y) ≤ `(Q) for all y ∈ 1000Q.
Furthermore since G0 6= ∅, we deduce that `(y), d(z) <∞ for all y ∈ Rd, z ∈ Rn.

Now we consider the family F of cubes I ∈ D(Rn) such that

(5.29) r diam(I) ≤ 1

5000
inf
z∈r·I

d(z).

Let F0 ⊂ F be the subfamily of F consisting of cubes with maximal length. In particular
the cubes in F0 are pairwise disjoint. Moreover it is easy to check that if I, J ∈ F0 and

(5.30) 20 I ∩ 20 J 6= ∅,

then `(I) ≈ `(J).

We denote by G(x, r) the family of cubes I ∈ D̃(Rn) which satisfy

• `(I) ≤ 1
100 ,

• 5I ∩ (∂Bn(0, 1) ∪ ∂Bn(0, 2)) 6= ∅,

•
(
x+ Π−1(r · 5I)

)
∩ supp(µ) 6= ∅, and

• I is not contained in any cube from F0.

We denote by T (x, r) the family of cubes I ∈ D̃(Rn) which satisfy

• `(I) ≤ 1
100 ,

• 5I ∩ (∂Bn(0, 1) ∪ ∂Bn(0, 2)) 6= ∅,

•
(
x+ Π−1(r · 5I)

)
∩ supp(µ) 6= ∅, and

• I ∈ F0.
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Now we write

Gr(x) =
1

rn

∑
I∈G(x,r)

aI

∫
ψI

(
Π(y − x)

r

)
dµ(y)

+
1

rn

∑
I∈T (x,r)

∑
J∈D̃(Rn): J⊂I

aJ

∫
ψJ

(
Π(y − x)

r

)
dµ(y)

=: Gr,1(x) +Gr,2(x),

(5.31)

so that

I2 ≤
∑

Q∈D:Q⊂R,
α(1000Q)≤δ2

∫
Q

∫ 2`(Q)

`(Q)
|Gr,1(x)|2 dr

`(Q)
dµ(x)

+
∑

Q∈D:Q⊂R,
α(1000Q)≤δ2

∫
Q

∫ 2`(Q)

`(Q)
|Gr,2(x)|2 dr

`(Q)
dµ(x)

=: I21 + I22.

(5.32)

First we will deal with the term Gr,1(x). To this end we need several auxiliary lemmas.

Lemma 5.7. If I ∈ G(x, r), then there exists P := P (I) ∈ D with `(P ) ≈ r`(I) such that

supp(µ) ∩
(
x+ Π−1(r · 5I)

)
⊂ 3P.

Proof. Notice that, by definition, supp(µ) ∩ (x+ Π−1(r · 5I)) 6= ∅. Observe also that the
conclusion of the lemma holds if `(r · 5I) ≈ `(Q) because α(1000Q) ≤ δ2.

So assume that `(r · 5I)� `(Q) and consider z ∈ r · 5I. Since I ∈ G(x, r), I /∈ F0, and
d is 3-Lipschitz, we have

d(z) ≤ c2 r`(I),

for some absolute constant c2. Take y ∈ x+ Π−1(r · 5I) such that

`(y) ≤ 2c2 r`(I).

Let ε = c2 r`(I). By definition, there exists some cube P ′ ∈ G0 such that

`(P ′) + dist(y, P ′) ≤ `(y) + ε ≤ 3c2 r `(I).

Let A > 10 be some big constant to be fixed below. Suppose that there are two cubes
P0, P1 ∈ D which satisfy the following properties

(i) r`(I) ≤ `(P0) = `(P1) ≤ 10 r`(I),
(ii) dist(P0, P1) ≥ A`(P0),

(iii) Pi ∩
(
x+ Π−1(r · 5I)

)
6= ∅ for i = 1, 2.

Suppose that dist(P0, P
′) ≥ dist(P1, P

′). Then from (ii) we infer that

dist(P0, P
′) & A`(P0).

Let P ′′ ∈ D such that P0 ∪ P ′ ⊂ 3P ′′ with minimal side length, so that `(P ′′) ≈
`(P0)+ `(P ′)+dist(P0, P

′). Since α(1000Q) ≤ δ2 and `(P0), `(P1), `(P ′)� `(Q), it follows
easily that we must also have `(P ′′)� `(Q). It is not difficult to check that either

β1(P ′′)� δ, or ](LP ′′ , LQ)� δ.
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In either case one has ∑
S∈D:P ′′⊂S⊂Q

α(S)� δ.

We deduce that ∑
S∈D:P ′⊂S⊂Q

α(100S)� δ,

because P ′ ⊂ 3P ′′. This contradicts the fact that P ′ ∈ G0.
We have shown that a pair of cubes P0, P1 such as the ones above does not exist. Thus,

if P0 ∈ D satisfies

r`(I) ≤ `(P0) ≤ 10 r`(I),

and

P0 ∩
(
x+ Π−1(r · 5I)

)
6= ∅,

then any other cube P1 for which these properties also hold must be contained in the ball
B(xP0 , c3A`(P0)), where xP0 stands for the center of P0 and c3 is some absolute constant.
Hence letting P = P (I) be some suitable ancestor of P0, the lemma follows. �

Lemma 5.8. Let I ∈ G(x, r) and let P = P (I) ∈ D be the cube from Lemma 5.7, so that
supp(µ) ∩ (x+ Π−1(r · 5I)) ⊂ 3P. We have
(5.33)∣∣∣∣∫ ψI

(
Π(y − x)

r

)
dµ(y)

∣∣∣∣ . (`(Q)

`(P )

)n/2 ∑
S∈D:P⊂S⊂Q

α(S) +
dist(x, LQ)

`(Q)

 `(P )n.

Proof. Without loss of generality we assume that x = 0 and as before we let L0 = Rn
be the n-plane parallel to LQ containing 0. Let also yP ∈ BP ∩ supp(µ) be such that
dist(yP , LP ) . α(P )`(P ). The existence of such point follows from [To1, Remark 3.3] and

Chebychev’s inequality. We also denote by L̃P the n-plane parallel to L0 which contains
yP . We set σP = cPHn|LP and σ̃P = cPHn|L̃P . Let φP be a smooth function such that

χBP ≤ φP ≤ χ3BP and ‖∇φP ‖∞ . `(P )−1. Since α(P ) is assumed to be very small, we

have Π−1(r · 5I) ∩ L̃P ⊂ BP . Then we write∫
ψI

(
Π(y)

r

)
dµ(y) =

∫
φP (y)ψI

(
Π(y)

r

)
dµ(y)

=

∫
φP (y)ψI

(
Π(y)

r

)
(dµ(y)− dσP (y))

+

∫
φP (y)ψI

(
Π(y)

r

)
(dσP (y)− dσ̃P (y)) +

∫
ψI

(
Π(y)

r

)
dσ̃P (y)

=: A1 +A2 +A3.

(5.34)
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Now we turn our attention to A1:

|A1| =
∣∣∣∣∫ φP (y)ψI

(
Π(y)

r

)
(dµ(y)− dσP (y))

∣∣∣∣
≤
∥∥∥∥∇(φPψI (Π(·)

r

))∥∥∥∥
∞
α(P )`(P )n+1

.

(
1

`(P )

1

`(I)n/2
+

1

`(I)n/2+1

1

r

)
α(P )`(P )n+1

≈
(
`(Q)

`(P )

)n/2
α(P )`(P )n,

(5.35)

where we used that `(P ) ≈ `(I)`(Q) and that ‖∇Π‖∞ . 1 on BP since BP lies far from

the subspace Π⊥
−1

({0}).
We will now estimate the term A2. We have

|A2| =
∣∣∣∣∫ φP (y)ψI

(
Π(y)

r

)
(dσP (y)− dσ̃P (y))

∣∣∣∣ .
As in [To1, Lemma 5.2],

](LP , L̃P ) = ](LP , LQ) .
∑

S∈D:P⊂S⊂Q
α(S).

Therefore,

distH(L̃P ∩BP , LP ∩BP ) .
∑

S∈D:P⊂S⊂Q
α(S)`(P ),

and, as in (5.35),

|A2| .
∥∥∥∥∇(φPψI (Π(·)

r

))∥∥∥∥
∞
`(P )n distH(L̃P ∩BP , LP ∩BP )

.

(
`(Q)

`(P )

)n/2 ∑
S∈D:P⊂S⊂Q

α(S)`(P )n.

(5.36)

We now consider A3. Let B be a ball centered in L0 such that supp ψI
( ·
r

)
⊂ B and

diam(B) . `(P ). For some constant c∗, with 0 ≤ c∗ . 1, to be fixed below, we write

∣∣∣∣∫ ψI

(
Π(y)

r

)
dσ̃P (y)

∣∣∣∣ =

∣∣∣∣cP ∫ ψI

(y
r

)
d(Π]Hn|L̃P )(y)

∣∣∣∣
≤
∣∣∣∣cP ∫ ψI

(y
r

)
d(Π]Hn|L̃P )(y)− c∗ cP

∫
ψI

(y
r

)
dHn|L0

(y)

∣∣∣∣
+

∣∣∣∣c∗ cP ∫ ψI

(y
r

)
dHn|L0

(y)

∣∣∣∣
.
‖∇ψI‖∞
`(Q)

distB(Π]Hn|L̃P , c∗H
n
|L0

),

(5.37)

where in the last inequality we took into account that c∗ cP . 1 and that
∫
Rn ψI

(y
r

)
dy = 0.



SQUARE FUNCTIONS AND UNIFORM RECTIFIABILITY 31

Notice that the map Π|L̃P→L0
need not be affine and so the term distB(Π]Hn|L̃P , c∗H

n
|L0

)

requires some careful analysis. Anyway, we claim that, for some appropriate constant
c∗ . 1,

(5.38) distB(Π]Hn|L̃P , c∗H
n
|L0

) .

( ∑
S∈D:P⊂S⊂Q

α(S) +
dist(0, LQ)

`(Q)

)
`(P )n+1,

which implies that

|A3| .
(
`(Q)

`(P )

)n/2( ∑
S∈D:P⊂S⊂Q

α(S) +
dist(0, LQ)

`(Q)

)
`(P )n.

Notice that the lemma is an immediate consequence of the estimates we have for A1, A2

and A3.
To conclude, it remains to prove the claim (5.38). This task requires some preliminary

calculations and we defer it to Lemma 5.9. �

Our next objective consists in comparing the measures Π]Hn|L̃P and Hn|L0
from the

preceding lemma. To this end, we consider the map Π̃ := Π|L̃P→L0
. Abusing notation,

identifying both L̃P and L0 with Rn, we also denote by Π̃ the corresponding mapping in

Rn, that is Π̃ : Rn → Rn. Then, writing h = yVP , for y = (y1, . . . , yn, h) we have

Π̃i(y) = yi

√
y2

1 + · · ·+ y2
n + |h|2

y2
1 + · · ·+ y2

n

= yi

√
1 +

|h|2
y2

1 + · · ·+ y2
n

,

for i = 1, . . . , n. Hence, for i, j = 1, . . . , n,

∂jΠ̃i = δij
|y|
|yH |

− |h|
2 yi yj
|y||yH |3

=
|y|
|yH |

(
δij − |h|2

yiyj
|y|2|yH |2

)
,

where δij denotes Kronecker’s delta. For y ∈ P ,

|∂jΠ̃i(y)− ∂jΠ̃i(yP )| ≤
∣∣∣∣ |y||yH | − |yP ||yHP |

∣∣∣∣+ |h|2
∣∣∣∣ yi yj
|y| |yH |

−
yP i yP j
|yP | |yPH |

∣∣∣∣ .
Moreover, ∣∣∣∣ |y||yH | − |yP ||yHP |

∣∣∣∣ ≈ ∣∣∣∣ |y|2|yH |2
− |yP |

2

|yHP |2

∣∣∣∣ =

∣∣∣∣ |y|2|yHP |2 − |yP |2|yH |2|yH |2 |yHP |2

∣∣∣∣
=

∣∣∣∣(|yH |2 + |h|2)|yHP |2 − (|yHP |2 + |h|2)|yH |2

|yH |2 |yHP |2

∣∣∣∣
=

∣∣∣∣ |h|2(|yHP |2 − |yH |2)

|yH |2 |yHP |2

∣∣∣∣ ≈ |h|2 |y| ||yHP | − |yH |||y|4

.
|h|2 `(P )

r3
,

and in a similar manner we get

|h|2
∣∣∣∣ yi yj
|y| |yH |

−
yP i yP j
|yP | |yPH |

∣∣∣∣ . |h|2 `(P )

r3
.
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Hence

(5.39) |∂jΠ̃i(y)− ∂jΠ̃i(yP )| . |h|
2 `(P )

r3
.

Now we write

|JΠ̃(y)− JΠ̃(yP )| =

∣∣∣∣∣∣
∑
σ

sgn(σ)
n∏
j=1

∂jΠ̃σ(j)(y)−
∑
σ

sgn(σ)
n∏
j=1

∂jΠ̃σ(j)(yP )

∣∣∣∣∣∣
≤ c(n) sup

i,j

∣∣∂jΠ̃i(y)− ∂jΠ̃i(yP )
∣∣ (sup

i,j
|∂jΠ̃i(y)|n−1 + sup

i,j
|∂jΠ̃i(yP )|n−1

)
. sup

i,j

∣∣∂jΠ̃i(y)− ∂jΠ̃i(yP )
∣∣,

(5.40)

where the sum is computed over all permutations of {1, . . . , n} and sgn(σ) denotes the
signature of the permutation σ. Moreover, in the last inequality we used again that

‖∇Π‖∞ . 1 on BP since BP lies far from the subspace Π⊥
−1

({0}).
Therefore, by (5.40) and (5.39),

(5.41) |JΠ̃(y)− JΠ̃(yP )| . |h|
2 `(P )

r3
for y ∈ P .

Lemma 5.9. Let B be a ball centered in Π(P ) with diam(B) . `(P ). Then

distB(Π]Hn|L̃P , c∗H
n
|L0

) .

 ∑
S∈D:P⊂S⊂Q

α(S) +
dist(0, LQ)

`(Q)

 `(P )n+1,

where c∗ = (JΠ̃(yP ))−1.

Proof. Let f be 1-Lipschitz with supp f ⊂ B. Then, recalling that σ̃P = cPHn|L̃P ,∣∣∣∣∫ f d(Π]Hn|L̃P )− c∗
∫
f dHn|L0

∣∣∣∣ ≈ ∣∣∣∣ 1

c∗

∫
f(Π(y))dHn|L̃P −

∫
f(y)dHn|L0

∣∣∣∣
=

∣∣∣∣ 1

c∗

∫
Rn
f(Π̃(y))dy −

∫
Rn
f(y)dy

∣∣∣∣
=

∣∣∣∣∫
Rn
f(Π̃(y)) JΠ̃(yP )dy −

∫
Rn
f(Π̃(y)) JΠ̃(y)dy

∣∣∣∣ ,
where we changed variables in the last line. Now notice that supp f ◦ Π̃ ⊂ B′, where B′

is a ball concentric with B such that diam(B) . `(P ). In addition, since supp f ⊂ B and
‖∇f‖∞ ≤ 1 we also get ‖f‖∞ . `(P ). Hence, by (5.41),∣∣∣∣∫ f d(Π]Hn|L̃P )− c∗

∫
f dHn|L0

∣∣∣∣ . ∫
Rn
|f(Π̃(y))||JΠ̃(yP )− JΠ̃(y)|dy

.
|h|2 `(P )

r3

∫
B′
`(P )dy .

|h| `(P )n+1

r
.
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Moreover, by [To1, Remark 5.3] and the choice of yP ,

|h| = dist(yP , L0) ≤ dist(yP , LQ) + dist(L0, LQ) .
∑

S∈D:P⊂S⊂Q
α(S)`(S) + dist(0, LQ).

Hence∣∣∣∣∫ f d(Π]Hn|L̃P )− c∗
∫
f dHn|L0

∣∣∣∣ .
∑

S∈D:P⊂S⊂Q α(S)`(Q) + dist(0, LQ)

`(Q)
`(P )n+1,

and the lemma follows. �

We denote

G̃(x, r) := {P (I)}I∈G(x,r).

We need the following auxiliary result.

Lemma 5.10. For every a ≥ 1 and every S ∈ D,∑
P∈G̃(x,r):P⊂aS

µ(P ) . µ(S),

with the implicit constant depending on a.

Proof. We assume x = 0 for simplicity. Notice that for every P ∈ G̃(0, r) such that P ⊂ aS
there exists some I ∈ G(0, r) such that r`(I) ≈ `(P ) and r · I ⊂ a′Π(BS) where a′ only
depends on a. Therefore∑

P∈G̃(0,r);P⊂aS

µ(P ) .
∑
{`(r · I)n : I ∈ G(0, r); r · I ⊂ a′Π(BS)}

.
∑
{`(r · I)n : I ∈ D̃(Rn); r · I ⊂ a′Π(BS); r · 5I ∩ (∂Bn(0, r) ∪ ∂Bn(0, 2r)) 6= ∅}

≤ c(a) `(S)n ≈ c(a)µ(S).

�

We can now estimate the term Gr,1(x) in (5.31).

Lemma 5.11. We have

(5.42) |Gr,1(x)| .
∑

P∈G̃(x,r)

(
α(aP ) +

d(x, LQ)

`(Q)

)
µ(P )

µ(Q)
,

for some absolute constant a ≥ 1.

Proof. Using (5.33) and (c) from Lemma 5.1,

|Gr,1(0)| =

∣∣∣∣∣∣ 1

rn

∑
I∈G(0,r)

aI

∫
ψI

(
Π(y)

r

)
dµ(y)

∣∣∣∣∣∣
.

1

`(Q)n

∑
I∈G(0,r)

 ∑
S∈D:P (I)⊂S⊂Q

α(S) +
dist(0, LQ)

`(Q)

 `(P (I))n.

(5.43)
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Notice that by the definition of G(0, r), for every I ∈ G(0, r)

#{P ∈ D : P = P (I)} . 1.

Then

(5.44) |Gr,1(0)| .
∑

P∈G̃(0,r)

∑
S∈D:P⊂S⊂Q

α(S)
`(P )n

`(Q)n
+

∑
P∈G̃(0,r)

dist(0, LQ)

`(Q)

`(P )n

`(Q)n
.

If S ∈ D is such that P ⊂ S ⊂ Q, then there exists S̃ ∈ G̃(0, r), with `(S̃) ≈ `(S), such

that S ⊂ aS̃ for some a ≥ 1. In fact, since P ∈ G̃(0, r) we can find I ′ ∈ G(0, r) with

`(r · I ′) ≈ `(S) such that Π(S) ∩ r · I ′ 6= ∅. Therefore we can take S̃ := P (I ′).

Hence for P ∈ G̃(0, r),

(5.45)
∑

S∈D:P⊂S⊂Q
α(S) .

∑
S∈G̃(0,r):
P⊂aS⊂aQ

α(aS).

Thus, using also Lemma 5.10,

∑
P∈G̃(0,r)

∑
S∈D:P⊂S⊂Q

α(S)
`(P )n

`(Q)n
.

∑
P∈G̃(0,r)

∑
S∈G̃(0,r):
P⊂aS⊂aQ

α(aS)
`(P )n

`(Q)n

≈
∑

S∈G̃(0,r):S⊂aQ

α(aS)
∑

P∈G̃(0,r):P⊂aS

µ(P )

µ(Q)

.
∑

S∈G̃(0,r):S⊂aQ

α(aS)
µ(S)

µ(Q)
.

(5.46)

Together with (5.44), this yields (5.42). �

Now we will deal with the term I21 in (5.32).

Lemma 5.12. We have

I21 . µ(R).

Proof. 0 By Lemmas 5.10 and 5.11, and Cauchy-Schwarz,

|Gr,1(x)|2 .

 ∑
P∈G̃(x,r)

(
α(aP ) +

d(x, LQ)

`(Q)

)2 µ(P )

µ(Q)

 ∑
P∈G̃(x,r)

µ(P )

µ(Q)


.

∑
P∈G̃(x,r)

(
α(aP ) +

d(x, LQ)

`(Q)

)2 µ(P )

µ(Q)
.
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Then

I21 .
∑

Q∈D(R)

1

`(Q)n+1

∫
Q

∫ 2`(Q)

`(Q)

∑
P∈G̃(x,r)

(
α(aP )2 +

d(x, LQ)2

`(Q)2

)
µ(P ) drdµ(x)

.
∑

Q∈D(R)

1

`(Q)n+1

∫
Q

∫ 2`(Q)

`(Q)

∑
P⊂a′′Q:

cBP∩(∂B(x,r)∪∂B(x,2r))6=∅

(
α(aP )2 +

d(x, LQ)2

`(Q)2

)
µ(P ) drdµ(x).

By Fubini, ∫ 2`(Q)

`(Q)

∑
P⊂a′′Q:

cBP∩∂B(x,r)6=∅

(
α(aP )2 +

d(x, LQ)2

`(Q)2

)
µ(P ) dr

=
∑

P⊂a′′Q

(
α(aP )2 +

d(x, LQ)2

`(Q)2

)
µ(P )

∫
{r: cBP∩∂B(x,r)6=∅}

dr

.
∑

P⊂a′′Q

(
α(aP )2 +

d(x, LQ)2

`(Q)2

)
µ(P )`(P ),

where we used the fact that if r > 0 is such that cBP ∩ ∂B(x, r) 6= ∅ then

|xP | − c `(P ) ≤ r ≤ |xP |+ c `(P ),

where xP is the center of BP . Therefore,

I21 .
∑

Q∈D(R)

1

`(Q)n

∫
Q

∑
P⊂a′′Q

(
α(aP )2 +

d(x, LQ)2

`(Q)2

)
`(P )

`(Q)
µ(P )dµ(x)

.
∑

Q∈D(R)

∑
P⊂a′′Q

α(aP )2 `(P )

`(Q)
µ(P )

+
∑

Q∈D(R)

1

`(Q)n

∫
Q

d(x, LQ)2

`(Q)2
dµ(x)

∑
P∈D:P⊂a′′Q

`(P )

`(Q)
µ(P )

.
∑

P∈D:P⊂a′′R
α(aP )2µ(P )

∑
Q∈D:a′′Q⊃P

`(P )

`(Q)
+

∑
Q∈D(R)

∫
Q

d(x, LQ)2

`(Q)2
dµ(x)

. µ(R).

(5.47)

�

Finally we turn our attention to I22. Recall that

I22 =
∑

Q∈D:Q⊂R,
α(1000Q)≤δ2

∫
Q

∫ 2`(Q)

`(Q)
|Gr,2(x)|2 dr

`(Q)
dµ(x).

For x ∈ supp(µ) and r > 0 set

fx,r(y) =
∑

I∈T (x,r)

∑
J∈D̃(Rn): J⊂I

aJ ψJ

(
Π(y − x)

r

)
,
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so that

Gr,2(x) =
1

rn

∫
fx,r(y) dµ(y).

Lemma 5.13. The functions fx,r satisfy

• supp fx,r ⊂
⋃
I∈T (x,r) 3P (Î), where Î is the father of I,

• ‖fx,r‖∞ . 1.

Proof. We assume again that x = 0. Notice that supp fx,r ⊂ Π−1(r · 5I) ∩ supp(µ) and

since I ∈ F0, we have Î ∈ G(x, r). Therefore by Lemma 5.7, Π−1(r ·5I)∩supp(µ) ⊂ 3P (Î).
We will now show that ‖fx,r‖∞ . 1. Recalling (5.30) if I, J ∈ F0 and 20I ∩ 20J 6= ∅,

then `(I) ≈ `(J). If I ∈ F0 \ T (x, r) or I ⊂ J for some J ∈ F0 \ T (x, r), then by Lemma
5.1 aI = 0. Therefore,

fx,r(y) =
∑
I∈F0

∑
J∈D̃(Rn): J⊂I

aJψJ

(
Π(y)

r

)
.

We now consider the function

f̃(z) =
∑
I∈F0

∑
J⊂I

aJψJ(z).

The second assertion in the lemma follows after checking that ‖f̃‖∞ . 1. To this end,

recall that by (5.1), for any k ∈ Z, we have h̃ =
∑

I∈D̃(Rn)
aIψI . We can also write

(5.48) h̃(z) =
∑

I∈D̃k(Rn)

∑
J⊂I

aJψJ(z) +
∑

I∈Dk(Rn)

βIφI(z),

where βI = 〈h̃, φI〉 and the functions φI satisfy

• suppφI ⊂ 7I,

• ‖φI‖∞ . 1
`(I)n/2

,

• ‖∇φI‖∞ . 1
`(I)n/2+1 ,

• ‖φI‖2 = 1.

See [Mal, Theorem 7.9]. We note that suppψI ⊂ 5I and suppφI ⊂ 7I since we are taking
Daubechies wavelets with 3 vanishing moments, see [Mal, p. 250].

Now let z ∈ I0 for some I0 ∈ F0 with `(I0) = 2−k. Notice that

‖βIφI‖∞ . |βI |`(I)−n/2 ≤
∫
|h̃(y)φI(y)|dy `(I)−n/2

. ‖φI‖1 `(I)−n/2 . `(I)n/2‖φI‖2`(I)−n/2 = 1.

(5.49)

By the finite superposition of suppφI for I ∈ Dk, (5.49) implies that∣∣∣∣∣∣
∑

I∈Dk(Rn)

βIφI(z)

∣∣∣∣∣∣ . 1.
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Therefore by (5.48) we deduce that

(5.50)

∣∣∣∣∣∣
∑

I∈D̃k(Rn)

∑
J⊂I

aJψJ(z)

∣∣∣∣∣∣ . 1.

We will now prove that ∣∣∣∣∣∣f̃(z)−
∑

I∈D̃k(Rn)

∑
J⊂I

aJψJ(z)

∣∣∣∣∣∣ . 1.

Together with (5.50), this shows that |f̃(z)| . 1 and proves the lemma. We have∣∣∣∣∣∣f̃(z)−
∑

I∈D̃k(Rn)

∑
J⊂I

aJψJ(z)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
I∈F0:

5I∩I0 6=∅

∑
J⊂I

aJψJ(z)−
∑

I∈Dk(Rn):
5I∩I0 6=∅

∑
J⊂I

aJψJ(z)

∣∣∣∣∣∣∣∣
.

∑
J∈A14A2

|aJψJ(z)|,

(5.51)

where

A1 = {J ∈ D̃(Rn) : J ⊂ I, for some I ∈ F0 such that 5I ∩ I0 6= ∅}
and

A2 = {J ∈ D̃(Rn) : J ⊂ I, for some I ∈ Dk(Rn) such that 5I ∩ I0 6= ∅}.
It follows as in (5.49) that ‖aJψJ‖∞ . 1. Therefore,∣∣∣∣∣∣f̃(z)−

∑
I∈D̃k(Rn)

∑
J⊂I

aJψJ(z)

∣∣∣∣∣∣ . #A . 1.

This follows from the fact that if I ∈ F0 such that 5I ∩ I0 6= ∅ then `(I) ≈ `(I0). �

Lemma 5.14. We have

I22 . µ(R).

Proof. Lemma 5.13 implies that

|Gr,2(x)| . 1

`(Q)n

∫
|fx,r(y)|dµ(y) .

1

`(Q)n

∑
I∈T (x,r)

µ(P (Î)).

As noted earlier, for I ∈ T (x, r), the parent of I, denoted by Î, belongs to G(x, r). Observe
also that

r diam(I) ≤ 1

5000
inf
z∈r·I

d(z),

because T (x, r) ∈ F0. So every z′ ∈ r · I ⊂ r · Î satisfies d(z′) ≥ 5000 r diam(I) =

2500 r diam(Î). This implies that d(z) & r `(I) for all z ∈ r · Î, because d(·) is 3-Lipschitz.

As a consequence, by the definition of d(·), there exists some y ∈ P (Î) such that `(y) &
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r `(I) ≈ `(P (Î)). Then it follows easily that there exists some descendant U of P (Î) with

`(U) ≈ `(P (Î)) such that ∑
S∈D:U⊂S⊂1000Q

α(100S) ≥ δ.

This clearly implies that either ∑
S∈D:P (Î)⊂S⊂1000Q

α(100S) ≥ δ

2
,

or ∑
S∈D:U⊂S⊂P (Î)

α(100S) ≥ δ

2
.

Since `(U) ≈ `(P (Î)), from the second condition one infers that α(100P (Î)) ≥ cδ. Hence
in either case, for some small constant c > 0,

(5.52)
∑

S∈D:P⊂S⊂1000Q

α(100S) ≥ cδ.

Therefore,

|Gr,2(x)| .δ
1

`(Q)n

∑
I∈T (x,r)

µ(P (Î))
∑

S∈D:P⊂S⊂1000Q

α(100S)

.
1

`(Q)n

∑
P∈G̃(x,r)

µ(P )
∑

S∈D:P⊂S⊂1000Q

α(100S).

Notice that ∑
P∈G̃(x,r)

`(P )n

`(Q)n

∑
S∈D:P⊂S⊂1000Q

α(100S)

is smaller, modulo the constants 1000 and 100, than the right side in (5.44). Therefore by
the same arguments we used for I21 we get I22 . µ(R). �

From Lemmas 5.12 and 5.14 we deduce that I2 . µ(R). Together with Lemma 5.5 this
completes the proof of Theorem 5.2.

6. Proof of Proposition 1.3

We will only prove the equivalence (a)⇔(b), as (a)⇔(c) is very similar.
By Theorem 4.1, it is clear that uniform n-rectifiability implies the boundedness of the

square function in (b) for any positive integer k. As for the converse, next we show that
Lemma 3.1 holds with ∆µ,ϕ replaced by ∆k

µ,ϕ.

Lemma 6.1. Let k be a positive integer. For all ε > 0 there exists δ > 0 such that all
n-AD-regular measures µ with constant c0 and 0 ∈ supp(µ) such that∫ δ−1

δ

∫
x∈B̄(0,δ−1)

|∆k
µ,ϕ(x, r)| dµ(x) dr ≤ δ,

satisfy
distB(0,1)(µ,U(ϕ, c0)) < ε.
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Proof. Suppose that there exists an ε > 0, and for each m ≥ 1 there exists an n-AD-regular
measure µm such that 0 ∈ supp(µm),

(6.1)

∫ m

1/m

∫
x∈B̄(0,m)

|∆k
µm,ϕ(x, r)| dµm(x) dr ≤ 1

m
,

and

(6.2) distB(0,1)(µm,U(ϕ, c0)) ≥ ε.

By (1.1) we can replace {µm} by a subsequence converging weak * (i.e. when tested
against compactly supported continuous functions) to a measure µ and it is easy to check
that 0 ∈ supp(µ) and that µ is also n-dimensional AD-regular with constant c0. We claim
that ∫ ∞

0

∫
x∈Rd

|∆k
µ,ϕ(x, r)| dµ(x) dr = 0.

The proof of this statement is elementary and is almost the same as the analogous one
in Lemma 3.1. We leave the details for the reader.

Our next objective consists in showing that µ ∈ U(ϕ, c0). To this end, denote by G the
subset of those points x ∈ supp(µ) such that

(6.3)

∫ ∞
0
|∆k

µ,ϕ(x, r)| dr = 0.

It is clear that G has full µ-measure. For x ∈ G and r > 0, consider the function
fx(r) = ϕr ∗ µ(x). Then fx : (0,+∞)→ R is bounded and C∞, and it follows from (6.3)
that fx is a polynomial in r of degree at most k − 1, whose coefficients may depend on x.
However, since µ is n-AD-regular, it follows easily that there exists some constant c such
that

|fx(r)| = |ϕr ∗ µ(x)| ≤ c for all r > 0.

Thus fx must be constant on r. So for all x ∈ G and 0 < R1 ≤ R2,

ϕR1 ∗ µ(x) = ϕR2 ∗ µ(x).

This is the same estimate we obtained in (3.11) in Lemma 3.1. So proceeding exactly in
the same way as there we deduce then that

ϕR1 ∗ µ(x) = ϕR2 ∗ µ(y) for all x, y ∈ suppµ and all 0 < R1 ≤ R2.

That is, µ ∈ U(ϕ, c0). However, by condition (6.2), letting m→∞, we have

distB(0,1)(µ,U(ϕ, c0)) ≥ ε,

because distB(0,1)(·,U(ϕ, c0)) is continuous under the weak * topology. So µ 6∈ U(ϕ, c0),
which is a contradiction. �

Applying the previous lemma and arguing in the same way as in Section 3 one proves
the implication (b)⇒(a) of Proposition 1.3.
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École Norm. Sup. 4, n. 1, (1988), 73–114.
[Da2] G. David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Mathematics,

1465. Springer-Verlag, Berlin, (1991).
[DS1] G. David and S. Semmes. Singular Integrals and rectifiable sets in Rn: Au-delà des graphes
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