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Section 1

Introduction to Systems of Linear
Equations

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a linear equation?

• What is a system of linear equations?

• What is a solution set of a system of linear equations?

• What are equivalent systems of linear equations?

• What operations can we use to solve a system of linear equations?

Application: Electrical Circuits

Linear algebra is concerned with the study of systems of linear equations. There are two important
aspects to linear systems. One is to use given information to set up a system of equations that
represents the information (this is called modeling), and the other is to solve the system. As an
example of modeling, we consider the application to the very simple electrical circuit. An electrical
circuit consists of

• one or more electrical sources, denoted by
+ -

• one or more resistors, denoted by .

A source is a power supply like a battery, and a resistor is an object that consumes the electricity,
like a lamp or a computer. A simple circuit consists of one or more sources connected to resistors,
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4 Section 1. Introduction to Systems of Linear Equations

like the one shown in Figure 1.2. The straight lines in the circuit indicate wires through which
current flows. The points labeled P and Q are called junctions or nodes.

+ −

+ −
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4 Ω

2 Ω3 Ω

2 Ω

I1

I2

I3

P Q

Figure 1.1: A circuit.

The source creates a charge that produces potential energy E measured in volts (V). Current
flows out of the positive terminal of a source and runs through each branch of the circuit. Let I1,
I2, and I3 be the currents as illustrated in Figure 1.2. The goal is to find the current flowing in each
branch of the circuit.

Linear algebra comes into play when analyzing a circuit based on the relationship between
current I , resistance R, and voltage E. There are laws governing electrical circuits that state that
E = IR across a resistor. Additionally, Kirchoff’s Current and Voltage Laws indicate how current
behaves within the whole circuit. Using all these laws together, we derive the system

I1 − I2 + I3 = 0

5I1 + 2I2 = 8

2I2 + 4I3 = 5,

where I1, I2, and I3 are the currents at the points indicated in Figure 1.2. To finish analyzing the
circuit, we now need to solve this system. In this section we will begin to learn systematic methods
for solving systems of linear equations. More details about the derivation of these circuit equations
can be found at the end of this section.

Introduction

Systems of linear equations arise in almost every field of study: mathematics, statistics, physics,
chemistry, biology, economics, sociology, computer science, engineering, and many, many others.
We will study the theory behind solving systems of linear equations, implications of this theory,
and applications of linear algebra as we proceed throughout this text.

Preview Activity 1.1.
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(1) Consider the following system of two linear equations in two unknowns, x1, x2:

2x1 − 3x2 = 0

x1 − x2 = 1.

One way to solve such a system of linear equations is the method of substitution (where
one equation is solved for one variable and then the resulting expression is substituted into
the remaining equations). This method works well for simple systems of two equations in
two unknowns, but becomes complicated if the number or complexity of the equations is
increased.

Another method is elimination – the method that we will adopt in this book. Recall that the
elimination method works by multiplying each equation by a suitable constant so that the co-
efficients of one of the variables in each equation is the same. Then we subtract corresponding
sides of these equations to eliminate that variable.

Use the method of elimination to show that this system has the unique solution x1 = 3 and
x2 = 2. Explain the specific steps you perform when using elimination.

(2) Recall that a linear equation in two variables can be represented as a line in R2, the Cartesian
plane, where one variable corresponds to the horizontal axis and the other to the vertical axis.
Represent the two equations 2x1− 3x2 = 0 and x1−x2 = 1 in R2 and illustrate the solution
to the system in your picture.

(3) The previous example should be familiar to you as a system of two equations in two un-
knowns. Now we consider a system of three equations in three unknowns

I1 − I2 + I3 = 0 (1.1)

5I1 + 2I2 = 8 (1.2)

2I2 + 4I3 = 5. (1.3)

that arises from our electrical circuit in Figure 1.2, with currents I1, I2, and I3 as indicated in
the circuit. In the remainder of this preview activity we will apply the method of elimination
to solve the system of linear equations (1.1), (1.2), and (1.3).

(a) Replace equation (1.2) with the new equation obtained by multiplying both sides of
equation (1.1) by 5 and then subtracting corresponding sides of this equation from
the appropriate sides of equation (1.2). Show that the resulting system is

I1 − I2 + I3 = 0

7I2 − 5I3 = 8 (1.4)

2I2 + 4I3 = 5.

(b) Now eliminate the variable I2 from the last two equations in the system in part (a) by
using equations (1.3) and (1.4) to show that I3 = 0.5. Explain your process.

(c) Once you know the value for I3, how can you find I2? Then how do you find I1? Use
your method to show that the solution to this system is the ordered triple (1,1.5,0.5).
Interpret the result in terms of currents.
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Figure 1.2: A circuit.

Notation and Terminology

To study linear algebra, we will need to agree on some general notation and terminology to represent
our systems.

An equation like 4x1 + x2 = 8 is called a linear equation because the variables (x1 and x2

in this case) are raised to the first power, and there are no products of variables. The equation
4x1 + x2 = 8 is a linear equation in two variables, but we can make a linear equation with any
number of variables we like.

Definition 1.1. A linear equation in the variables x1, x2, . . ., xn is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where n is a positive integer and a1, a2, . . ., an and b are constants. The constants a1, a2, . . ., an
are called the coefficients of the equation.

We can use any labels for the variables in a linear equation that we like, e.g., I1, x1, t1, and you
should become comfortable working with variables in any form. We will usually use subscripts,
as in x1, x2, x3, . . ., to represent the variables as this notation allows us to have any number of
variables. Other examples of linear equations are

x+ 2y = 4 and
√

2x1 − 3x2 =
1

4
x3 + π .

On the other hand, the equations

1

x
+ y − z = 0 and 2x1 =

√
x2 − 5

are non-linear equations.

Definition 1.2. A system of linear equations is a collection of one or more linear equations in the
same variables.
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For example, the two equations

x1 − x2 = 1

2x1 + x2 = 5
(1.5)

form a system of two linear equations in variables x1, x2.

Definition 1.3. A solution to a system of linear equations is an ordered n-tuple (s1, s2, . . . , sn) of
numbers so that we obtain all true statements in the system when we replace the variable in order
with s1, s2, . . ., and sn.

For example, x1 = 2, x2 = 1, or simply (2, 1), is a solution to the above system of linear
equations in (1.5) as can be checked by substituting the variables into each equation. In solving a
system of linear equations, we are interested in finding the set of all solutions, which we will call
the solution set of the system. For the above system in (1.5), the solution set is the set containing
the single point (2, 1), denoted {(2, 1)}, because there is only one solution. If we consider just
the equation x1 − x2 = 0 as our system, the solution set is the line x1 = x2 in the plane. More
generally, a set of solutions is a collection of ordered n-tuples of numbers. We denote the set of all
ordered n-tuples of numbers as Rn. So, for example, R2 is the set of all ordered pairs, or just the
standard coordinate plane, and R3 is the set of all ordered triples, or the three-dimensional space.

Solving Systems of Linear Equations

In Preview Activity 1.1, we were introduced to linear systems and the method of elimination for a
system of two or three variables. Our goal now is to come up with a systematic method that will
reduce any linear system to one that is easy to solve without changing the solution set of the system.
Two linear systems will be called equivalent if they have the same solution set.

The operations we used in Preview Activity 1.1 to systematically eliminate variables so that we
can solve a linear system are called elementary operations on a system of linear equations or just
elementary operations. In the exercises you will argue that elementary operations do not change
the solution set to a system of linear equations, a fact that is summarized in the following theorem.

Theorem 1.4. The elementary operations on a system of linear equations:

(1) replacing one equation by the sum of that equation and a scalar multiple of another equation;

(2) interchanging two equations;

(3) replacing an equation by a nonzero scalar multiple of itself;

do not change the solution set to the system of equations.

When we apply these elementary operations our ultimate goal is to produce a system of linear
equations in a simplified form with the same solution set, where the number of variables eliminated
from the equations increase as we move from top to bottom. This method is called the elimination
method.



8 Section 1. Introduction to Systems of Linear Equations

Activity 1.1. For systems of linear equations with a small number of variables, many different
methods could be used to find a solution. However, when a system gets large, ad-hoc methods
become unwieldy. One of our goals is to develop an algorithmic approach to solving systems of
linear equations that can be programmed and applied to any linear system, so we want to work
in a very prescribed method as indicated in this activity. Ultimately, once we understand how the
algorithm works, we will use calculators/computers to do the work. Apply the elimination method
as described to show that the solution set of the following system is (2,−1, 1).

x1 + x2 − x3 = 0

2x1 + x2 − x3 = 2

x1 − x2 + 2x3 = 5.

(a) Use the first equation to eliminate the variable x1 in the second and third equations.

(b) Use the new second equation to eliminate the variable x2 in the third equation and find the
value of x3.

(c) Find values of x2 and then x1.

Important Note: Technically, we don’t really add two equations or multiply an equation by a scalar.
When we refer to a scalar multiple of an equation, we mean the equation obtained by equating the
scalar multiple of the expression on the left side of the equation and the same scalar multiple of the
expression on the right side of the equation. Similarly, when we refer to a sum of two equations, we
don’t really add the equations themselves. Instead, we mean the equation obtained by equating the
sum of the expressions on the left sides of the equations to the sum of the expressions on the right
sides of the equations. We will use the terminology “scalar multiple of an equation” and “sum of
two equations” as shorthand to mean what is described here.

Another Important Note: There is an important and subtle point to consider here. When we use
these operations to find a solution to a system of equations, we are assuming that the system has a
solution. The application of these operations then tells us what a solution must look like. However,
there is no guarantee that the outcome is actually a solution – to be safe we should check to make
sure that our result is a solution to the system. In the case of linear systems, though, every one of our
operations on equations is reversible (if applied correctly), so the result will always be a solution
(but this is not true in general for non-linear systems).

Terminology: A system of equations is called consistent if the system has at least one solution. If
a system has no solutions, then it is said to be inconsistent.

The Geometry of Solution Sets of Linear Systems

We are familiar with linear equations in two variables from basic algebra and calculus (through
linear approximations). The set of solutions to a system of linear equations in two variables has
some geometry connected to it.
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Activity 1.2. Recall that we examined the geometry of the system

2x1 − 3x2 = 0

x1 − x2 = 1

in Preview Activity 1.1 to show that the resulting solution set consists of a single point in the plane.

In this activity we examine the geometry of the system

2x1 − x2 = 1

2x1 − 2x2 = 2.
(1.6)

(a) Consider the linear equation 2x1 − 2x2 = 2 (or, equivalently 2x − 2y = 2). What is the
graph of the solution set (the set of points (x1, x2) satisfying this equation) of this single
equation in the plane? Draw the graph to illustrate.

(b) How can we represent the solution set of the system (1.6) of two equations graphically?
How is this solution set related to the solution set of the single equation 2x1 − 2x2 = 2?
Why? How many solutions does the system (1.6) have?

(c) There are exactly three possibilities for the number of solutions to a general system of two
linear equations in two unknowns. Describe the geometric representations of solution sets
for each of the possibilities. Illustrate each with a specific example (of your own) using a
system of equations and sketching its geometric representation.

Activity 1.2 shows that there are three options for the solution set of a system: A system can
have no solutions, one solution, or infinitely many solutions.

Now we consider systems of three variables. As an example, let us look at the linear equation
x + y + z = 1 in the three variables x, y, and z. Notice that the points (1, 0, 0), (0, 1, 0), and
(0, 0, 1) all satisfy this equation. As a linear equation, the graph of x+ y+ z = 1 will be a plane in
three dimensions that contains these three points, as shown in Figure 1.3. Hence when we consider
a linear system in three unknowns, we are looking for a point in the three dimensional space that
lies on all the planes described by the equations.

Activity 1.3. In this activity we examine the geometry of linear systems of three equations in three
unknowns. Recall that each linear equation in three variables has a plane as its solution set. Use a
piece of paper to represent each plane.

(a) Is it possible for a general system of three linear equations in three unknowns to have no
solutions? If so, geometrically describe this situation and then illustrate each with a specific
example using a system of equations. If not, explain why not.

(b) Is it possible for a general system of three linear equations in three unknowns to have
exactly one solution? If so, geometrically describe this situation and then illustrate each
with a specific example using a system of equations. If not, explain why not.

(c) Is it possible for a general system of three linear equations in three unknowns to have
infinitely many solutions? If so, geometrically describe this situation and then illustrate
each with a specific example using a system of equations. If not, explain why not.
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Figure 1.3: The plane x+ y + z = 1.

Examples

What follows are worked examples that use the concepts from this section.

Example 1.5. Apply the allowable operations on equations to solve the system

x1 + 2x2+ x3− x4 = 4

− x2− x3+3x4 = 6

x1 +2x3− x4 = 1

2x1 − 3x2+ x3+ x4 = 2.

Example Solution. We begin by eliminating the variable x1 from all but the first equation. To
do so, we replace the third equation with the third equation minus the first equation to obtain the
equivalent system

x1 + 2x2+x3− x4 = 4

− x2−x3+3x4 = 6

− 2x2+x3 = −3

2x1 − 3x2+x3+ x4 = 2.

Then we replace the fourth equation with the fourth equation minus 2 times the first to obtain the
equivalent system

x1 + 2x2+x3− x4 = 4

− x2−x3+3x4 = 6

− 2x2+x3 = −3

− 7x2−x3+3x4 = −6.

To continue the elimination process, we want to eliminate the x2 variable from our latest third
and fourth equations. To do so, we use the second equation so that we do not reinstate an x1
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variable in our new equations. We replace equation three with equation 3 minus 2 times equation 2
to produce the equivalent system

x1 + 2x2+ x3− x4 = 4

− x2− x3+3x4 = 6

3x3−6x4 = −15

− 7x2− x3+3x4 = − 6.

Then we replace equation four with equation four minus 7 times equation 2, giving us the equivalent
system

x1 + 2x2+ x3− x4 = 4

− x2− x3+ 3x4 = 6

3x3− 6x4 = −15

6x3−18x4 = −48.

With one more step we can determine the value of x4. We use the last two equations to eliminate
x3 from the fourth equation by replacing equation four with equation four minus 2 times equation
3. This results in the equivalent system

x1 + 2x2+ x3− x4 = 4

− x2− x3+3x4 = 6

3x3−6x4 = −15

−6x4 = −18.

The last equation tells us that −6x4 = −18, or x4 = 3. Substituting into the third equation
shows that

3x3 − 6 (3) = −15

3x3 = 3

x3 = 1.

The second equation shows that

−x2 − 1 + 3 (3) = 6

−x2 = −2

x2 = 2.

Finally, the first equation tells us that

x1 + 2 (2) + 1− 3 = 4

x1 = 2.

So the solution to our system is x1 = 2, x2 = 2, x3 = 1, and x4 = 3. It is worth substituting
back into our original system to check to make sure that we have not made any arithmetic mistakes.



12 Section 1. Introduction to Systems of Linear Equations

Example 1.6. A mining company has three mines. One day of operation at the mines produces the
following output.

• Mine 1 produces 25 tons of copper, 600 kilograms of silver and 15 tons of manganese.

• Mine 2 produces 30 tons of copper, 500 kilograms of silver and 10 tons of manganese.

• Mine 3 produces 20 tons of copper, 550 kilograms of silver and 12 tons of manganese.

Suppose the company has orders for 550 tons of copper, 11350 kilograms of silver and 250 tons of
manganese.

Write a system of equations to answer the question: how many days should the company oper-
ate each mine to exactly fill the orders? State clearly what the variables in your system represent.
Then find the general solution of your system.

Example Solution. For our system, let x1 be the number of days mine 1 operates, x2 be the number
of days mine 2 operates, and x3 be the number of days mine 3 operates. Since mine 1 produces 25
tons of coper each day, in x1 days mine 1 will produce 25x1 tons of copper. Mine 2 produces 30 tons
of copper each day, so in x2 days mine 2 will produce 30x2 tons of copper. Also, mine 3 produces
20 tons of copper each day, so in x3 days mine 3 will produce 20x3 tons of copper. Since the
company needs to supply a total of 550 tons of copper, we need to have 25x1 +30x2 +20x3 = 550.
Similar analyses of silver and manganese give us the system

25x1 + 30x2 + 20x3 = 550

600x1 + 500x2 + 550x3 = 11350

15x1 + 10x2 + 12x3 = 250.

To solve the system, we eliminate the variable x2 from the second and third equations by re-
placing equation two with equation two minus 24 times equation one and replacing equation three
with equation three minus 3

5 times equation one. This produces the equvalent system

25x1 + 30x2 + 20x3 = 550

− 220x2 + 70x3 = −1850

− 8x2 = −80 .

We are fortunate now that we can determine the value of x2 from the third equation, which tells us
that x2 = 10. Substituting into the second equation shows that

−220(10) + 70x3 = −1850

70x3 = 350

x3 = 5.

Substituting into the first equation allows us to determine the value for x1:

25x1 + 30(10) + 20(5) = 550

25x1 = 150

x1 = 6.

So the company should run mine 1 for 6 days, mine 2 for 10 days, and mine 3 for 5 days to meet
this demand.
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Summary

In this section we introduced linear equations and systems of linear equations.

• Informally, a linear equation is an equation in which each term is either a constant or a
constant times a variable. More formally, a linear equation in the variables x1, x2, . . ., xn is
an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where n is a positive integer and a1, a2, . . ., an and b are constants.

• A system of linear equations is a collection of one or more linear equations in the same
variables.

• Informally, a solution to a system of linear equations is a point that satisfies all of the equa-
tions in the system. More formally, a solution to a system of linear equation in n variables
x1, x2, . . ., xn is an ordered n-tuple (s1, s2, . . . , sn) of numbers so that we obtain all true
statements in the system when we replace x1 with s1, x2 with s2, . . ., and xn with sn.

• Two linear systems are equivalent if they have the same solution set.

• The following operations on a system of equations do not change the solution set:

(1) Replace one equation by the sum of that equation and a scalar multiple of another equa-
tion.

(2) Interchange two equations.

(3) Replace an equation by a nonzero scalar multiple of itself.

Exercises

(1) In the method of elimination there are three operations we can apply to solve a system of
linear equations. For this exercise we focus on a system of equations in three unknowns x1,
x2, and x3, but the arguments generalize to a system with any number of variables. Consider
the general system of three equations in three unknowns

4x1 − 4x2 + 4x3 = 0

4x1 + 2x2 = 8

2x2 + 5x3 = 9.

The goal of this exercise is to understand why the three operations on a system do not change
the solutions to the system. Recall that a solution to a system with unknowns x1, x2, and x3 is
a set of three numbers, one for x1, one for x2, and one for x3 that satisfy all of the equations
in the system.

(a) Explain why, if we have a solution to this system, then that solution is also a solution
to any constant k times the second equation.

(b) Explain why, if we have a solution to this system, then that solution is also a solution
to the sum of the first equation and k times the third equation for any constant k.



14 Section 1. Introduction to Systems of Linear Equations

(2) Alice stopped by a coffee shop two days in a row at a conference to buy drinks and pastries.
On the first day, she bought a cup of coffee and two muffins for which she paid $6.87. The
next day she bought two cups of coffee and three muffins (for herself and a friend). Her bill
was $11.25. Use the method of elimination to determine the price of a cup of coffee, and the
price of a muffin. Clearly explain your set-up for the problem (Assume you are explaining
your solution to someone who has not solved the problem herself/himself).

(3) Alice stopped by a coffee shop three days in a row at a conference to buy drinks and pastries.
On the first day, she bought a cup of coffee, a muffin and a scone for which she paid $6.15.
The next day she bought two cups of coffee, three muffins and a scone (for herself and
friends). Her bill was $12.20. The last day she bought a cup of coffee, two muffins and two
scones, and paid $10.35. Determine the price of a cup of coffee, the price of a muffin and
the price of a scone. Clearly explain your set-up for the problem (Assume you are explaining
your solution to someone who has not solved the problem herself/himself).

(4) (a) Find an example of a system of two linear equations in variables x, y for each of the
following three cases:

i. where the equations correspond to two non-parallel lines,
ii. two parallel distinct lines,

iii. two identical lines (represented with different equations).

(b) Describe how the relationship between the coefficients of the variables of the two
equations in parts (ii) and (iii) are different than the relationship between those coef-
ficients in part (i) (Note: Please make sure your system examples are different than
the examples in the activities, and that they are your own examples.)

(5) In a grid of wires in thermal equilibrium, the temperature at interior nodes is the average of
the temperatures at adjacent nodes. Consider the grid as shown in Figure 1.4, with x1, x2,
and x3 the temperatures (in degrees Centigrade) at the indicated interior nodes, and fixed
temperatures at the other nodes as shown. For example, the nodes adjacent to the node
with temperature x1 have temperatures of x2, 200, 0, and 0, so when the grid is in thermal
equilibrium x1 is the average of these temperatures:

x1 =
x2 + 200 + 0 + 0

4
.

0◦ 400◦

200◦

200◦

0◦

0◦

0◦

x1

x2 x3

Figure 1.4: A grid of wires.
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(a) Determine equations for the temperatures x2 and x3 if the grid is in thermal equi-
librium to construct a system of three linear equations in x1, x2, and x3 that models
node temperatures in the grid in thermal equilibrium.

(b) Use the method of elimination to find a specific solution to the system that makes
sense in context.

(6) We have seen that a linear system of two equations in two unknowns can have no solutions,
one solution, or infinitely many solutions. Find, if possible, a specific example of each of the
following. If not possible, explain why.

(a) A linear system of three equations in two unknowns with no solutions.

(b) A linear system of three equations in two unknowns with exactly one solution.

(c) A linear system of three equations in two unknowns with exactly two solutions.

(d) A linear system of three equations in two unknowns with infinitely many solutions.

(7) We have seen that a linear system of three equations in three unknowns can have no solutions,
one solution, or infinitely many solutions. Find, if possible, a specific example of each of the
following. If not possible, explain why.

(a) A linear system of two equations in three unknowns with no solutions.

(b) A linear system of two equations in three unknowns with exactly one solution.

(c) A linear system of two equations in three unknowns with exactly two solutions.

(d) A linear system of two equations in three unknowns with infinitely many solutions.

(8) Find a system of three linear equations in two variables u, v whose solution is u = 2, v = 1.

(9) Consider the system of linear equations

x1 + hx2 = 2

3x1 + 5x2 = 1

where h is an unknown constant.

(a) Determine the solution(s) of this system for all possible h values, if a solution exists.
(Note: Your answers for the variables will depend on the h.)

(b) How do your answers change if the second equation in the system above is changed
to 3x1 + 5x2 = 6?

(10) Suppose we are given a system of two linear equations

x1 + 2x2 − x3 = 1 (1.7)

3x1 + x2 + 2x3 = −1. (1.8)

Find another system of two linear equations E1 and E2 in the variables x1, x2, and x3 that
are not multiples of each other or of equations (1.7) or (1.8) so that any solution (x1, x2, x3)
to the system (1.7) and (1.8) is a solution to the system E1 and E2.
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True/False Questions

In many sections you will be given True/False questions. In each of the True/False questions, you
will be given a statement, such as “If we add corresponding sides of two linear equations, then
the resulting equation is a linear equation.” and “One can find a system of two equations in two
unknowns that has infinitely many solutions.”. Your task will be to determine the truth value of the
statement and to give a brief justification for your choice.

Note that a general statement is considered true only when it is always true. For example,
the first of the above statements, “If we add corresponding sides of two linear equations, then the
resulting equation is a linear equation.”, is a general statement. For this statement to be true, the
equation we obtain by adding corresponding sides of any two linear equations has to be linear. If
we can find two equations that do not give a linear equation when combined in this way, then this
statement is false.

Note that an existential statement is considered true if there is at least one example which makes
is true. For example, the latter of the above statements, “One can find a system of two equations
in two unknowns that has infinitely many solutions.”, is an existential statement. For this statement
to be true, existence of a system of two equations in two unknowns with infinitely many solutions
should suffice. If it is impossible to find two such equations, then this statement is false.

To justify that something always happens or never happens, one would need to refer to other
statements whose truth is known, such as theorems, definitions. In particular, giving an example of
two linear equations that produce a linear equation when we add corresponding sides does not justify
why the sum of any two linear equations is also linear. Using the definition of linear equations,
however, we can justify why this new equation will always be linear: each side of a linear equation
is linear, and adding linear expressions always produces a linear sum.

To justify that there are examples of something happening or not happening, one would need
to give a specific example. For example, in justifying the claim that there is a system of two
equations in two unknowns with infinitely many solutions, it is not enough to say “An equation
in two unknowns is a line in the xy-plane, so there can be two equations with the same line as
their solution.”. In general, you should avoid the words “can”, “possibly”, “maybe”, etc., in your
justifications. Instead, giving an example such as “The linear system x + y = 1 and 2x + 2y = 2
of two equations in two unknowns has infinitely many solutions since the second equation gives the
same line as the first in the xy-plane.” provides complete justification beyond a reasonable doubt.

Each response to a True/False statement should be more than just True or False. It is important
that you provide justification for your responses.

(1) (a) True/False The set of all solutions of a linear equation can be represented graphically
as a line.

(b) True/False The set of all solutions of a linear equation in two variables can be rep-
resented graphically as a line.

(c) True/False The set of all solutions of an equation in two variables can be represented
graphically as a line.

(d) True/False A system of three linear equations in two unknowns cannot have a unique
solution.
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(e) True/False A system of three linear equations in three unknowns has a unique solu-
tion.

Project: Modeling an Electrical Circuit and the Wheatstone Bridge
Circuit

Mathematical modeling, or the act of creating equations to model given information, is an important
part of problem solving. In this section we will see how we derived the system of equations

I1 − I2 + I3 = 0

5I1 + 2I2 = 8

2I2 + 4I3 = 5,

to represent the electrical current in the circuit shown in Figure 1.2. Recall that a circuit consists of

• one or more electrical sources (like a battery), denoted by
+ -

• one or more resistors (like any appliance that you plug into a wall outlet), denoted by

.

The source creates a charge that produces potential energy E measured in volts (V). No sub-
stance conducts electricity perfectly, there is always some price to pay (energy loss) to moving
electricity. Electrical current I in amperes (A) is the flow of the electric charge in the circuit. (A
current of 1 ampere means that 6.2 × 1018 electrons pass through the circuit per second.) Current
flows out of the positive terminal of a source and runs through each branch of the circuit. Let I1

be the current flowing through the upper branch, I2 the current through middle branch, and I3 the
current through the lower branch as illustrated in Figure 1.2. The goal is to find the current flowing
in each branch of the circuit.

Linear algebra comes into play when analyzing a circuit based on the relationship between
current, resistance, and potential. Three basic principles govern current low in a circuit.

(1) Resistance R in ohms (Ω) can be thought of as a measure of how difficult it is to move a
charge along a circuit. When a current flows through a resistor, it must expend some energy,
called a voltage drop. Ohm’s Law states that the voltage drop E across a resistor is the
product of the current I passing through the resistor and the resistance R. That is,

E = IR.

(2) Kirchoff’s Current Law states that at any point in an electrical circuit, the sum of currents
flowing into that point is equal to the sum of currents flowing out of that point.

(3) Kirchoff’s Voltage Law says that around any closed loop the sum of the voltage drops is equal
to the sum of the voltage rises.
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To see how these laws allow us to model the circuit in Figure 1.2, we will need three equations
in I1, I2, and I3 to determine the values of these currents. Let us first apply Kirchoff’s Current Law
to the point P. The currents flowing into point P are I1 and I3, and the current flowing out is I2. This
produces the equation I1 + I3 = I2, or

I1 − I2 + I3 = 0.

Project Activity 1.1. Apply Kirchoff’s Current Law to the point Q to obtain an equation in I1, I2,
and I3. What do you notice?

We have three variables to determine, so we still need two more equations in I1, I2, and I3.
Next we apply Kirchoff’s Voltage Law to the top loop in the circuit in Figure 1.2. We will assume
the following sign conventions:

• A current passing through a resistor produces a voltage drop if it flows in the direction of
loop (and a voltage rise if the current passes in the opposite direction of the loop).

• A current passing through a source in the direction of the loop produces a voltage drop if it
flows from + to − and a voltage rise if it flows from − to +, while a current passing through
a source in the opposite direction of the loop produces a voltage rise if it flows from + to −
and a voltage drop if it flows from − to +.

(The directions chosen in Figure 1.2 for the voltage flow are arbitrary – if we reverse the flow then
we just replace voltage drops with voltage rises and obtain the same equations. If a solution shows
that a current is negative, then that current flows in the direction opposite of what is shown.)

If we move in the counterclockwise direction around the top loop in the circuit in Figure 1.2,
there is a voltage rise through the source of 8 volts. This must equal the voltage drop in this loop.
The current I1 passing though the resistor of resistance 2 Ω produces a voltage drop of 2I1 volts.
Similarly, the current I1 passing through the resistor of resistance 3Ω produces a voltage drop of
3I1 volts. Finally, the current I2 passing through the resistor of resistance 2 Ω produces a voltage
drop of 2I2 volts. So Kirchoff’s Voltage Law applied to the top loop in the circuit in Figure 1.2
gives us the equation 2I1 + 3I1 + 2I2 = 8 or

5I1 + 2I2 = 8.

Project Activity 1.2. Apply Kirchoff’s Voltage Law to the bottom loop in the circuit in Figure 1.2
to obtain an equation in I1, I2, and I3. Compare the three equations we have found to those in the
introduction.

Project Activity 1.3. Consider the circuit as shown in Figure 1.5, with a single source and five
resistors with resistances R1, R2, R3, R4, and R5 as labeled.

(a) Assume the following information. The voltageE is 13 volts,R1 = R2 = R3 = R5 = 1Ω,
and R4 = 2Ω. Follow the directions given to find the currents I0, I1, I2, I3, I4, and I5.

i. Use Kirchoff’s Current Law to show that I0 = I1 +I2, I3 = I1−I5, and I4 = I2 +I5.
Thus, we reduce the problem to three variables.
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Figure 1.5: A Wheatstone bridge circuit.

ii. Apply Kirchoff’s Voltage Law to three loops to show that the currents must satisfy
the linear system

2I1 − I5 = 13 (1.9)

3I2 + 2I5 = 13 (1.10)

I1 − I2 + I5 = 0. (1.11)

iii. Solve the system to find the unknown currents.

(b) The circuit pictured in Figure 1.5 is called a Wheatstone bridge (invented by Samuel Hunter
Christie in 1833 and popularized by Sir Charles Wheatstone in 1843). The Wheatstone
bridge is a circuit designed to determine an unknown resistance by balancing two paths
in a circuit. It is set up so that the resistances of resistors R1 and R2 are known, R3 is a
variable resistor and we want to find the resistance of R4. The resistor R5 is replaced with
a voltmeter, and the resistance of R3 is varied until the voltmeter reads 0. This balances
the circuit and tells the resistance of resistor R4. Show that if the current I5 in Figure 1.5
is 0 (so the circuit is balanced), then R4 = R2R3

R1
(which is how we calculate the unknown

resistance R4). Do this in general and do not use any specific values for the resistances or
the voltage.





Section 2

The Matrix Representation of a Linear
System

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a matrix?

• How do we associate a matrix to a system of linear equations?

• What row operations can we perform on an augmented matrix of a linear
system to solve the system of linear equations?

• What are pivots, basic variables, and free variables?

• How many solutions can a system of linear equations have?

• When is a linear system consistent?

• When does a linear system have infinitely many solutions? A unique solu-
tion?

• How can we represent the set of solutions to a consistent system if the
system has infinitely many solutions?

Application: Simpson’s Rule

You may recall that Simpson’s Rule from calculus (2
3 of the midpoint approximation plus 1

3 of the
trapezoid approximation) is a formula that can be used to approximate definite integrals. One the
one hand, Simpson’s Rule is a weighted average of the midpoint and trapezoid sum, but that does
not completely explain why Simpson’s Rule is so much better than either the midpoint or trapezoid

21
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sum. While the midpoint and trapezoid sums use line segments to approximate a function on an
interval, Simpson’s Rule uses parabolas. In order to use Simpsons Rule, we need to know how
to exactly fit a quadratic function to three points. More details about this process can be found
at the end of this section. This idea of fitting a polynomial to a set of data points has uses in
other areas as well. For example, two common applications of Bézier curves are font design and
drawing tools. When fitting a polynomial to a large set of data points, our systems of equations
can become quite large, and can be difficult to solve by hand. In this section we will see how to
use matrices to more conveniently represent systems of equations of any size. We also consider
how the elimination process works on the matrix representation of a linear system and how we can
determine the existence of solutions and the form of solutions of a linear system.

Introduction

When working with a linear system, the labels for the variables are irrelevant to the solution – the
only thing that matters is the coefficients of the variables in the equations and the constants on the
other side of the equations. For example, given a linear system of the form

a2 − a1 + a0 = 2

a2 + a1 + a0 = 6

4a2 + 2a1 + a0 = 5,

(2.1)

the important information in the system can be represented as

1 −1 1 2
1 1 1 6
4 2 1 5

where we interpret the first three numbers in each horizontal row to represent the coefficients of the
variables a, b and c, respectively, and the last number to be the constant on the right hand side of
the equation. This tells us that we can record all the necessary information about our system in a
rectangular array of numbers. Such an array is called a matrix.

Definition 2.1. A matrix is a rectangular array of quantities or expressions.

We usually delineate a matrix by enclosing its entries in square brackets [∗]. For the system in
(2.1), there are two corresponding matrices:

 1 −1 1
1 1 1
4 2 1

  1 −1 1 2
1 1 1 6
4 2 1 5


The matrix on the left is the matrix of the coefficients of the system, and is called the coefficient
matrix of the system. The matrix on the right is the matrix of coefficients and the constants, and is
called the augmented matrix of the system (where we say we augment the coefficient matrix with
the additional column of constants). We will separate the augmented column from the coefficient
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matrix with a vertical line to keep it clear that the last column is an augmented column of constants
and not a column of coefficients.1

Terminology. There is some important terminology related to matrices.

• Any number in a matrix is called an entry of the matrix.

• The collection of entries in an augmented matrix that corresponds to a given equation (that
is reading the entries from left to right, or a horizontal set of entries) is called a row of the
matrix. We number the rows from top to bottom in a matrix. For example,

[
1 −1 1

]
is

the first row and
[

1 1 1
]

is the second row of the coefficient matrix of the system (2.1).

• The set of entries as we read from top to bottom (or a vertical set of entries that correspond to
one fixed variable or the constants on the right hand sides of the equations) is called a column

of the matrix. We number the columns from left to right in a matrix. For example,

 1
1
4

 is

the first column and

 1
1
1

 is the third column of the coefficient matrix of the system (2.1).

• The size of a matrix is given as m×n where m is the number of rows and n is the number of
columns. The coefficient matrix above is a 3 × 3 matrix since it has 3 rows and 3 columns,
while the augmented matrix is a 3× 4 matrix as it has 4 columns.

Preview Activity 2.1.

(1) Write the augmented matrix for the following linear system. If needed, rearrange an equation
to ensure that the variables appear in the same order on the left side in each equation with the
constants being on the right hand side of each equation.

−x3 + 3 + 2x2 = −x1

−3 + 2x3 = −x2

−2x2 + x1 = 3x3 − 7

(2.2)

(2) Write the linear system in variables x1, x2 and x3, appearing in the natural order that corre-
sponds to the following augmented matrix. Then solve the linear system using the elimination
method.  1 1 −1 4

1 2 2 3
2 3 −3 11


(3) Consider the three types of elementary operations on systems of equations introduced in

Section 1. Each row of an augmented matrix of a system corresponds to an equation, so
each elementary operation on equations corresponds to an operation on rows (called row
operations).

1You should note that not every author uses this convention – when they do not, it is important that you be careful to
understand if the matrix has an augmented column or not.
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(a) Describe the row operation that corresponds to interchanging two equations.

(b) Describe the row operation that corresponds to multiplying an equation by a nonzero
scalar.

(c) Describe the row operation that corresponds to replacing one equation by the sum of
that equation and a scalar multiple of another equation.

Simplifying Linear Systems Represented in Matrix Form

Once we have stored the information about a linear system in an augmented matrix, we can perform
the elementary operations directly on the augmented matrix.

Recall that the allowable operations on a system of equations are the following:

(1) Replacing one equation by the sum of that equation and a scalar multiple of another equation.

(2) Interchanging the positions of two equations.

(3) Replacing an equation by a nonzero scalar multiple of itself.

Recall that we use these elementary operations to transform a system, with the ultimate goal of
finding a simpler, equivalent system that we can solve. Since each row of an augmented matrix cor-
responds to an equation, we can translate these operations on equations to corresponding operations
on rows (called row operations or elementary row operations):

(1) Replacing one row by the sum of that row and a scalar multiple of another row.

(2) Interchanging two rows.

(3) Replacing a row by a nonzero scalar multiple of itself.

Activity 2.1. Consider the system

a2 − a1 + a0 = 2

a2 + a1 + a0 = 6

4a2 + 2a1 + a0 = 5

with corresponding augmented matrix  1 −1 1 2
1 1 1 6
4 2 1 5



(a) As a first step in solving our system, we might eliminate a2 from the second equation. This
means that the corresponding entry in the second row and first column of the augmented
matrix will become 0. Find a row operation that adds a multiple of the first row to the
second row to achieve this goal. Then write the system of equations that corresponds to
this new augmented matrix.
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(b) Now that we have eliminated the a2 terms from the second equation, we eliminate the a2

term from the third equation. Find an appropriate row operation that does that, and write the
corresponding system of linear equations that corresponds to the new augmented matrix.

(c) Now you should have a system in which the last two rows correspond to a system of 2 linear
equations in two unknowns. Use a row operation that adds a multiple of the second row to
the third row to turn the coefficient of a1 in the third row to 0. Then write the corresponding
system of linear equations.

(d) Your simplified system and its augment matrix are in row echelon form and this system is
solvable using back-substitution (substituting the known variable values into the previous
equation to find the value of another variable). Solve the system.

Reflection 1. Do you see how this standard elimination process can be generalized to any linear
system with any number of variables to produce a simplified system? Do you see why the process
does not change the solutions of the system? If needed, can you modify the standard elimination
process to obtain a simplified system in which the last equation contains only the variable a2, the
next to last equation contains only the variables a1, a2, etc.? Understanding the standard process
will enable you to be able to modify it, if needed, in a problem.

Activity 2.1 illustrates how we can perform all of the operations on equations with operations
on the rows of augmented matrices to reduce a system to a solvable form. Each time we perform an
operation on the system of equations (or on the rows of an augmented matrix) we obtain an equiv-
alent system (or an augmented matrix corresponding to an equivalent system). For completeness,
we list the operations on equations and the corresponding row operations below that can be used
to solve our polynomial fitting system. Throughout the process we will let E1, E2, and E3 be the
first, second, and third equations in the system and R1, R2, and R3 the first, second, and third rows
of the augmented matrices. The notation E1 +E2 placed next to equation E2 means means that we
replace the second equation in the system with the sum of the first two equations. We start with the
system

a2 − a1 + a0 = 2

a2 + a1 + a0 = 6

4a2 + 2a1 + a0 = 5

On the left we demonstrate the operations on equations and on the right the corresponding
operations on rows of the augmented matrix.

E2 − E1 → E2

a2 − a1 + a0 = 2

2a1 = 4

4a2 + 2a1 + a0 = 5

R2 − R1 → R2

 1 −1 1 2

0 2 0 4

4 2 1 5



E3−4E1 → E3

a2 − a1 + a0 = 2

2a1 = 4

6a1 − 3a0 = −3 R3 − 4R1 → R3

 1 −1 1 2

0 2 0 4

0 6 −3 −3


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E3−3E2 → E3

a2 − a1 + a0 = 2

2a1 = 4

− 3a0 = −15 R3 − 3R2 → R3

 1 −1 1 2

0 2 0 4

0 0 −3 −15


Now we can solve the last equation for a0 to find that a0 = 5. The second equation gives us

a1 = 2.2 Finally, using the first equation with the already determined values of a0 and a1 gives us
a2 = −1. Thus we have found the solution to the polynomial fitting system to be a2 = −1, a1 = 2,
and a0 = 5.

We summarize the steps of the (partial) elimination on matrices we used above to solve a general
linear system in the variables x1, x2, . . ., xn.

(1) Interchange equations if needed to ensure that the coefficient of x1 (or, more generally, the
first non-zero variable) in the first equation is non-zero.

(2) Use the first equation to eliminate x1 (or, the first non-zero variable) from other equations by
adding a multiple of the first equation to the others.

(3) After x1 is eliminated from all equations but the first equation, focus on the rest of the equa-
tions. Repeat the process of elimination on these equations to eliminate x2 (or, the next
non-zero variable) all but the second equation.

(4) Once the process of eliminating variables recursively is finished, solve for the variables in
a backwards fashion starting with the last equation and substituting known values in the
equations above as they become known.

This elimination method where the variables are eliminated from lower equations is called the
forward elimination phase as it eliminates variables in the forward direction. Solving for variables
using substitution into upper equations is called back substitution. The matrix representation of a
linear system after the forward elimination process is said to be in row echelon form. We will define
this form and the elimination process on the matrices more precisely in the next section.

Linear Systems with Infinitely Many Solutions

Each of the systems that we solved so far have had a unique (exactly one) solution. The geometric
representation of linear systems with two equations in two variables shows that this does not always
have to be the case. We also have linear systems with no solution and systems with infinitely many
solutions. We now consider the problem of how to represent the set of solutions of a linear system
that has infinitely many solutions. (Systems with infinitely many solutions will also be of special
interest to us a bit later when we study eigenspaces of a matrix.)

Activity 2.2. Consider the system

x1 + 2x2 − x3 = 1

x1 + x2 − 3x3 = 0

2x1 + 3x2 − 4x3 = 1.

2If there had been an a0 term in the second equation, we could have substituted a0 = 5 and solved for a1
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(a) Without explicitly solving the system, check that (−1, 1, 0) and (4,−1, 1) are solutions to
this system.

(b) Without explicitly solving the system, show that x1 = −1 + 5t, x2 = 1− 2t, and x3 = t is
a solution to this system for any value of t. What values of t yield the solutions (−1, 1, 0)
and (4,−1, 1) from part (a)? The equations x1 = −1 + 5t, x2 = 1− 2t, and x3 = t form
what is called a parametric solution to the system with parameter t.

(c) Part (b) shows that our system has infinitely many solutions. We were given solutions in
part (b) – but how do we find these solutions and how do we know that these are all of the
solutions? We address those questions now.

If we apply row operations to the augmented matrix 1 2 −1 1
1 1 −3 0
2 3 −4 1


of this system, we can reduce this system to one with augmented matrix 1 2 −1 1

0 1 2 1
0 0 0 0

 .
i. What is it about this reduced form of the augmented matrix that indicates that the

system has infinitely many solutions?

ii. Since the system has infinitely many solutions, we will not be able to explicitly de-
termine values for each of the variables. Instead, at least one of the variables can be
chosen arbitrarily. What is it about the reduced form of the augmented matrix that
indicates that x3 is convenient to choose as the arbitrary variable?

iii. Letting x3 be arbitrary (we call x3 a free variable), use the second row to show that
x2 = 1− 2x3 (so that we can write x2 in terms of the arbitrary variable x3).

iv. Use the first row to show that x1 = 5x3 − 1 (and we can write x1 in terms of the
arbitrary variable x3). Compare this to the solutions from part (b).

After using the elimination method, the first non-zero coefficient (from the left) of each equation
in the linear system is in a different position. We call each such coefficient a pivot and a variable
corresponding to a pivot a basic variable. In the system

a2 − a1 + a0 = 2

2a1 = 4

− 3a0 = −15

the basic variables are a2, a1, a0 for the first, second, and third equations, respectively. In the
system,
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x1 + 2x2 − x3 = 1

x2 + 2x3 = 1

0 = 0

the basic variables are x1 and x2 for the first and second equations, respectively, while the third
equation does not have a basic variable. Through back-substitution, we can solve for each variable
in a unique way if each appears as the basic variable in an equation. If, however, a variable is free,
meaning that it is not the basic variable of an equation, we cannot solve for that variable explicitly.
We instead assign a distinct parameter to each such free variable and solve for the basic variables
in terms of these parameters.

Definition 2.2. The first non-zero coefficient (from the left) in an equation in a linear system after
elimination is called a pivot. A variable corresponding to a pivot is a basic variable and while a
variable not corresponding to a pivot is a free variable.

Activity 2.3. Each matrix is an augmented matrix for a linear system after elimination. Identify
the basic variables (if any) and free variables (if any). Then write the general solution (if there is a
solution) expressing all variables in terms of the free variables. Use any symbols you like for the
variables.

(a)

 1 0 2 1
0 3 1 0
0 0 0 0



(b)

 1 0 −1 1
0 0 1 2
0 0 0 0



(c)


1 2 −1 1 1
0 1 0 2 1
0 0 0 0 0
0 0 0 0 0


Reflection 2. Does the existence of a row of 0’s always mean a free variable? Can you think of
an example where there is a row of 0’s but none of the variables is free? How do the numbers of
equations and the variables compare in that case?

Linear Systems with No Solutions

We saw in the previous section that geometrically two parallel and distinct lines represent a linear
system with two equations in two unknowns which has no solution. Similarly, two parallel and
distinct planes in three dimensions represent a linear system with two equations in three unknowns
which has no solution. We can have at least four different geometric configurations of three planes
in three dimensions representing a system with no solution. But how do these geometrical configu-
rations manifest themselves algebraically?
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Activity 2.4. Consider the linear system

x1 − x2 + x3 = 2

x1 + x2 − 3x3 = 1

3x1 − x2 − x3 = 6.

(a) Apply the elimination process to the augmented matrix of this system. Write the system of
equations that corresponds to the final reduced matrix.

(b) Discuss which feature in the final simplified system makes it easy to determine that the
system has no solution. Similarly, what features in the matrix representation makes is easy
to see the system has no solution?

We summarize our observations about when a system has a solution, and which of those cases
has a unique solution.

Theorem 2.3. A linear system is consistent if after the elimination process there is no equation
of the form 0 = b where b is a non-zero number. If a linear system is consistent and has a free
variable, then it has infinitely many solutions. If it is consistent and has no free variables, then
there is a unique solution.

Examples

What follows are worked examples that use the concepts from this section.

Example 2.4. Consider the linear system

x1 − x2 + 2x4 = 1

2x1 + 3x2 − 2x3 + 5x4 = 4

x1 − x2 + x3 − x4 = 0

4x1 + x2 − x3 + 6x4 = 5.

(a) Set up the augmented matrix for this linear system.

(b) Find all solutions to the system using forward elimination.

(c) Suppose, after forward elimination, the augmented matrix of the system

x1 − x2 + 2x4 = 1

2x1 + 3x2 − 2x3 + 5x4 = 4

x1 − x2 + x3 − x4 = 0

4x1 + x2 − x3 + 6x4 = h.
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has the form 
1 −1 0 2 1
0 5 −2 1 2
0 0 1 −3 −1
0 0 0 0 h− 5

 .
For which values of h does this system have:

i. No solutions?

ii. A unique solution? Find the solution.

iii. Infinitely many solution? Determine all solutions?

Example Solution.

(a) The augmented matrix for this system is
1 −1 0 2 1
2 3 −2 5 4
1 −1 1 −1 0
4 1 −1 6 5

 .
(b) We apply forward elimination, first making the entries below the 1 in the upper left all

0. We do this by replacing row two with row two minus 2 times row 1, row three with
row three minus row 1, and row four with row four minus 4 row one. This produces the
augmented matrix 

1 −1 0 2 1
0 5 −2 1 2
0 0 1 −3 −1
0 5 −1 −2 1

 .
Now we eliminate the leading 5 in the fourth row by replacing row four with row four
minus row two to obtain the augmented matrix

1 −1 0 2 1
0 5 −2 1 2
0 0 1 −3 −1
0 0 1 −3 −1

 .
When we replace row four with row four minus row three, we wind up with a row of zeros:

1 −1 0 2 1
0 5 −2 1 2
0 0 1 −3 −1
0 0 0 0 0

 .
We see that there is no pivot in column four, so x4 is a free variable. We can solve for the
other variables in terms of x4. The third row shows us that

x3 − 3x4 = −1

x3 = 3x4 − 1.
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The second row tells us that

5x2 − 2x3 + x4 = 2

5x2 = 2x3 − x4 + 2

5x2 = 2(3x4 − 1)− x4 + 2

5x2 = 5x4

x2 = x4.

Finally, the first row gives us

x1 − x2 + 2x4 = 1

x1 = x2 − 2x4 + 1

x1 = x4 − 2x4 + 1

x1 = −x4 + 1.

So this system has infinitely many solutions, with x1 = −x4 + 1, x2 = x4, x3 = 3x4 − 1,
and x4 is arbitrary. As a check, notice that

(−x4 + 1)− x4 + 2x4 = 1

and so this solution satisfies the first equation in our system. You should check to verify
that it also satisfies the other three equations.

(c) i. The system has no solutions when there is an equation of the form 0 = b for some
nonzero number b. The last row will correspond to an equation of the form 0 = h−5.
So our system will have no solutions when h 6= 5.

ii. When h 6= 5, the system has no solutions. When h = 5, the variable x4 is a free
variable and the system has infinitely many solutions. So there are no values of h for
which the system has exactly one solution.

iii. When h = 5, the variable x4 is a free variable and the system has infinitely many
solutions. The solutions were already found in part (a).

Example 2.5. After applying row operations to the augmented matrix of a system of linear equa-
tions, each of which describes a plane in 3-space, the following augmented matrix was obtained:

1 a 0 2

0 2− 2a b −4

0 0 3− 1
2b 1

 .

(a) Describe, algebraically and geometrically, all solutions (if any), to this system when a = 0
and b = 2.

(b) Describe, algebraically and geometrically, all solutions (if any), to this system when a = 0
and b = 6.
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(c) Describe, algebraically and geometrically, all solutions (if any), to this system when a = 1
and b = 12.

Example Solution. Throughout, we will let the variables x, y, and z correspond to the first, second,
and third columns, respectively, of our augmented matrix.

(a) When a = 0 and b = 2 our augmented matrix has the form 1 0 0 2
0 2 2 −4
0 0 2 1

 .
This matrix corresponds to the system

x = 2

2y + 2z = −4

2z = 1.

There are no equations of the form 0 = b for a nonzero constant b, so the system is con-
sistent. There are no free variables, so the system has a unique solution. Algebraically, the
solution is x = 2, z = 1

2 , and y = −5
2 . Geometrically, this tells us that the three planes

given by the original system intersect in a single point.

(b) When a = 0 and b = 6 our augmented matrix has the form 1 0 0 2
0 2 6 −4
0 0 0 1

 .
The last row corresponds to the equation 0 = 1, so our system is inconsistent and has no
solution. Geometrically, this tells us that the three planes given by the original system do
not all intersect at any common points.

(c) When a = 1 and b = 12 our augmented matrix reduces to
1 1 0 2

0 0 1 −1
3

0 0 0 0

 .
There are no rows that correspond to equations of the form 0 = c for a nonzero constant
c, so the system is consistent. The variable y is a free variable, so the system has infinitely
many solutions. Algebraically, the solutions are y is free, is z = −1

3 , and x = 2 − y.
Geometrically, this tells us that the three planes given by the original system intersect in
the line with z = −1

3 , and x = 2− y.
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Summary

• A matrix is just a rectangular array of numbers or objects.

• Given a system of linear equations, with the variables listed in the same order in each equa-
tion, we represent the system by writing the coefficients of the first equation as the first row
of a matrix, the coefficients of the second equation as the second row, and so on. This creates
the coefficient matrix of the system. We then augment the coefficient matrix with a column of
the constants that appear in the equations. This gives us the augmented matrix of the system.

• The operations that we can perform on equations translate exactly to row operations that we
can perform on an augmented matrix:

(1) Replacing one row by the sum of that row and a scalar multiple of another row.

(2) Interchanging two rows.

(3) Replacing a row by a nonzero scalar multiple of itself.

• The forward elimination phase of the elimination method recursively eliminates the variables
in a linear system to reach an equivalent but simplified system.

• The first non-zero entry in an equation in a linear system after elimination is called a pivot.

• A basic variable in a linear system corresponds to a pivot of the system. A free variable is a
variable that is not basic.

• A linear system can be inconsistent (no solutions), have a unique solution (if consistent and
every variable is a basic variable), or have infinitely many solutions (if consistent and there is
a free variable).

• A linear system has no solutions if, after elimination, there is an equation of the form 0 = b
where b is a nonzero number.

• A linear system after the elimination method can be solved using back-substitution. The free
variables can be chosen arbitrarily and the basic variables can be solved in terms of the free
variables through the back-substitution process.

Exercises

(1) Consider the system of linear equations whose augmented matrix is[
1 3 −1
2 h k

]
where h and k are unknown constants. For which values of h and k does this system have

(a) a unique solution,

(b) infinitely many solutions,

(c) no solution?
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(2) Consider the following system:

x− 2y + z = −1

−x+ y − 3z = 2

x+ hy − z = 0.

Check that when h = −3 the system has infinitely many solutions, while when h 6= −3 the
system has a unique solution.

(3) If possible, find a system of three equations (not in reduced form) in three variables whose
solution set consists only of the point x1 = 2, x2 = −1, x3 = 0.

(4) What are the possible geometrical descriptions of the solution set of two linear equations in
R3? (Recall that R3 is the three-dimensional xyz-space – that is, the set of all ordered triples
of the form (x, y, z)).

(5) Two students are talking about when a linear system has infinitely many solutions.

Student 1: So, if we have a linear system whose augmented matrix has a row of
zeros, then the system has infinitely many solutions, doesn’t it?

Student 2: Well, but what if there is a row of the form [ 0 0 . . . 0 | b ] with a non-
zero b right above the row of 0’s?

Student 1: OK, maybe I should ask “If we have a consistent linear system whose
augmented matrix has a row of zeros, then the system has infinitely many solu-
tions, doesn’t it?”

Student 2: I don’t know. It still doesn’t sound enough to me, but I’m not sure why.

Is Student 1 right? Or is Student 2’s hunch correct? Justify your answer with a specific
example if possible.

(6) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False A system of linear equations in two unknowns can have exactly five
solutions.

(b) True/False A system of equations with all the right hand sides equal to 0 has at least
one solution.

(c) True/False A system of equations where there are fewer equations than the number
of unknowns (known as an underdetermined system) cannot have a unique solution.

(d) True/False A system of equations where there are more equations than the number
of unknowns (known as an overdetermined system) cannot have a unique solution.

(e) True/False A consistent system of two equations in three unknowns cannot have a
unique solution.

(f) True/False If a system with three equations and three unknowns has a solution, then
the solution is unique.
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(g) True/False If a system of equations has two different solutions, then it has infinitely
many solutions.

(h) True/False If there is a row of zeros in the row echelon form of the augmented matrix
of a system of equations, the system has infinitely many solutions.

(i) True/False If there is a row of zeros in the row echelon form of the augmented matrix
of a system of n equations in n variables, the system has infinitely many solutions.

(j) True/False If a system has no free variables, then the system has a unique solution.

(k) True/False If a system has a free variable, then the system has infinitely many solu-
tions.

Project: A Polynomial Fitting Application: Simpson’s Rule

As discussed in the introduction, Simpson’s Rule for approximating a definite integral models the
integrand with a quadratic polynomial on each interval. To better understand this method, we
consider how to fit a quadratic to three points.

Suppose we are given a collection of three points in the plane: (x1, y1), (x2, y2) and (x3, y3).
There is exactly one quadratic polynomial p(x) which goes through these points, i.e. there is exactly
one quadratic p(x) such that for each xi, p(xi) = yi. This is an example of polynomial curve fitting.

Suppose our given points are (−1, 2), (1, 6), (2, 5). To fit a quadratic to these points, consider
a general quadratic of the form p(x) = a2x

2 + a1x+ a0. By substituting the x value of each of the
given points and setting that equal to the y value of that point, we find three equations

(−1)2a2 − a1 + a0 = 2 , a2 + a1 + a0 = 6 , (2)2a2 + 2a1 + a0 = 5

that give us a system of three equations in the three unknowns a2, a1, and a0:

a2 − a1 + a0 = 2

a2 + a1 + a0 = 6

4a2 + 2a1 + a0 = 5.

This system is the example we considered in Preview Activity 2.1, whose solution is a2 = −1,
a1 = 2, and a0 = 5. A graph of q(x) = −x2 + 2x + 5 along with the three points (−1, 2), (1, 6),
(2, 5) is shown in Figure 2.1.

Project Activity 2.1. In this activity we model the sine function on the interval [a, b], where a =
−π

2 and b = π with a collection of quadratics. Let f(x) = sin(x). We partition the interval [a, b]
using 6 partition points. Let x0 = −π

2 , x1 = −π
4 , x2 = 0, x3 = π

4 , x4 = π
2 , x5 = 3π

4 , and
x6 = π. We need 3 points to determine a quadratic, so the interval [a, b] will be partitioned into 3
subintervals: [x0, x2], [x2, x4], and [x4, x6].

(a) Set up a system of linear equations to fit a quadratic q1(x) = r1x
2 +s1x+ t1 to the 3 points

(x0, f(x0)), (x1, f(x1)), and (x2, f(x2)). (The solution to this system to 3 decimal places
is r1 ≈ 0.336, s1 ≈ 1.164, and t1 = 0.)
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Figure 2.1: A quadratic fit to the points (−1, 2), (1, 6), (2, 5).

(b) Set up a system of linear equations to fit a quadratic q2(x) = r2x
2 +s2x+ t2 to the 3 points

(x2, f(x2)), (x3, f(x3)), and (x4, f(x4)). (The solution to this system to 3 decimal places
is r2 ≈ −0.336, s2 ≈ 1.164, and t2 = 0.)

(c) Set up a system of linear equations to fit a quadratic q3(x) = r3x
2 +s3x+ t3 to the 3 points

(x4, f(x4)), (x5, f(x5)), and (x6, f(x6)). (The solution to this system to 3 decimal places
is r3 ≈ −0.336, s3 ≈ 0.946, and t3 ≈ 0.343.)

(d) Plot the three quadratics on their intervals against the graph of f . Explain what you see.

Project Activity 2.1 illustrates how we can model a function on an interval using a sequence
of quadratic functions. Now we apply this polynomial curve fitting technique to derive the general
formula for Simpson’s Rule for approximating definite integrals. The Simpson sum S(n) is found
by using parabolic arcs to approximate the graph of f on each subinterval rather than line segments.
This allows Simpsons’s Rule to more closely approximate the value of the definite integral with a
smaller number of subintervals, although Simpson’s Rule requires more calculations. Recall that
to approximate a definite integral of a function f on an interval [a, b], we partition [a, b] into equal
length subintervals. For Simpson’s Rule, we partition [a, b] into n = 2m subintervals of equal
length ∆x = b−a

n . (Note that we need an even number of subintervals since we have to use three
points for each parabola.) For each k we let xk = a + k∆x and yk = f(xk). We approximate f
on each subinterval using a quadratic. So we need to find the quadratic Q(x) = c2x

2 + c1x + c0

that passes through two consecutive end points as well as the midpoint of a subinterval. That is,
we need to find the coefficients of Q so that Q passes through the points (xk, yk), (xk+2, yk+2),
and the midpoint (xk+1, yk+1) on the interval [xk, xk+2] (so that we have three points to which to
fit a parabola). Note that the length of the interval [xk, xk+2] is 2∆x. To make the calculations
easier, we will translate our function so that our leftmost point is (−r, yk). Then the middle point
is (0, yk+1) and the rightmost point is (r, yk+2), where r = ∆x.

Project Activity 2.2.

(a) Set up a linear system that will determine the coefficients c2, c1, and c0 so that the polyno-
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mial Q(x) = c2x
2 + c1x+ c0 passes through the points (−r, yk), (0, yk+1), and (r, yk+2)

with r 6= 0. Remember that the unknowns in this system are c2, c1, and c0.

(b) We apply row operations to the matrix

 r2 −r 1 yk
0 0 1 yk+1

r2 r 1 yk+2

 and obtain the matrix r2 −r 1 yk
0 2r 0 yk+2 − yk
0 0 1 yk+1

. Use these matrices to show that c2 =
yk−2yk+1+yk+2

2r2
, c1 =

yk+2−yk
2r , and c0 = yk+1.

(c) Our goal is to ultimately approximate
∫ b
a f(x) dx by approximating f with quadratics on

each subinterval. Use the fact that∫ xk+2

xk

f(x) dx ≈
∫ xk+2

xk

Q(x) dx =

∫ r

−r
Q(x) dx,

to show that ∫ xk+2

xk

f(x) dx =
1

3
(yk + 4yk+1 + yk+2) ∆x.

(d) Now we can derive Simpson’s Rule. Use an additive property of the definite integral to
show that ∫ b

a
f(x) dx ≈ S(n),

where

S(n) = (y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · 2yn−2 + 4yn−1 + yn)
∆x

3

is the Simpson’s Rule approximation.

Notice that we can rewrite the Simpson’s Rule approximation as

1

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−2 + 4yn−1 + yn) ∆x

=
2

3
[2 (y1 + y3 + · · ·+ yn−1)] ∆x

+
2

3

(
y0 + y2

2
+
y2 + y4

2
+ · · ·+ yn−2 + yn

2

)
∆x

=
1

3
[(y1 + y3 + · · ·+ yn−1) (2∆x)]

+
1

3

(
y0 + y2

2
+
y2 + y4

2
+ · · ·+ yn−2 + yn

2

)
(2∆x)

=
2M(n) + T (n)

3
,

whereM(n) is the midpoint sum and T (n) is the trapezoid sum using n subdivisions of the interval
[a, b]. Therefore, the weighted average 2M(n)+T (n)

3 of the midpoint and trapezoid sums gives an
approximation using quadratic functions.





Section 3

Row Echelon Forms

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is the row echelon form of a matrix?

• What is the procedure to obtain the row echelon form of any matrix?

• What is the reduced row echelon form of a matrix?

• What is the procedure to obtain the reduced row echelon form of any ma-
trix?

• What do the echelon forms of the augmented matrix for a linear system tell
us about the solutions to the system?

Application: Balancing Chemical Reactions

Linear systems have applications in chemistry when balancing chemical equations. When a chem-
ical reaction occurs, molecules of different substances combine to create molecules of other sub-
stances. Chemists represent such reactions with chemical equations. To balance a chemical equa-
tion means to find the number of atoms of each element involved that will preserve the number of
atoms in the reaction. As an example, consider the chemical equation

C2H6 + O2 → CO2 + H2O. (3.1)

This equation asks about what will happen when the chemicals ethane (C2H6) and oxygen (O2),
called the reactants of the reaction, combine to produce carbon dioxide (CO2) and water (H2O),
called the products of the reaction (note that oxygen gas is diatomic, so that oxygen atoms are
paired). The arrow indicates that it is the reactants that combine to form the products. Any chemical
reaction has to obey the Law of Conservation of Mass that says that mass can neither be created

39
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nor destroyed in a chemical reaction. Consequently, a chemical reaction requires the same number
of atoms on both sides of the reaction. In other words, the total mass of the reactants must equal
the total mass of the products. In reaction (3.1) the chemicals involved are made up of carbon
(C), hydrogen (H), and oxygen (O) atoms. To balance the equation, we need to know how many
molecules of each chemical are combined to preserve the number of atoms of C, H, and O. This can
be done by setting up a linear system of equations of the form

2x1 − x3 = 0

6x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0,

where x1, x2, x3, and x4 represent the number of molecules of C2H6, O2, CO2, and H2O, respec-
tively, in the reaction and then solving the system. Specific details can be found at the end of this
section.

Introduction

In the previous sections, we identified operations on a given linear system with corresponding equiv-
alent operations on the matrix representations which simplify the system and its matrix representa-
tion without changing the solutions of the system. Our end goal was to obtain a system which could
be solved using back substitution, such as

x1 − x2 + x3 = 0

6x2 − x3 = 8

x3 = 1.

The augmented matrix for this system is 1 −1 1 0
0 6 −1 8
0 0 1 1

 .
The matrices of linear systems which can be solved via back substitution are said to be in row
echelon form (or simply echelon form). We will define the properties of matrices in this form
precisely in this section. Our goal will be to prescribe a precise procedure for converting any
matrix to an equivalent one in row echelon form without having to convert back to the system
representation.

Preview Activity 3.1. We want to determine a suitable form for an augmented matrix that can be
obtained from row operations so that it is straightforward to find the solutions to the system. We
begin with some examples.

(1) Write the linear system corresponding to each of the following augmented matrices. Use the
linear system to determine which systems have their variables eliminated completely in the
forward direction, or equivalently determine for which systems the next step in the solution
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process is back substitution (possibly using free variables). Explain your reasoning. You do
not need to solve the systems.

i.

 1 −1 2 −2
0 1 2 −1
0 0 3 1

 ii.

 1 1 0 −2
0 1 0 3
0 0 0 0


iii.

 1 1 1 2
1 2 2 2
0 0 2 2

 iv.

 0 1 1 2
0 0 3 3
0 0 −2 −2


(2) Shown below are two row reduced forms of the system

2x1 − x3 = 0

6x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0.

Of the systems that correspond to these augmented matrices, which is easier to solve and
why?  2 0 −1 0 0

0 2 −2 −1 0
0 0 3 −2 0




1 0 0 −1
3 0

0 1 0 −7
6 0

0 0 1 −2
3 0



The Echelon Forms of a Matrix

In the previous sections we saw how to simplify a linear system and its matrix representation via
the elimination method without changing the solution set. This process is more efficient when
performed on the matrix representation rather than on the system itself. Furthermore, the process
of applying row operations to any augmented matrix is one that can be automated. In order to write
an algorithm that can be used with any size augmented matrix to the extent that it can be applied
even by a computer program, it is necessary to have a consistent procedure and a stopping point for
the simplification process. The two main properties that we want the simplified augmented matrix
to satisfy are that it should be easy to see if the system has solutions from the simplified matrix, and
in cases when there are solutions, the general form of the solutions can be easily found. Hence the
topic of this section is to define the process of elimination completely and generally.

We begin by discussing the row echelon or, simply, echelon form of a matrix. We know that the
forward phase of the elimination on a linear system produces a system which can be solved by back
substitution. The matrix representation of such a simplified system is said to be in row echelon or
simply echelon form. Note that matrices in this form have the first nonzero entry in each row to the
right of and below the first nonzero entry in the preceding row. Our next step is to formally describe
this form – one that you tried to explain in problem 3 of Preview Activity 3.1.

Definition 3.1. A rectangular matrix is in row echelon form (or simply echelon form) if it has the
following properties:

(1) All nonzero rows are above any rows of all zeros.
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(2) Each pivot (the first non-zero entry reading from left to right) in a row is in a column to the
right of the pivot of the row above it.

A pivot is also called a leading entry of a row. Note that properties (1) and (2) above imply that
all entries in a column below a pivot are zeros. It can be shown that the positions of these pivots,
called pivot positions, are unique and tell us quite a bit about a matrix and the solutions of the
linear system it corresponds to. The columns that the pivots are in, called pivot columns, will also
have useful properties as we will see soon.

Reflection 3. Compare the row echelon form of an augmented matrix to the corresponding system.
Do you clearly see the correspondence between the requirements of the row echelon form and the
properly eliminated variables in the system? Can you quickly come up with a system which will
be in row echelon form when represented in augmented matrix form? Can you modify the standard
row echelon form definition to cover cases where the elimination process eliminates the variables
from last to first? For example, in a system with three equations in three unknowns, the last variable,
say x3, can be eliminated from the second equation, and the last two variables, say x2, x3 can be
eliminated from the last equation. How would you define this modified row echelon form for a
general system with this modified elimination process?

Once an augmented matrix is in row echelon form, we can use back substitution to solve the cor-
responding system. However, we can make solving much easier with just a little more elimination
work.

Row operations are easy to apply, so if we are inclined, there is no reason to stop at the row
echelon form. For example, starting with the following matrix 2 −1 2 2 7

0 1 3 −1 −1
0 0 0 2 4


in row echelon form, we could take the row operations even farther and avoid the process of back
substitution altogether. First, we multiply the last row by 1/2 to simplify that row:

1
2
R3 → R3

 2 −1 2 2 7
0 1 3 −1 −1
0 0 0 1 2

 .
Then we use the third row to eliminate entries above the third pivot:

R1 − 2R3 → R1

R2 +R3 → R2

 2 −1 2 0 3
0 1 3 0 1
0 0 0 1 2

 .
We can continue in this manner (we call this process backward elimination) to make 0 all of the
entries above the pivots (one in the second column, and one in the fourth) with the pivots being 1,
to ultimately obtain the equivalent augmented matrix 1 0 1 0 2

0 1 3 0 1
0 0 0 1 2

 .
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The system corresponding to this augmented matrix is

x1 + x3 = 2

x2 + 3x3 = 1

x4 = 2

so we can just directly read off the solution to the system: x3 free and x1 = 2 − x3, x2 = 1 −
3x3, x4 = 2. This final row reduced form makes solving the system very easy, and this form is
called the reduced row echelon form.

Definition 3.2. A rectangular matrix is in reduced row echelon form (or reduced echelon form)
if the matrix is in row echelon form and

(3) The pivot in each nonzero row is 1.

(4) Each pivot is the only nonzero entry in its column.

In short, the reduced row echelon form of a matrix is a row echelon form in which all the pivots
are 1 and any entries below and above the pivots are 0.

If we use either of these two row echelon forms, solving the original system becomes straight-
forward and, as a result, these matrix forms are stopping points for the row operation algorithm
to solve a system. It is also very easy to write a computer program to perform row operations to
obtain and row echelon or reduced row echelon form of the matrix, making hand computations
unnecessary. We will discuss this shortly.

Reflection 4. Compare the reduced row echelon form of an augmented matrix to the corresponding
system. Do you clearly see the correspondence between the requirements of the reduced row eche-
lon form and the way the variables appear in the equations in the system? Can you quickly come up
with a system which will be in reduced row echelon form when represented in augmented matrix
form?

Note. We have used the elimination method on augmented matrices so far. However, the elimina-
tion method can be applied on just the coefficient matrix, or other matrices that will arise in other
contexts, and will provide useful information in each of those cases. Therefore, the row echelon
form and reduced row echelon form is defined for any matrix, and from now on, a matrix will be a
general matrix unless explicitly specified to be an augmented matrix.

Activity 3.1. Identify which of the following matrices is in row echelon form (REF) and/or reduced
row echelon form (RREF). For those in row and/or reduced row echelon form, identify the pivots
clearly by circling them. For those that are not in a given form, state which properties the matrix
fails to satisfy.

(a)
[

2 4 −3 6
0 0 0 7

]
(b)

[
1 0
0 1

]
(c)

 0 1 2 3
0 0 1 0
0 1 0 5


(d)

 1 2 3 4
0 0 0 0
0 0 0 0

 (e)
[

0 0
0 0

]
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Determining the Number of Solutions of a Linear System

Consider the system

x1+2x2 − x3 = 0

x2 − x4 = 2

x3 − 2x4 = 4.

The augmented matrix for this system is 1 2 −1 0 0
0 1 0 −1 2
0 0 1 −2 4

 .
Note that this matrix is already in row echelon form. The reduced row echelon form of this aug-
mented matrix is  1 0 0 0 0

0 1 0 −1 2
0 0 1 −2 4

 . (3.2)

Since there are leading 1s in the first three columns, we can use those entries to write x1, x2,
and x3 in terms of x4. We then choose x4 to be arbitrary and write the remaining variables in terms
of x4. Let x4 = t. Solving the third equation for x3 gives us x3 = 4 + 2t. The second equation
shows that x2 = 2 + t, and the first that x1 = 0. Each value of t provides a solution to the system,
so our system has infinitely many solutions. These solutions are

x1 = 0, x2 == 2 + t, x3 = 4 + 2t, and x4 = t,

where t can have any value.

Activity 3.2. We have seen examples of systems with no solutions, one solution, and infinitely
many solutions. As we will see in this activity, we can recognize the number of solutions to a
system by analyzing the pivot positions in the augmented matrix of the system.

(a) Write an example of an augmented matrix in row echelon form so that the last column of
the (whole) matrix is a pivot column. What is the system of equations corresponding to
your augmented matrix? How many solutions does your system have? Why?

(b) Consider the reduced row echelon form (3.2). Based on the columns of this matrix, explain
how we know that the system it represents is consistent.

(c) The system with reduced row echelon form (3.2) is consistent. What is it about the columns
of the coefficient matrix that tells us that this system has infinitely many solutions?

(d) Suppose that a linear system is consistent and that the coefficient matrix has m rows and n
columns.

i. If every column of the coefficient matrix is a pivot column, how many solutions must
the system have? Why? What relationship must exist between m and n? Explain.
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ii. If the coefficient matrix has at least one non-pivot column, how many solutions must
the system have? Why?

When solving a linear system of equations, the free variables can be chosen arbitrarily and we
can write the basic variables in terms of the free variables. Therefore, the existence of a free variable
leads to infinitely many solutions for consistent systems. However, it is possible to have a system
with free variables which is inconsistent. (Can you think of an example?)

Producing the Echelon Forms

In this part, we consider the formal process of creating the row and reduced row echelon forms of
matrices. The process of creating the row echelon form is the equivalent of the elimination method
on systems of linear equations.

Activity 3.3. Each of the following matrices is at most a few steps away from being in the requested
echelon form. Determine what row operations need to be completed to turn the matrix into the
required form.

(a) Turn into REF:
[

0 2
2 1

]
(b) Turn into REF:

[
1 2
2 5

]

(c) Turn into RREF:

 2 0 0
0 3 0
0 0 1

 (d) Turn into RREF:
[

1 −1
0 1

]

(e) Turn into RREF:
[

1 1
0 2

]
(f) Turn into RREF:

 1 0 −1
0 1 3
0 0 2


The complete process of applying row operations to reduce an augmented matrix to a row or

reduced row echelon form can be expressed as a recursive process in an algorithmic fashion, making
it possible to program computers to solve linear systems. Here are the steps to do so:

Step 1: Begin with the leftmost nonzero column (if there is one). This will be a pivot column.

Step 2: Select a nonzero entry in this pivot column as a pivot. If necessary, interchange rows to
move this entry to the first row (this entry will be a pivot).

Step 3: Use row operations to create zeros in all positions below the pivot.

Step 4: Cover (or ignore) the row containing the pivot position and cover all rows, if any, above
it. Apply steps 1-3 to the submatrix that remains. Repeat the process until there are no more
nonzero rows to modify.

To obtain the reduced row echelon form we need one more step.

Step 5: Beginning with the rightmost pivot and working upward and to the left, create zeros above
each pivot. If a pivot is not 1, make it 1 by an appropriate row multiplication.
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The algorithm described in steps 1-4 will produce the row echelon form of the matrix. This
algorithm is called Gaussian elimination. When we add step 5 to produce the reduced row echelon
form, the algorithm is called Gauss-Jordan elimination.

Activity 3.4. Consider the matrix


0 2 4 1
−1 3 0 6

0 4 8 2
1 −3 0 −2

.

(a) Perform Gaussian elimination to reduce the matrix to row echelon form. Clearly identify
each step used. Compare your row echelon form to that of another group. Do your results
agree? If not, who is right?

(b) Now continue applying row operations to obtain the reduced row echelon form of the ma-
trix. Clearly identify each step. Compare your row echelon form to that of another group.
Do your results agree? If not, who is right?

If we compare row echelon forms from Activity 3.4, it is likely that different groups or individ-
uals produced different row echelon forms. That is because the row echelon form of a matrix is not
unique. (Is the row echelon form ever unique?)

However, if row operations are applied correctly, then we will all arrive at the same reduced
row echelon form in Activity 3.4: 

1 0 6 0
0 1 2 0
0 0 0 1
0 0 0 0

 .
It turns out that the reduced row echelon form of a matrix is unique.

Two matrices who are connected by row operations are said to be row equivalent.

Definition 3.3. A matrix B is row equivalent to a matrix A if B can be obtained by applying
elementary row operations to A.

Since every elementary row operation is reversible, if B is row equivalent to A, then A is also
row equivalent to B. Thus, we just say that A and B are row equivalent. While the row echelon
form of a matrix is not unique, it is the case that the reduced row echelon form of a matrix is unique.

Theorem 3.4. Every matrix is row equivalent to a unique matrix in reduced row echelon form.

The reduced row echelon form of a matrix that corresponds to a system of linear equations
provides us with a equivalent system whose solutions are easy to find. As an example, consider the
system

2x2 + 4x3 + x4 = 0

−x1 + 3x2 + 6x4 = 0

4x2 + 8x3 + 2x4 = 0

x1 − 3x2 − 2x4 = 0
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with augmented matrix 
0 2 4 1 0
−1 3 0 6 0

0 4 8 2 0
1 −3 0 −2 0

 .
Notice that the coefficient matrix (the left hand side portion of the augmented matrix) of this system
is same as the matrix we considered in Activity 3.4. Since we are augmenting with a column of
zeros, no row operations will change those zeros in the augmented column. So the row operations
applied in Activity 3.4 will give us the reduced row echelon form of this augmented matrix as

1 0 6 0 0
0 1 2 0 0
0 0 0 1 0
0 0 0 0 0

 .
Note that the third column is not a pivot column. That means that the variable x3 is a free variable.
There are pivots in the other three columns of the coefficient matrix, so we can solve for x1, x2, and
x4 in terms of x3. These variables are the basic variables. The third row of the augmented matrix
tells us that x4 = 0. The second row corresponds to the equation x2 + 2x3 = 0, and solving for x2

shows that x2 = −2x3. Finally, the first row tells us that x1 + 6x3 = 0, so x1 = −6x3. Therefore,
the general solution to this system of equations is

x1 = −6x3, x2 = −2x3, x3 is free, x4 = 0.

The fact that x3 is free means that we can choose any value for x3 that we like and obtain a specific
solution to the system. For example, if x3 = −1, then we have the solution x1 = 6, x2 = 2,
x3 = −1, and x4 = 0. Check this to be sure.

Activity 3.5. Each matrix below is an augmented matrix for a linear system after elimination with
variables x1, x2, . . . in that order. Identify the basic variables (if any) and free variables (if any).
Then find the general solution (if there is a solution) expressing all variables in terms of the free
variables.

(a)

 1 0 2 1
0 3 1 0
0 0 0 0

 (b)

 1 1 0 1
0 0 1 2
0 0 0 0

 (c)


1 2 −1 1 1
0 1 0 2 1
0 0 0 0 0
0 0 0 0 0


(d)

 1 0 1 1
0 1 0 0
0 0 0 2

 (e)

 1 0 1
0 1 0
0 0 0


Recall that in the previous section, we determined the criteria for when a system has a unique

solution, or infinitely many solutions, or no solution. With the use of the row echelon form of the
augmented matrix, we can rewrite these criteria as follows:

Theorem 3.5.

(1) A linear system is consistent if in the row echelon form of the augmented matrix representing
the system no pivot is in the rightmost column.
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(2) If a linear system is consistent and the row echelon form of the coefficient matrix does not
have a pivot in every column, then the system has infinitely many solutions.

(3) If a linear system is consistent and there is a pivot in every column of the row echelon form
of the coefficient matrix, then the system has a unique solution.
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Figure 3.1: Figures for Activity 3.6.

Activity 3.6.

(a) For each part, the reduced row echelon form of the augmented matrix of a system of equa-
tions in variables x, y, and z (in that order) is given. Use the reduced row echelon form to
find the solution set to the original system of equations.

i.

 1 0 0 −1
0 1 0 3
0 0 0 0

 ii.

 1 0 2 −1
0 1 −1 3
0 0 0 0

 iii.

 1 0 0 2
0 1 0 −1
0 0 1 3


iv. Each of the three systems above is represented as one of the graphs in Figure 3.1.

Match each figure with a system.

(b) The reduced row echelon form of the augmented matrix of a system of equations in vari-
ables x, y, z, and t (in that order) is given. Use the reduced row echelon form to find the
solution set to the original system of equations: 1 3 0 0 −1

0 0 1 2 4
0 0 0 0 1

 .
Examples

What follows are worked examples that use the concepts from this section.

Example 3.6. Consider the linear system

2x1 + 6x3 = x2 + 2

2x3 − 4x1 = 2x2

x2 + 4x3 − 2 = 2x1 + 6.
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(a) Find the augmented matrix for this system.

(b) Use row operations to find a row echelon form of the augmented matrix of this system.

(c) Use row operations to find the reduced row echelon form of the augmented matrix of this
system.

(d) Find the solution(s), if any, to the system.

Example Solution. Before we can find the augmented matrix of this system, we need to rewrite
the system so that the variables are all on one side and the constant terms are on the other side of
the equations. Doing so yields the equivalent system

2x1 − x2 + 6x3 = 2

−4x1 − 2x2 + 2x3 = 0

−2x1 + x2 + 4x3 = 8.

Note that this is not the only way to rearrange the system. For example, for the second equation,
could be written instead as 4x1 + 2x2 − 2x3 = 0 to minimize the number of negative signs in the
equation.

(a) The augmented matrix for this system is 2 −1 6 2
−4 −2 2 0
−2 1 4 8

 .
(b) Our first steps to row echelon form are to eliminate the entries below the leading entry in

the first row. To do this we replace row two with row two plus 2 times row 1 and we replace
row three with row three plus row one. This produces the row equivalent matrix 2 −1 6 2

0 −4 14 4
0 0 10 10

 .
This matrix is now in row echelon form.

(c) To continue to find the reduced row echelon form, we replace row two with row two times
−1

4 to get a leading 1 in the second row, and we replace row three with row three times 1
10

to get a leading 1 in the third row and obtain the row equivalent matrix
2 −1 6 2

0 1 −7
2 −1

0 0 1 1

 .
Now we perform backwards elimination to make the entries above the leading 1s equal to
0, starting with the third column and working backwards. Replace row one with row one
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minus 6 times row three and replace row two with row two plus 7
2 row three to obtain the

row equivalent matrix 
2 −1 0 −4

0 1 0 5
2

0 0 1 1

 .
For the second column, we replace row one with row one plus row two to obtain the row
equivalent matrix 

2 0 0 −3
2

0 1 0 5
2

0 0 1 1

 .
Since the leading entry in row one is not a one, we have one more step before we have the
reduced row echelon form. Finally, we replace row one with row one times 1

2 . This gives
us the reduced row echelon form 

1 0 0 −3
4

0 1 0 5
2

0 0 1 1

 .

(d) We can read off the solution to the system from the reduced row echelon form: x1 = −3
4 ,

x2 = 5
2 , and x3 = 1. You should check in the original equations to make sure we have the

correct solution.

Example 3.7. In this example, a and b are unknown scalars. Consider the system with augmented
matrix  1 2 a 3

1 0 0 b
0 1 1 0

 .
Find all values of a and b so that the system has:

(a) Exactly one solution (and find the solution)

(b) No solutions

(c) Infinitely many solutions (and find all solutions)

Example Solution. Let x1, x2, and x3 be the variables corresponding to the first, second, and third
columns, respectively, of the augmented matrix. To answer these questions, we row reduce the
augmented matrix. We interchange rows one and two and then also rows two and three to obtain
the matrix  1 0 0 b

0 1 1 0
1 2 a 3

 .



Section 3. Row Echelon Forms 51

Now we replace row three with row three minus row one to produce the row equivalent matrix 1 0 0 b
0 1 1 0
0 2 a 3− b

 .
Next, replace row three with row three minus 2 times row two. This yields the row equivalent
matrix  1 0 0 b

0 1 1 0
0 0 a− 2 3− b

 .
We now have a row echelon form.

(a) The system will have exactly one solution when the last row has the form [0 0 u v] where
u is not zero. Thus, the system has exactly one solution when a − 2 6= 0, or when a 6= 2.
In this case, the solution is

x3 =
3− b
a− 2

,

x2 = −x3 =
b− 2

a− 2

x1 = b.

You should check to ensure that this solution is correct. The other cases occur when a = 2.

(b) When a = 2 and 3− b 6= 0 (or b 6= 3), then we have a row of the form [0 0 0 t], where t is
not 0. In these cases there are no solutions.

(c) When a = 2 and b = 3, then the last row is a row of all zeros. In this case, the system
is consistent and x3 is a free variable, so the system has infinitely many solutions. The
solutions are

x1 = b

x2 = −x3

x3 is free.

You should check to ensure that this solution is correct.

Summary

In this section we learned about the row echelon and reduced row echelon forms of a matrix and
some of the things these forms tell us about solutions to systems of linear equations.

• A matrix is in row echelon form if

(1) All nonzero rows are above any rows of all zeros.

(2) Each pivot (the first nonzero entry) of a row is in a column to the right of the pivot of
the row above it.
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• Once an augmented matrix is in row echelon form, we can use back substitution to solve the
corresponding linear system.

• To reduce a matrix to row echelon form we do the following:

– Begin with the leftmost nonzero column (if there is one). This will be a pivot column.

– Select a nonzero entry in this pivot column as a pivot. If necessary, interchange rows to
move this entry to the first row (this entry will be a pivot).

– Use row operations to create zeros in all positions below the pivot.

– Cover (or ignore) the row containing the pivot position and cover all rows, if any, above
it. Apply the preceding steps to the submatrix that remains. Repeat the process until
there are no more nonzero rows to modify.

• A matrix is in reduced row echelon form if it is in row echelon form and

(3) The pivot in each nonzero row is 1.

(4) Each pivot is the only nonzero entry in its column.

• To obtain the reduced row echelon form from the row echelon form, beginning with the
rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot
is not 1, make it 1 by an appropriate row multiplication.

• Both row echelon forms of an augmented matrix tell us about the number of solutions to the
corresponding linear system.

– A linear system is inconsistent if and only if a row echelon form of the augmented
matrix of the system contains a row of the form

[0 0 0 · · · 0 ∗],

where ∗ is not zero. Another way to say this is that a linear system is inconsistent if and
only if the last column of the augmented matrix of the system is a pivot column.

– A consistent linear system will have a unique solution if and only if each column but
the last in the augmented matrix of the system is a pivot column. This is equivalent
to saying that a consistent linear system will have a unique solution if and only if the
consistent system has no free variables.

– A consistent linear system will have infinitely many solutions if and only if the coeffi-
cient matrix of the system contains a non-pivot column. In that case, the free variables
corresponding to the non-pivot columns can be chosen arbitrarily and the basic variables
corresponding to pivot columns can be written in terms of the free variables.

– A linear system can have no solutions, exactly one solution, or infinitely many solutions.
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Exercises

(1) Represent the following linear system in variables x1, x2, x3 in augmented matrix form and
use row reduction to find the general solution of the system.

x1 + x2 − x3 = 4

x1 + 2x2 + 2x3 = 3

2x1 + 3x2 − 3x3 =11.

(2) Represent the following linear system in variables x1, x2, x3 in augmented matrix form after
rearranging the terms and use row reduction to find all solutions to the system.

x1 − x3 − 2x2 = 3

2x3 + 2 = x1 + x2

4x2 + 2x1 − 2 = 5x3.

(3) Check that the reduced row echelon form of the matrix 1 −1 3 2
−1 2 −4 −1

2 0 6 8


is  1 0 0 1

0 1 0 2
0 0 1 1

 .
(4) Consider the following system:

x− 2y + z = −1

2y − 4z = 6

hy − 2z = 1.

(a) Find a row echelon form of the augmented matrix for this system.

(b) For which values of h, if any, does the system have (i.) no solutions, (ii.) exactly one
solution, (iii.) infinitely many solutions? Find the solutions in each case.

(5) Find the general solution of the linear system corresponding to the following augmented
matrix:  1 −1 2 1 2

−1 2 2 −1 −5
1 1 10 2 −1

 .
(6) What are the conditions, if any, on the a, b, c values so that the following augmented matrix

corresponds to a consistent linear system? How many solutions will the consistent system
have? Explain.  1 2 3 a

2 3 7 b
−1 −4 −1 c

 .
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(7) In this exercise the symbol � denotes a non-zero number and the symbol * denotes any real
number (including 0).

(a) Is the augmented matrix [
� ∗ ∗
0 � ∗

]
in a form to which back substitution will easily give the solutions to the system?
Explain your reasoning. (Hint: In order to help see what happens in the general case,
substitute some numbers in place of the �’s and *’s and answer the question for that
specific system first. Then determine if your answer generalizes.)

(b) The above matrix is a possible form of an augmented matrix with 2 rows and 3
columns corresponding to a linear system after forward elimination, i.e., a linear
system for which back substitution will easily give the solutions. Determine the other
possible such forms of the nonzero augmented matrices with 2 rows and 3 columns.
As in part (a), use the symbol � to denote a non-zero number and * to denote any
real number.

(8) Give an example of a linear system with a unique solution for which a row echelon form of
the augmented matrix of the system has a row of 0’s.

(9) Come up with an example of an augmented matrix with 0’s in the rightmost column corre-
sponding to an inconsistent system, if possible. If not, explain why not.

(10) Find two different row echelon forms which are equivalent to the same matrix not given in
row echelon form.

(11) Determine all possible row echelon forms of a 2 × 2 matrix. Use the symbol � to denote
a non-zero number and * to denote a real number with no condition on being 0 or not to
represent entries.

(12) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The number of pivots of an m× n matrix cannot exceed m. (Note: Here
m, n are some unknown numbers.)

(b) True/False The row echelon form of a matrix is unique.

(c) True/False The reduced row echelon form of a matrix is unique.

(d) True/False A system of equations where there are fewer equations than the number
of unknowns (known as an underdetermined system) cannot have a unique solution.

(e) True/False A system of equations where there are more equations than the number
of unknowns (known as an overdetermined system) cannot have a unique solution.

(f) True/False If a row echelon form of the augmented matrix of a system of three
equations in two unknowns has three pivots, then the system is inconsistent.

(g) True/False If the coefficient matrix of a system has pivots in every row, then the
system is consistent.
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(h) True/False If there is a row of zeros in a row echelon form of the augmented matrix
of a system of equations, the system has infinitely many solutions.

(i) True/False If there is a row of zeros in a row echelon form of the augmented matrix
of a system of n equations in n variables, the system has infinitely many solutions.

(j) True/False If a linear system has no free variables, then the system has a unique
solution.

(k) True/False If a linear system has a free variable, then the system has infinitely many
solutions.

Project: Modeling a Chemical Reaction

Recall the chemical equation
C2H6 + O2 → CO2 + H2O

from the beginning of this section. This equation illustrates the reaction between ethane (C2H6)
and oxygen (O2),called the reactants, to produce carbon dioxide (CO2) and water (H2O), called the
products of the reaction. In any chemical reaction, the total mass of the reactants must equal the total
mass of the products. In our reaction the chemicals involved are made up of carbon (C), hydrogen
(H), and oxygen (O) atoms. To balance the equation, we need to know how many molecules of each
chemical are combined to preserve the number of atoms of C, H, and O.

Let x1 be the number of molecules of C2H6, x2 the number of molecules of O2, x3 the number
of molecules of CO2, and x4 the number of molecules of H2O in the reaction. We can then represent
this reaction as

x1C2H6 + x2O2 → x3CO2 + x4H2O.

In each molecule (e.g., ethane C2H6), the subscripts indicate the number of atoms of each
element in the molecule. So 1 molecule of ethane contains 2 atoms of carbon and 6 atoms of
hydrogen. Thus, there are 2 atoms of carbon in C2H6 and 0 atoms of carbon in O2, giving us
2x1 carbon atoms in x1 molecules of C2H6 and 0 carbon atoms in x2 molecules of O2. On the
product side of the reaction there is 1 carbon atom in CO2 and 0 carbon atoms in H2O. To balance
the reaction, we know that the number of carbon atoms in the products must equal the number of
carbon atoms in the reactants.

Project Activity 3.1.

(a) Set up an equation that balances the number of carbon atoms on both sides of the reaction.

(b) Balance the numbers of hydrogen and oxygen atoms in the reaction to explain why

6x1 = 2x4

2x2 = 2x3 + x4.

(c) So the system of linear equations that models this chemical reaction is

2x1 − x3 = 0

6x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0.



56 Section 3. Row Echelon Forms

Find all solutions to this system and then balance the reaction. Note that we cannot have a
fraction of a molecule in our reaction. (Hint: Some of the work needed is done in Preview
Activity 3.1.)

Project Activity 3.2. Chemical reactions can be very interesting.

(a) Carbon dioxide, CO2, is a familiar product of combustion. For example, when we burn
glucose, C6H12O6, the products of the reaction are carbon dioxide and water:

C6H12O6 + O2 → CO2 + H2O. (3.3)

Use the techniques developed in this project to balance this reaction.

(b) To burn glucose, we need to add oxygen to make the combustion happen. Carbon dioxide
is different in that it can burn without the presence of oxygen. For example, when we
mix magnesium (Mg) with dry ice (CO2), the products are magnesium oxide (Mg) and
carbon (C). This is an interesting reaction to watch: you can see it at many websites, e.g.,
http://www.ebaumsworld.com/video/watch/404311/ or https://www.
youtube.com/watch?v=-6dfi8LyRLA.

Use the method determined above to balance the chemical reaction

Mg + CO2 → MgO + C. (3.4)

http://www.ebaumsworld.com/video/watch/404311/
https://www.youtube.com/watch?v=-6dfi8LyRLA
https://www.youtube.com/watch?v=-6dfi8LyRLA


Section 4

Vector Representation

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a vector?

• How do we define operations on vectors?

• What is a linear combination of vectors?

• How do we determine if one vector is a linear combination of a given set
of vectors?

• How do we represent a linear system as a vector equation?

• What is the span of a set of vectors?

• What are possible geometric representations of the span of a vector, or the
span of two vectors?

Application: The Knight’s Tour

Chess is a game played on an 8× 8 grid which utilizes a variety of different pieces. One piece, the
knight, is different from the other pieces in that it can jump over other pieces. However, the knight
is limited in how far it can move in a given turn. For these reasons, the knight is a powerful, but
often under-utilized, piece.

A knight can move two units either horizontally or vertically, and one unit perpendicular to that.
Four knight moves are as illustrated in Figure 4.1, and the other four moves are the opposites of
these.

The knight’s tour problem is the mathematical problem of finding a knight’s tour, that is a se-
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Start

Start

Figure 4.1: Moves a knight can make.

quence of knight moves so the the knight visits each square exactly once. While we won’t consider
a knight’s tour in this text, we will see using linear combinations of vectors that a knight can move
from its initial position to any other position on the board, and that it is possible to determine an
sequence of moves to make that happen.

Introduction

So far we learned of a convenient method to represent a linear system using matrices. We now
consider another representation of a linear system using vectors. Vectors can represent concepts in
the physical world like velocity, acceleration, and force – but we will be interested in vectors as
algebraic objects in this class. Vectors will form the foundation for everything we will do in linear
algebra. For now, the following definition will suffice.

Definition 4.1. A (real) vector is a finite list of real numbers in a specified order. Each number in
the list is referred to as an entry or component of the vector.

Note: For the majority of this text, we will work with real vectors. However, A vector does not need
to be restricted to have real entries. At times we will use complex vectors and even vectors in other
types of sets. The types of sets we use will be ones that have structure just like the real numbers.
Recall that a real number is a number that has a decimal representation, either finite or repeating
(rational numbers) or otherwise (irrational numbers). We can add and multiply real numbers as we
have done throughout our mathematical careers, and the real numbers have a certain structure given
in the following theorem that we will treat as an axiom – that is, we assume these properties without
proof. We denote the set of real numbers with the symbol R.

Theorem 4.2. Let x, y, and z be real numbers. Then

• x + y ∈ R and xy ∈ R (The name given to this property is closure. That is, the set R is
closed under addition and multiplication.)
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• x + y = y + x and xy = yx (The name given to this property is commutativity. That is
addition and multiplication are commutative operations in R.)

• (x+y)+z = x+(y+z) and (xy)z = x(yz) (The name given to this property is associativity.
That is, addition and multiplication is associative operations in R.)

• There is an element 0 in R such that x+ 0 = x (The element 0 is called the additive identity
in R.)

• There is an element 1 in R such that (1)x = x (The element 1 is called the multiplicative
identity in R.)

• There is an element −x in R such that x+ (−x) = 0 (The element −x is the additive inverse
of x in R.)

• If x 6= 0, there is an element 1
x in R such that x

(
1
x

)
= 1 (The element 1

x is the multiplicative
inverse of the nonzero element x in R.)

• x(y + z) = (xy) + (xz) (The is the distributive property. That is, multiplication distributes
over addition in R.)

Any set that satisfies the properties listed in Theorem 4.2 is called a field. We our vectors are
made from elements of a field, we call those elements of the field scalars.

We will algebraically represent a vector as a matrix with one column. For example, v =

[
1
2

]
is a vector with 2 entries, and we say that v is a vector in 2-space. By 2-space we mean R2, which
can be geometrically modeled as the plane. Here the symbol R indicates that the entries of v are real
numbers and the superscript 2 tells us that v has two entries. Similarly, vectors in R3 have three

entries, e.g.,

 1
3
−1

. The collection of column vectors with three entries can be geometrically

modeled as three-dimensional space. If a vector v has n entries we say that v is a vector in Rn (or
n-space). Vectors are also often indicated with arrows, so we might also see a vector v written as
−→v . It is important when writing to differentiate between a vector v and a scalar v. These are quite
different objects and it is up to us to make sure we are clear what a symbol represents. We will use
boldface letters to represent vectors.

A vector like
[

1
2

]
is called a column vector of size 2 × 1 (two rows, one column). We can

define an addition operation on two vectors of the same size by adding corresponding components,
such as [

1
−2

]
+

[
3
4

]
=

[
4
2

]
.

Similarly, we can define scalar multiplication of a vector by multiplying each component of the
vector by the scalar. For example,

3

[
1
2

]
=

[
3
6

]
.
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Since we can add vectors and multiply vectors by scalars, we can then add together scalar multiples
of vectors. For completeness, we define vector subtraction as adding a scalar multiple:

v − u = v + (−1)u.

This definition is equivalent to defining subtraction of u from v by subtracting components of u
from the corresponding components of v.

Preview Activity 4.1.

(1) Given vectors

v =

 1
−2

2

 , u =

 0
1
3

 , w =

 1
1
4

 ,
determine the components of the vector 3v + u− 2w using the operations defined above.

(2) In mathematics, any time we define operations on objects, such as addition of vectors, we ask
which properties the operation has. For example, one might wonder if u+v = v+u for any
two vectors u,v of the same size. If this property holds, we say that the addition of vectors is
a commutative operation. However, to verify this property we cannot use examples since the
property must hold for any two vectors. For simplicity, we focus on two-dimensional vectors

u =

[
u1

u2

]
and v =

[
v1

v2

]
. Using these arbitrary vectors, can we say that u+v = v+u?

If so, justify. If not, give a counterexample. (Note: Giving a counterexample is the best way
to justify why a general statement is not true.)

(3) One way to geometrically represent vectors with two components uses a point in the plane to

correspond to a vector. Specifically, the vector
[
x
y

]
corresponds to the point (x, y) in the

plane. As a specific example, the vector
[

1
2

]
corresponds to the point (1, 2) in the plane.

This representation will be especially handy when we consider infinite collections of vectors
as we will do in this problem.

(a) On the same set of axes, plot the points that correspond to 5-6 scalar multiples of the

vector
[

1
2

]
. Make sure to use variety of scalar multiples covering possibilities with

c > 0, c < 0, c > 1, 0 < c < 1,−1 < c < 0. If we consider the collection of all
possible scalar multiples of this vector, what do we obtain?

(b) What would the collection of all scalar multiples of the vector
[

0
0

]
form in the

plane?

(c) What would the collection of all scalar multiples of the vector

 1
1
1

 form in the

three-dimensional space?

(4) Let u =

[
1
2

]
and v =

[
1
−1

]
in R2. We are interested in finding all vectors that can be

formed as a sum of scalar multiples of u and v.
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(a) On the same set of axes, plot the points that correspond to the vectors u,v,u +
v, 1.5u, 2v,−u,−v,−u+ 2v. Plot other random sums of scalar multiples of u and
v using several scalar multiples (including those less than 1 or negative) (that is, find
other vectors of the form au + bv where a and b are any scalars.).

(b) If we considered sums of all scalar multiples of u,v, which vectors will we obtain?
Can we obtain any vector in R2 in this form?

Vectors and Vector Operations

As discussed in Preview Activity 4.1, a vector is simply a list of numbers. We can add vectors of like
size and multiply vectors by scalars. These operations define a structure on the set of all vectors with
the same number of components that will be our major object of study in linear algebra. Ultimately
we will expand our idea of vectors to a more general context and study what we will call vector
spaces.

In Preview Activity 4.1 we saw how to add vectors and multiply vectors by scalars in R2, and
this idea extends to Rn for any n. Before we do so, one thing we didn’t address in Preview Activity
4.1 is what it means for two vectors to be equal. It should seem reasonable that two vectors are
equal if and only if they have the same corresponding components. More formally, if we let

u =


u1

u2
...
un

 and v =


v1

v2
...
vn


be vectors in Rn, then u = v if ui = vi for every i between 1 and n. Note that this statement
implies that a vector in R2 cannot equal a vector in R3 because they don’t have the same number of
components. With this in mind we can now define the sum u + v of the vectors u and v to be the
vector in Rn defined by

u + v =


u1 + v1

u2 + v2
...

un + vn

 .
In other words, to add two vectors of the same size, we add corresponding components.

Similarly, we can define scalar multiplication of a vector. If c is a scalar, then the scalar multiple
cv of the vector v is the vector in Rn defined by

cv =


cv1

cv2
...
cvn

 .
In other words, the scalar multiple cv of the vector v is the vector obtained by multiplying each
component of the vector v by the scalar c. Since we can add vectors and multiply vectors by scalars,
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we can then add together scalar multiples of vectors. For completeness, we define vector subtraction
as adding a scalar multiple:

v − u = v + (−1)u.

This definition is equivalent to defining subtraction of u from v by subtracting components of u
from the corresponding components of v.

After defining operations on objects, we should wonder what kinds of properties these opera-
tions have. For example, with the operation of addition of real numbers we know that 1 + 2 is equal
to 2 + 1. This is called the commutative property of scalar addition and says that order does not
matter when we add real numbers. It is natural for us to ask if similar properties hold for the vector
operations, addition and scalar multiplication, we defined. You showed in Preview Activity 4.1 that
the addition operation is also commutative on vectors in R2.

In the activity below we consider how the two operations, addition and scalar multiplication,
interact with each other. In real numbers, we know that multiplication is distributive over addition.
Is that true with vectors as well?

Activity 4.1. We work with vectors in R2 to make the notation easier.

Let a be an arbitrary scalar, and u =

[
u1

u2

]
and v =

[
v1

v2

]
be two arbitrary vectors in R2.

Is a(u + v) equal to au + av? What property does this imply about the scalar multiplication and
addition operations on vectors?

Similar arguments can be used to show the following properties of vector addition and multi-
plication by scalars.

Theorem 4.3. Let v, u, and w be vectors in Rn and let a and b be scalars. Then

(1) v + u = u + v

(2) (v + u) + w = v + (u + w)

(3) The vector z =


0
0
...
0

 has the property that v + z = v. The vector z is called the zero

vector.

(4) (−1)v + v = z. The vector (−1)v = −v is called the additive inverse of the vector v.

(5) (a+ b)v = av + bv

(6) a(v + u) = av + au

(7) (ab)v = a(bv)

(8) 1v = v.

We will later see that the above properties make the set Rn a vector space. These properties
just say that, for the most part, we can manipulate vectors just as we do real numbers. Please note,
though, that there is no multiplication or division of vectors.
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Geometric Representation of Vectors and Vector Operations

We can geometrically represent a vector v =

[
v1

v2

]
in R2 as the point (v1, v2) in the plane as

we did in Preview Activity 4.1. We can similarly represent a vector v =

 v1

v2

v3

 in R3 as the

point (v1, v2, v3) in the three-dimensional space. This geometric representation will be handy when
we consider collections of infinitely many vectors, as we will do when we consider the span of a
collection of vectors later in this section.

We can also represent the vector v =

[
v1

v2

]
in R2 as the directed line segment (or arrow) from

the origin to the point (v1, v2) as shown in Figure 4.2 to aid in the visualization.

4

6

O

P

x

y

Figure 4.2: The vector [ 4
6 ] in R2.

The fact that the vector in Figure 4.2 is represented by the directed line segment from the origin

to the point (4,6) means that this vector is the vector v =

[
4
6

]
. If O is the origin and P is the

point (4, 6), we will also denote this vector as
−−→
OP – so

−−→
OP =

[
4
6

]
.

In this way we can think of vectors as having direction and length. With the Pythagorean Theorem,

we can see that the length of a vector v =

[
v1

v2

]
is
√
v2

1 + v2
2 . This idea can be applied to vectors

in any space. If v =


v1

v2

v3
...
vn

 is a vector in Rn, then the length of v, denoted |v| is the scalar

||v|| =
√
v2

1 + v2
2 + · · ·+ v2

n.

Thinking of vectors having direction and length is especially useful in visualizing the addition
of vectors. The geometric interpretation of the sum of two vectors can be seen in Figures 4.3 and
4.4.
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(3,−2)

(4,6)

u

v

u+v

x

y

Figure 4.3: A vector sum.

(3,−2)

(4,6)

u

v

u+v

Figure 4.4: Geometric inter-
pretation.

Let u =

[
4
6

]
and v =

[
3
−2

]
. Then u + v =

[
7
4

]
as shown in Figure 4.3. Figure 4.4

provides a context to interpret this vector sum geometrically. Using the parallelogram imposed on
the three vectors, we see that if vectors u and v are both placed to start at the origin, then the vector
sum u+v can be visualized geometrically as the directed line segment from the origin to the fourth
corner of the parallelogram.

In Preview Activity 4.1 we considered scalar multiples of a vector in R2. The arrow representa-
tion helps in visualizing scalar multiples as well. Geometrically, a scalar multiple cv of a nonzero
vector v is a vector in the same direction as v if c > 0 and in the opposite direction as v if c < 0.
If c > 1, scalar multiplication stretches the vector, while 0 < c < 1 shrinks the vector. We also saw
that the collection of all scalar multiples of a vector v in R2 gives us a line through the origin and
v, except when v = 0 in which case we only obtain 0. In other words, for a nonzero vector v, the
set S = {cv : c is a scalar} is the line through the origin and v in R2.

All of these properties generalize to vectors in R3. Specifically, the scalar multiple cv is a vector
in the same or opposite direction as v based on the sign of c, and is a stretched or shrunken version
of v based on whether |c| > 1 or |c| < 1. Also, the collection of all multiples of a non-zero vector
v in R3 form a line through the origin.

Linear Combinations of Vectors

The concept of linear combinations is one of the fundamental ideas in linear algebra. We will use
linear combinations to describe almost every important concept in linear algebra – the span of a set
of vectors, the range of a linear transformation, bases, the dimension of a vector space – to name
just a few.

In Preview Activity 4.1, we considered the sets of all scalar multiples of a single nonzero vector
in R2 and in R3. We also considered the set of all sums of scalar multiples of two nonzero vectors.
These results so far gives us an idea of geometrical descriptions of sets of vectors generated by one
or two vectors. Oftentimes we are interested in what vectors can be made from a given collection of
vectors. For example, suppose we have two different water-benzene-acetic acid chemical solutions,
one with 40% water, 50% benzene and 10% acetic acid, the other with 52% water, 42% benzene
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and 6% acid. An experiment we want to conduct requires a chemical solution with 43% water, 48%
benzene and 9% acid. We would like to know if we make this new chemical solution by mixing
the first two chemical solutions, or do we have to run to the chemical solutions market to get the
chemical solution we want.

We can set up a system of equations for each ingredient and find the answer. But we can also
consider each chemical solution as a vector, where the components represent the water, benzene
and acid percentages. So the two chemical solutions we have are represented by the vectors v1 = 40

50
10

 and v2 =

 52
42
6

. If we mix the two chemical solutions with varying amounts of each

ingredient, then the question of whether we can make the desired chemical solution becomes the
question of whether the equation

c1

 40
50
10

+ c2

 52
42
6

 =

 43
48
9


has a solution. (You will determine if this equation has a solution in Exercise 5.)

We might also be interested in what other chemical solutions we can make from the two given

solutions. This amounts to determining which vectors can be written in the form c1

 40
50
10

 +

c2

 52
42
6

 for scalars c1 and c2. Vectors that are created from sums of scalar multiples of given

vectors are called linear combinations of those vectors. More formally,

Definition 4.4. A linear combination of vectors v1, v2, . . ., vm in Rn is any vector of the form

c1v1 + c2v2 + · · ·+ cmvm, (4.1)

where c1, c2, . . ., cm are scalars that we will refer to as the weights.

In the chemical solutions example, the vector c1

 40
50
10

 + c2

 52
42
6

 for scalars c1 and c2

is a linear combination of the vectors

 40
50
10

 and

 52
42
6

 with weights c1 and c2, and the set of

linear combinations of the given chemical solution vectors tells us exactly which chemical solutions
we can make from the given ones. This is one example of how linear combinations can arise in
applications.

The set of all linear combinations of a fixed collection of vectors has a very nice algebraic
structure and, in small dimensions, allows us to use a geometrical description to aid our under-
standing. In the above example, this collection gives us the type of chemical solutions we can make
by combining the first two solutions in varying amounts.
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Activity 4.2. Our chemical solution example illustrates that it can be of interest to determine
whether certain vectors can be written as a linear combination of given vectors. We explore that

idea in more depth in this activity. Let v1 =

 1
1
1

 and v2 =

 2
−1

3

.

(a) Calculate the linear combination of v1 and v2 with corresponding weights (scalar multi-
ples) 1 and 2. The resulting vector is a vector which can be written as a linear combination
of v1 and v2.

(b) Can w =

 3
0
4

 be written as a linear combination of v1 and v2? If so, which linear

combination? If not, explain why not.

(c) Can w =

 2
0
2

 be written as a linear combination of v1 and v2? If so, which linear

combination? If not, explain why not.

(d) Let w =

 0
6
−2

. The problem of determining if w is a linear combination of v1 and v2

is equivalent to the problem of finding scalars x1 and x2 so that

w = x1v1 + x2v2. (4.2)

i. Combine the vectors on the right hand side of equation (4.2) into one vector, and then
set the components of the vectors on both sides equal to each other to convert the
vector equation (4.2) to a linear system of three equations in two variables.

ii. Use row operations to find a solution, if it exists, to the system you found in the
previous part of this activity. If you find a solution, verify in (4.2) that you have found
appropriate weights to produce the vector w as a linear combination of v1 and v2.

Note that to find the weights that make w a linear combination of the vectors v1 and v2, we
simply solved the linear system corresponding to the augmented matrix

[v1 v2 | w],

where the vectors v1, v2, and w form the columns of an augmented matrix, and the solution of the
system gave us the weights of the linear combination. In general, if we want to find weights c1, c2,
. . ., cm so that a vector w in Rn is a linear combination of the vectors v1, v2, . . ., vm in Rn, we
solve the system corresponding to the augmented matrix

[v1 v2 v3 · · · vm| w].

Any solution to this system will gives us the weights. If this system has no solutions, then w cannot
be written as a linear combination of the vectors v1, v2, . . ., vm. This shows us the equivalence of
the linear system and its vector equation representation. Specifically, we have the following result.
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Theorem 4.5. The vector equation

x1v1 + x2v2 + x3v3 + · · ·+ xmvm = w

has the same solution set as the linear system represented by the augmented matrix

[v1 v2 v3 · · · vm| w].

In particular, the system has a solution if and only if w is a linear combination of the vectors
v1,v2,v3, . . . ,vm.

Activity 4.3.

(a) Represent the following linear system as a vector equation. After finding the vector equa-
tion, compare your vector equation to the matrix representation you found in Preview Ac-
tivity 4.1. (Note that this is the same linear system from Preview Activity 3.1.)

−x3 + 3 + 2x2 = −x1

−3 + 2x3 = −x2

−2x2 + x1 = 3x3 − 7

(b) Represent the following vector equation as a linear system and solve the linear system.

x1

 1
1
2

+ x2

 1
2
3

+ x3

 −1
2
−3

 =

 4
3
11



The Span of a Set of Vectors

As we saw in the previous section, the question of whether a system of linear equations has a
solution is equivalent to the question of whether the vector obtained by the non-coefficient constants
in the system is a linear combination of the vectors obtained from the columns of the coefficient
matrix of the system. So if we were interested in finding for which constants the system has a
solution, we would look for the collection of all linear combinations of the columns. We call
this collection the span of these vectors. In this section we investigate the concept of span both
algebraically and geometrically.

Our work in Preview Activity 4.1 seems to indicate that the span of a set of vectors, i.e., the
collection of all linear combinations of this set of vectors, has a nice structure. As we mentioned
above, the span of a set of vectors represents the collection of all constant vectors for which a linear
system has a solution, but we will also see that other important objects in linear algebra can be
represented as the span of a set of vectors.

Definition 4.6. The span of the vectors v1, v2, . . ., vm in Rn is the collection of all linear combi-
nations of the vectors v1, v2, . . ., vm.

Notation: We denote the span of a set of vectors v1, v2, . . ., vm as

Span{v1,v2, . . . ,vm}.
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So

Span{v1,v2, . . . ,vm} = {c1v1 + c2v2 + · · ·+ cmvm : c1, c2, . . . , cm are scalars}.

The curly braces, { }, are used in denoting sets. They represent the whole set formed by the objects
included between them. So {v1,v2, . . . ,vm} represents the collection of the vectors formed by
v1,v2, . . . ,vm for an arbitrary number m. Note that m can be 1, meaning that the collection can
contain only one vector v1.

We now investigate what the span of a set of one or two vectors is, both from an algebraic and
geometric perspective, and consider what happens for more general spanning sets.

Activity 4.4.

(a) By definition, Span
{[

1
−2

]}
is the collection of all vectors which are scalar multiples of[

1
−2

]
. Determine which vectors are in this collection. If we plot all these vectors with

each vector being represented as a point in the plane, what do they form?

(b) Let v1 =

 1
0
1

 and v2 =

 0
1
1

 in R3. By definition,

Span


 1

0
1

 ,
 0

1
1


is the collection of all linear combinations of the form

x1

 1
0
1

+ x2

 0
1
1

 ,
where x1 and x2 are any scalars.

i. Find four different vectors in Span{v1,v2} and indicate the weights (the values of
x1 and x2) for each linear combination. (Hint: It is really easy to find 3 vectors in
Span{v1,v2} for any v1,v2.)

ii. Are there any vectors in R3 that are not in Span{v1,v2}? Explain. Verify your result.

iii. Set up a linear system to determine which vectors w =

 w1

w2

w3

 are in Span{v1,v2}.

Specifically, which w can be expressed as a linear combination of v1 and v2?

iv. Geometrically, what shape do the vectors in Span{v1,v2} form inside R3?

(c) Is it possible for Span{z1, z2} to be a line for two vectors z1, z2 in R3?

(d) What do you think are the possible geometric descriptions of a span of a set of vectors in
R2? Explain.

(e) What do you think are the possible spans of a set of vectors in R3? Explain.
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Examples

What follows are worked examples that use the concepts from this section.

Example 4.7. For each of the following systems,

• express an arbitrary solution to the system algebraically as a linear combination of vectors,

• find a set of vectors that spans the solution set,

• describe the solution set geometrically.

(a)

x1 + x3 =0

2x1 + x2 + 3x3 =0

4x1 − x2 + 3x3 =0.

(b)

x1 + 2x2 + 3x3 =0

2x1 + 4x2 + 6x3 =0

4x1 + 8x2 + 12x3 =0.

Example Solution. In each example, we use technology to find the reduced row echelon form of
the augmented matrix.

(a) The reduced row echelon form of the augmented matrix 1 0 1 0
2 1 3 0
4 −1 3 0


is  1 0 1 0

0 1 1 0
0 0 0 0

 .
• There is no pivot in the x3 column, so x3 is a free variable. Since the system is

consistent, it has infinitely many solutions. We can write both x1 and x2 in terms
of x3 as x2 = −x3 and x1 = −x3. So the general solution to the system has the
algebraic form  x1

x2

x3

 =

 −x3

−x3

x3

 = x3

 −1
−1

1

 .
So every solution to this system is a scalar multiple (linear combination) of the vector −1
−1

1

.
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• Since every solution to the system is a scalar multiple of the vector

 −1
−1

1

, the

solution set to the system is Span


 −1
−1

1

.

• As the set of scalar multiples of a single vector, the solution set to this system is a line
in R3 through the origin and the point (−1,−1, 1).

(b) The reduced row echelon form of the augmented matrix 1 2 3 0
2 4 6 0
4 8 12 0


is  1 2 3 0

0 0 0 0
0 0 0 0

 .
• There are no pivots in the x2 and x3 columns, so x2 and x3 are free variables. Since

the system is consistent, it has infinitely many solutions. We can write x1 in terms
of x2 and x3 as x1 = −2x2 − 3x3. So the general solution to the system has the
algebraic form x1

x2

x3

 =

 −2x2 − 3x3

x2

x3

 = x2

 −2
1
0

+ x3

 −3
0
1

 .

So every solution to this system is a linear combination of the vectors

 −2
1
0

 and −3
0
1

.

• Since every solution to the system is a linear combination of the vectors

 −2
1
0

 and −3
0
1

, the solution set to the system is

Span


 −2

1
0

 ,
 −3

0
1

 .

• As the set of linear combinations of two vectors, the solution set to this system is a
plane in R3 through the origin and the points (−2, 1, 0) and (−3, 0, 1).
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Example 4.8. Let W =




s+ t
r + 2s
r − 3t
r + s+ t

 : r, s, t ∈ R

.

(a) Find three vectors v1, v2, and v3 such that W = Span{v1,v2,v3}.

(b) Can w =


−2
−4
−1

0

 be written as a linear combination of the vectors v1, v2, v3? If so, find

such a linear combination. If not, justify your response. What does your result tell us about
the relationship between w and W ? Explain.

(c) Can u =


3
−4

1
−1

 be written as a linear combination of the vectors v1, v2, v3? If so, find

such a linear combination. If not, justify your response. What does your result tell us about
the relationship between w and W ? Explain.

(d) What relationship, if any, exists between Span{v1,v2,v3} and Span W ? Explain.

Example Solution.

(a) Every vector in W has the form


s+ t
r + 2s
r − 3t
r + s+ t

 =


0
r
r
r

+


s
2s
0
s

+


t
0

−3t
t



= r


0
1
1
1

+ s


1
2
0
1

+ t


1
0
−3

1



for some real numbers r, s, and t. Thus, W = Span{v1,v2,v3} where v1 =


0
1
1
1

,

v2 =


1
2
0
1

, and v3 =


1
0
−3

1

.

(b) To determine if w is a linear combination of v1, v2, and v3, we row reduced the augmented
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matrix [v1 v2 v3 | w]. The reduced row echelon form of the matrix [v1 v2 v3 | w] is
1 0 0 2
0 1 0 −3
0 0 1 1
0 0 0 0

 .
The system with this as augmented matrix is consistent. If we let x1, x2, and x3 be the
variables corresponding to the first three columns, respectively, of this augmented matrix,
then we see that x1 = 2, x2 = −3, and x3 = 1. So w can be written as a linear combination
of v1, v2, and v3 as

w = 2v1 − 3v2 + v3.

Since W = Span{v1,v2,v3}, it follows that w ∈W .

(c) To determine if u is a linear combination of v1, v2, and v3, we row reduced the augmented
matrix [v1 v2 v3 | u]. The reduced row echelon form of the matrix [v1 v2 v3 | u] is

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
The last row shows that the system with this as augmented matrix is inconsistent. So u
cannot be written as a linear combination of v1, v2, and v3. Since W = Span{v1,v2,v3},
it follows that u 6∈W .

(d) We know that Span{v1,v2,v3} = W . Now Span W contains the linear combinations
of vectors in W , which are all linear combinations of the vectors v1, v2, and v3. Thus,
SpanW is just the set of linear combinations of v1, v2, and v3. We conclude that SpanW =
Span{v1,v2,v3} = W .

Summary

• A vector is a list of numbers in a specified order.

• We add two vectors of the same size by adding corresponding components. In other words,
if u and v are vectors of the same size and ui and vi are the i components of u and v,
respectively, then u+v is the vector whose ith component is ui+vi for each i. Geometrically,
we represent the sum of two vectors using the Parallelogram Rule: The vector u + v is the
directed line segment from the origin to the 4th point of the parallelogram formed by the
origin and the vectors u,v.

• A scalar multiple of a vector is found by multiplying each component of the vector by that
scalar. In other words, if vi is the i component of the vector v and c is any scalar, then cv is
the vector whose i component is cvi for each i. Geometrically, a scalar multiple of a nonzero
vector v is a vector in the same direction as v if c > 0 and in the opposite direction if c < 0.
If |c| > 1, the vector is stretched, and if |c| < 1, the vector is shrunk.
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• An important concept is that of a linear combination of vectors. In words, a linear combi-
nation of a collection of vectors is a sum of scalar multiples of the vectors. More formally,
we defined a linear combination of vectors v1, v2, . . ., vm in Rn is any vector of the form
c1v1 + c2v2 + · · ·+ cmvm, where c1, c2, . . ., cm are scalars.

• To find weights c1, c2, . . ., cm so that a vector w in Rn is a linear combination of the vectors
v1, v2, . . ., vm in Rn, we simply solve the system corresponding to the augmented matrix

[v1 v2 v3 · · · vm| w].

• The collection of all linear combinations of a set of vectors is called the span of the set of
vectors. More formally, the span of the vectors v1, v2, . . ., vm in Rn is the set

{c1v1 + c2v2 + · · ·+ cmvm : c1, c2, . . . , cm are scalars},

which we denote as Span{v1,v2, . . . ,vm}. Geometrically, the span of a single nonzero
vector v in any dimension is the line through the origin and the vector v. The span of two
vectors v1,v2 in any dimension neither of which is a multiple of the other is a plane through
the origin containing both vectors.

Exercises

(1) Given vectors u =

[
1
2

]
and v =

[
−1

2

]
in R2, determine if w =

[
−4
−1

]
can be written

as a linear combination of u and v. If so, determine the weights of u and v which produce
w.

(2) Given vectors v1 =

 1
2
1

, v2 =

 −2
1
2

 and v3 =

 −1
3
3

 in R3, determine if w = 5
5
1

 can be written as a linear combination of v1, v2 and v3. If so, determine the weights

of v1, v2 and v3 which produce w. Reflect on the result. Is there anything special about the
given vectors v1, v2 and v3?

(3) Let u =

 1
2
1

 and v =

 −1
1
1

 in R3. Determine which vectors w =

 w1

w2

w3

 in R3 can

be written as a linear combination of u and v. Does the set of w’s include the 0 vector? If
so, determine which weights in the linear combination produce the 0 vector. If not, explain
why not.

(4) Consider vectors u =

 0
2
0

 and v =

 1
1
1

 in R3.

(a) Find four specific linear combinations of the vectors u and v.

(b) Explain why the zero vector must be a linear combination of u and v.
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(c) What kind of geometric shape does the set of all linear combinations of u and v have
in R3?

(d) Can we obtain any vector in R3 as a linear combination of u and v? Explain.

(5) Suppose we have two different water-benzene-acetic acid solutions, one with 40% water,
50% benzene and 10% acetic acid, the other with 52% water, 42% benzene and 6% acid.

(a) An experiment we want to conduct requires a solution with 43% water, 48% benzene
and 9% acid. Representing each acid solution as a vector, determine if we can we
make this new acid solution by mixing the first two solutions, or do we have to run
to the chemical solutions market to get the solution we want?

(b) Using the water-benzene-acetic acid solutions in the previous problem, can we obtain
an acid solution which contains 50% water, 43% benzene and 7% acid?

(c) Determine the relationship between the percentages of water, benzene, and acid in
solutions which can be obtained by mixing the two given water-benzene-acetic acid
solutions above.

(6) Is the vector b =

 0
1
2

 in Span


 2
−1

0

 ,
 −3

0
−5

 ,
 1

1
0

? Justify your answer.

(7) Describe geometrically each of the following sets.

(a) Span
{[

1
1

]
,

[
−1
−1

]}
in R2

(b) Span


 1

1
1

 ,
 −1
−1
−1

 ,
 2

0
1

 in R3

(8) Consider the linear system

2x1 + 3x2 + 3x3 = 0

4x1 + 6x3 + 6x4 = 0

2x1 + 4x2 + 3x3 − x4 = 0.

(a) Find the general solution to this system.

(b) Find two specific vectors v1 and v2 so that the solution set to this system is Span{v1,v2}.

(9) Answer the following question as yes or no. Verify your answer. If u and v are vectors in
Rn, then v is in Span{u,u− v}.

(10) Let v, u, and w be vectors in Rn and let a and b be scalars. Verify Theorem 4.3. That is,
show that

(a) v + u = u + v

(b) (v + u) + w = v + (u + w)
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(c) The vector z =


0
0
...
0

 has the property that v + z = v.

(d) (−1)v + v = z.

(e) (a+ b)v = av + bv

(f) a(v + u) = av + au

(g) (ab)v = a(bv)

(h) 1v = v.

(11) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False A vector in R2, i.e. a two-dimensional vector, is also a vector in R3.

(b) True/False Any vector in R2 can be visualized as a vector in R3 by adding a 0 as the
last coordinate.

(c) True/False The zero vector is a scalar multiple of any other vector (of the same size).

(d) True/False The zero vector cannot be a linear combination of two non-zero vectors.

(e) True/False Given two vectors u and v, the vector 1
2u is a linear combination of u

and v.

(f) True/False Given any two non-zero vectors u and v in R2, we can obtain any vector
in R2 as a linear combination of u and v.

(g) True/False Given any two distinct vectors u and v in R2, we can obtain any vector
in R2 as a linear combination of u and v.

(h) True/False If u can be expressed as a linear combination of v1 and v2, then 2u can
also be expressed as a linear combination of v1 and v2.

(i) True/False The span of any two vectors neither of which is a multiple of the other
can be visualized as a plane through the origin.

(j) True/False Given any vector, the collection of all linear combinations of this vector
can be visualized as a line through the origin.

(k) True/False The span of any collection of vectors includes the 0 vector.

(l) True/False If the span of v1 and v2 is all of R2, then so is the span of v1 and v1 +v2.

(m) True/False If the span of v1,v2 and v3 is all of R3, then so is the span of v1 + v2

and v2 + v3.

Project: Analyzing Knight Moves

To understand where a knight can move in a chess game, we need to know the initial setup. A chess
board is an 8× 8 grid. To be able to refer to the individual positions on the board, we will place the
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board so that its lower left corner is at the origin, make each square in the grid have side length 1,
and label each square with the point at the lower left corner. This is illustrated at left in Figure 4.5.
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Figure 4.5: Initial knight placement and moves.

Each player has two knights to start the game, for one player the knights would begin in posi-
tions (1, 0) and (6, 0). Because of the symmetry of the knight’s moves, we will only analyze the
moves of the knight that begins at position (1, 0). This knight has only three allowable moves from
its starting point (assuming that the board is empty), as shown at right in Figure 4.5. The questions
we will ask are: given any position on the board, can the knight move from its start position to that
position using only knight moves and, what sequence of moves will make that happen. To answer
these questions we will use linear combinations of knight moves described as vectors.

Each knight move can be described by a vector. A move one position to the right and two

up can be represented as n1 =

[
1
2

]
. Three other moves are n2 =

[
−1

2

]
, n3 =

[
2
1

]
, and

n4 =

[
−2

1

]
. The other four knight moves are the additive inverses of these four. Any sequence

of moves by the knight is given by the linear combination

x1n1 + x2n2 + x3n3 + x4n4.

A word of caution: the knight can only make complete moves, so we are restricted to integer (either
positive or negative) values for x1, x2, x3, and x4. You can use the GeoGebra app at https:
//www.geogebra.org/m/dfwtskrj to see the effects the weights have on the knight moves.
We should note here that since addition of vectors is commutative, the order in which we apply our
moves does not matter. However, we may need to be careful with the order so that our knight does
not leave the chess board.

Project Activity 4.1.

(a) Explain why the vector equation[
1
0

]
+ x1n1 + x2n2 + x3n3 + x4n4 =

[
5
2

]

https://www.geogebra.org/m/dfwtskrj
https://www.geogebra.org/m/dfwtskrj
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will tell us if it is possible for the knight to move from its initial position at (1, 0) to the
position (5,2).

(b) Find all solutions, if any, to the system from part (a). If it is possible to find a sequence
of moves that take the knight from its initial position to position (5, 2), find weights x1,
x2, x3, and x4 to accomplish this move. (Be careful – we must have solutions in which
x1, x2, x3, and x4 are integers.) Is there more than one sequence of possible moves? You
can check your solution with the GeoGebra app at https://www.geogebra.org/m/
dfwtskrj.

Project Activity 4.1 shows that it is possible for our knight to move to position (5, 2) on the
board. We would like to know if it is possible to move to any position on the board. That is, we
would like to know if the integer span of the four moves n1, n2, n3, and n4 will allow our knight
to cover the entire board. This takes a bit more work.

Project Activity 4.2. Given any position (a, b), we want to know if our knight can move from its
start position (1, 0) to position (a, b).

(a) Write a vector equation whose solution will tell us if it is possible for our knight to move
from its start position (1, 0) to position (a, b).

(b) Show that the solution to part (a) can be written in the form

x1 =
1

4
(−5x3 + 3x4 + b+ 2(a− 1)) (4.3)

x2 =
1

4
(3x3 − 5x4 + b− 2(a− 1)) (4.4)

x3 is free

x4 is free.

To answer our question if our knight can reach any position, we now need to determine if we can
always find integer values of x3 and x4 to make equations (4.3) and (4.4) have integer solutions.
In other words, we need to find values of x3 and x4 so that −5x3 + 3x4 + b + 2(a − 1) and
3x3 − 5x4 + b− 2(a− 1) are multiples of 4. How we do this could depend on the parity (even or
odd) of a and b. For example, if a is odd and b is even, say a = 2r+ 1 and b = 2s for some integers
r and s, then

x1 =
1

4
(−5x3 + 3x4 + 2s+ 4r)

x2 =
1

4
(3x3 − 5x4 + 2s− 4r) .

With a little trial and error we can see that if we let x3 = x4 = s, then x1 = r and x2 = −r is
a solution with integer weights. For example, when a = 5 and b = 2 we have r = 2 and s = 1.
This makes x1 = 2, x2 = −2, x3 = 1 = x4. Compare this to the solution(s) you found in Project
Activity 4.1. This analysis shows us how to move our knight to any position (a, b) where a is odd
and b is even.

Project Activity 4.3. Complete the analysis as above to determine if there are integer solutions to
our knight’s move system in the following cases.

https://www.geogebra.org/m/dfwtskrj
https://www.geogebra.org/m/dfwtskrj
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(a) a odd and b odd

(b) a even and b even

(c) a even and b odd.

Project Activity 4.3 shows that for any position on the chess board, using linear combinations of
move vectors, we can find a sequence of moves that takes our knight to that position. (We actually
haven’t shown that these moves can be made so that our knight always stays on the board – we
leave that question to you.)



Section 5

The Matrix-Vector Form of a Linear
System

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• How and when is the matrix-vector product Ax defined?

• How can a system of linear equations be written in matrix-vector form?

• How can we tell if the system Ax = b is consistent for a given vector b?

• How can we tell if the system Ax = b is consistent for every vector b?

• What is a homogeneous system? What can we say about the solution set to
a homogeneous system?

• What must be true about pivots in the coefficient matrix A in order for the
homogeneous system Ax = 0 to have a unique solution?

• How are the solutions to the nonhomogeneous system Ax = b related to
the solutions of the corresponding homogeneous system Ax = 0?

Application: Modeling an Economy

An economy is a very complex system. An economy is not a well-defined object, there are many
factors that influence an economy, and it is often unclear how the factors influence each other.
Mathematical modeling plays an important role in attempting to understand an economy.

In 1941 Wassily Leontief developed the first empirical model of a national economy. Around
1949 Leontief used data from the U.S. Bureau of Labor Statistics to divide the U.S. economy into

79
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500 sectors. He then set up linear equations for each sector. This system was too large for the
computers at the time to solve, so he then aggregated the information into 42 sectors. The Harvard
Mark II computer was used to solve this system, one of the first significant uses of computers for
mathematical modeling. Leontief won the 1973 Nobel Prize in economics for his work.

With such large models (Leontief’s models are called input-output models) it is important to find
a shorthand way to represent the resulting systems. In this section we will see how to represent any
size system of linear equations in a very convenient way. Later, we will analyze a small economy
using input-output models.

Introduction

There is another useful way to represent a system of linear equations using a matrix-vector product
that we investigate in this section. To understand how this product comes about, recall that we can
represent the linear system

x1 + 4x2 + 2x3 + 4x4 = 1

2x1 − x2 − 5x3 − x4 = 2

3x1 + 7x2 + x3 + 7x4 = 3

as a vector equation as

x1

 1
2
3

+ x2

 4
−1

7

+ x3

 2
−5

1

+ x4

 4
−1

7

 =

 1
2
3

 . (5.1)

We can view the left hand side of Equation ( 5.1) as a matrix-vector product. Specifically, if

A =

 1 4 2 4
2 −1 −5 −1
3 7 1 7

 and x =


x1

x2

x3

x4

, then we define the matrix-vector product Ax as

the left hand side Equation (5.1). So the matrix vector product Ax is the linear combination of the
columns of A with weights from the vector x in order.

With this definition, the vector equation in (5.1) can be expressed as a matrix-vector equation
as  1 4 2 4

2 −1 −5 −1
3 7 1 7



x1

x2

x3

x4

 =

 1
2
3

 .
We call this representation the matrix-vector form of the system. Note that the matrix A in this
expression is the same as the coefficient matrix that appears in the augmented matrix representation
of the system.

We can use the above definition of the matrix-vector product as a linear combination with any
matrix and any vector, as long as it is meaningful to use the entries in the vector as weights for the



Section 5. The Matrix-Vector Form of a Linear System 81

columns of the matrix. For example, for A =

 1 2
3 1
1 1

 and v =

[
3
4

]
, then we can define Av to

be the linear combination of the columns of A with weights 3 and 4:

Av = 3

 1
3
1

+ 4

 2
1
1

 =

 11
13
7

 .
However, note that if v had three entries, this definition would not make sense since we do not have
three columns in A. In those cases, we say Av is not defined. We will later see that this definition
can be generalized to matrix-matrix products, by treating the vector as a special case of a matrix
with one column.

Preview Activity 5.1.

(1) Write the vector equation

x1

 1
1
2

+ x2

 1
2
3

+ x3

 −1
2
−3

 =

 4
3
11


in matrix-vector form. Note that this is the vector equation whose augmented matrix repre-
sentation was given in Problem 2 in Preview Activity 2.1. Compare your matrix A and the
right hand side vector to the augmented matrix. Do not solve the system.

(2) Given the matrix-vector equation 1 2 −1
0 1 2
1 −2 −3

x =

 −3
3
−7


represent the system corresponding to this equation. Note that this should correspond to the
system (or an equivalent system where an equation might be multiplied by (−1)) in Problem
1 of Preview Activity 2.1.

(3) Find the indicated matrix-vector products, if possible. Express as one vector.

(a)
[

2 −2
1 2

] [
1
−1

]
(b)

[
1 0 2
2 −2 3

] [
2
1

]

(c)
[
−6 −2 1

2 −2 1

] 1
−3

1


(4) As you might have noticed, systems with all the constants being 0 are special in that they

always have a solution. (Why?) So we might consider grouping systems into two types:
Those of the form Ax = b, where not all of the entries of the vector b are 0, and those of the
form Ax = 0, where 0 is the vector of all zeros. Systems like Ax = b, where b contains
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at least one non-zero entry, are called nonhomogeneous systems, and systems of the form
Ax = 0 are called homogeneous systems. For every nonhomogeneous system Ax = b there
is a corresponding homogeneous system Ax = 0, and there is a useful connection between
the solutions to the nonhomogeneous system and the corresponding homogeneous system.
For example, consider the nonhomogeneous system

Ax = b

with

A =

[
1 1 2
1 2 1

]
, x =

 x1

x2

x3

 , and b =

[
0
−2

]
. (5.2)

The augmented matrix representation of this system is [A | b]. If we reduce this augmented
matrix, we find [

1 0 3 2
0 1 −1 −2

]
.

From this RREF, we immediately see that the general solution is that x3 is free, x2 = x3− 2,
and x1 = 2− 3x3. In vector form, we can represent this general solution as x1

x2

x3

 =

 2− 3x3

x3 − 2
x3

 =

 2
−2

0

+ x3

 −3
1
1

 . (5.3)

The rightmost expression above is called the parametric vector form of the solution.

If we had a system where the general solution involved more than one free variable, then we
would write the parametric vector form to include one vector multiplying each free variable.
For example, if the general solution of a system were that x2 and x3 are free and x1 =
2 + x2 + 3x3, then the parametric vector form would be

x =

 2 + x2 + 3x3

x2

x3

 =

 2
0
0

+ x2

 1
1
0

+ x3

 3
0
1

 .
Note that the parametric vector form expresses the solutions as a linear combination of a
number of vectors, depending on the number of free variables, with an added constant vector.
This expression helps us in interpreting the solution set geometrically, as we will see in this
section.

(a) Find the general solution to the homogeneous system

Ax = 0

with A and x as in (5.2) and compare it to the solution to the nonhomogeneous
system in (5.3). What do you notice?

(b) Find the general solution to the nonhomogeneous system

Ax = b
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with

A =

[
1 2 −1
2 4 −2

]
, x =

 x1

x2

x3

 , and b =

[
−1

1

]
.

and express it in parametric vector form. Then find the general solution to the cor-
responding homogeneous system and express it in parametric vector form. How are
the two solution sets related?

(c) Make a conjecture about the relationship between the solutions to a consistent non-
homogeneous systemAx = b and the corresponding homogeneous systemAx = 0.
Be as specific as possible.

The Matrix-Vector Product

The matrix-vector product we defined in Preview Activity 5.1 for a specific example generalizes
in a very straightforward manner, and provides a convenient way to represent a system of linear
equations of any size using matrices and vectors. In addition to providing us with an algebraic
approach to solving systems via matrices and vectors – leading to a powerful geometric relationship
between solution sets of homogeneous and non-homogeneous systems – this representation allows
us to think of a linear system from a dynamic perspective, as we will see later in the section on
matrix transformations.

The matrix-vector product Ax is a linear combination of the columns of A with weights from
x. To define this product in general, we will need a little notation. Recall that a matrix is made of
rows and columns – the entries reading from left to right form the rows of the matrix and the entries
reading from top to bottom form the columns. For example, the matrix

A =

 1 2 3 4
5 6 7 8
9 10 11 12

 .
has three rows and four columns. The number of rows and columns of a matrix is called the size of
the matrix, so A is a 3 by 4 matrix (also written as 3× 4). We often need to have a way to reference
the individual entries of a matrix A, and to do so we typically give a label, say aij to the entry in
the ith row and jth column of A. So in our example we have a23 = 7. We also write A = [aij ] to
indicate a matrix whose i, jth entry is aij . At times it is convenient to write a matrix in terms of its
rows or columns. If A = [aij ] is an m× n matrix, then we will write

A =


a11 a12 · · · a1n−1 a1n

a21 a22 · · · a2n−1 a2n
...

. . .
...

am1 am2 · · · amn−1 amn


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or, if we let r1, r2, . . . , rm denote the rows of the matrix A, then we can write A as1

A =


r1

r2
...
rm

 .
We can also write A in terms of its columns, c1, c2, . . . , cn, as

A = [c1 c2 · · · cn].

In general, the product of a matrix with a vector is defined as follows.

Definition 5.1. Let A be an m × n matrix with columns c1, c2, . . ., cn, and let x =


x1

x2
...
xn

 be a

vector in Rn. The matrix-vector product Ax is

Ax = x1c2 + x2c2 + · · ·+ xncn.

Important Note: The matrix-vector product Ax is defined only when the number of entries of the
vector x is equal to the number of columns of the matrix A. That is, if A is an m× n matrix, then
Ax is defined only if x is a column vector with n entries.

The Matrix-Vector Form of a Linear System

As we saw in Preview Activity 5.1, the matrix-vector product provides us with a short hand way
of representing a system of linear equations. In general, every linear system can be written in
matrix-vector form as follows.

The linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + a2mx2 + · · ·+ amnxn = bm

of m equations in n unknowns can be written in matrix-vector form as Ax = b, where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

 , x =


x1

x2
...
xn

 , and b =


b1
b2
...
bm

 .
1Technically, the rows of A are made from the entries of the row vectors, but we use this notation as a shorthand.
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This general system can also be written in the vector form

x1


a11

a21
...

am1

+ x2


a12

a22
...

am2

+ · · ·+ xn


a1n

a2n
...

amn

 =


b1
b2
...
bm

 .

With this last representation, we now have four different ways to represent a system of linear
equations (as a system of linear equations, as an augmented matrix, in vector equation form, and
in matrix-vector equation form), and it is important to be able to translate between them. As an
example, the system

x1 + 4x2 + 2x3 + 4x4 = 2

2x1 − x2 − 5x3 − x4 = 2

3x1 + 7x2 + x3 + 7x4 = 3

from the introduction to this section has corresponding augmented matrix 1 4 2 4 1
2 −1 −5 −1 2
3 7 1 7 3

 ,
is expressed in vector form as

x1

 1
2
3

+ x2

 4
−1

7

+ x3

 2
−5

1

+ x4

 4
−1

7

 =

 1
2
3

 ,
and has matrix-vector form

 1 4 2 4
2 −1 −5 −1
3 7 1 7



x1

x2

x3

x4

 =

 2
2
3

 .
Activity 5.1. In this activity, we will use the equivalence of the different representations of a system
to make useful observations about when a system represented as Ax = b has a solution.

(a) Consider the system [
1 2 −1
2 1 3

] x1

x2

x3

 =

[
2
6

]
.

Write the matrix-vector product on the left side of this equation as a linear combination of

the columns of the coefficient matrix. Find weights that make the vector
[

2
6

]
a linear

combination of the columns of the coefficient matrix.
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(b) From this point on we consider the general case whereA is anm×nmatrix. Use the vector
equation representation to explain why the system Ax = b has a solution if and only if b
is a linear combination of the columns of A. (Note that ‘if and only if’ is an expression to
mean that if one side of the expression is true, then the other side must also be true.) (Hint:
Compare to what you did in part (a).)

(c) Use part (b) and the definition of span to explain why the system Ax = b has a solution if
and only if the vector b is in the span of the columns of A.

(d) Use part (c) to explain why the system Ax = b always has a solution for any vector b in
Rm if and only if the span of the columns of A is all of Rm.

(e) Use the augmented matrix representation and the criterion for a consistent system to explain
why the system Ax = b is consistent for all vectors b if and only if A has a pivot position
in every row.

We summarize our observations from the above activity in the following theorem.

Theorem 5.2. Let A be an m× n matrix. The following statements are equivalent:

(1) The matrix equation Ax = b has a solution for every vector b in Rm.

(2) Every vector b in Rm can be written as a linear combination of the columns of A.

(3) The span of the columns of A is Rm.

(4) The matrix A has a pivot position in each row.

In the future, if we need to determine whether a system has a solution for every b, we can refer
to this theorem without having to argue our reasoning from scratch.

Properties of the Matrix Vector Product

As we have done before, we have a new operation (the matrix-vector product), so we should wonder
what properties it has.

Activity 5.2. In this activity, we consider whether the matrix-vector product distributes vector ad-
dition. In other words: Is A(u + v) equal to Au +Av?

We work with arbitrary vectors u,v in R3 and an arbitrary matrixAwith 3 columns (so thatAu
and Av are defined) to simplify notation. Let A = [c1 c2 c3] (note that each ci represents a column

of A), u =

 u1

u2

u3

, and v =

 v1

v2

v3

. Use the definition of the matrix-vector product along with

the properties of vector operations to show that

A(u + v) = Au +Av.

Similar arguments using the definition of matrix-vector product along with the properties of
vector operations can be used to show the following theorem:
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Theorem 5.3. Let A be an m× n matrix, u and v n× 1 vectors, and c a scalar. Then

(1) A(u + v) = Au +Av

(2) c(Av) = A(cv)

Homogeneous and Nonhomogeneous Systems

As we saw before, the systems with all the right hand side constants being 0 are special in that they
always have a solution. (Why?) So we might consider grouping systems into two types: Those
of the form Ax = b, where not all of the entries of the vector b are 0, and those of the form
Ax = 0, where 0 is the vector of all zeros. Systems like Ax = b, where b contains at least one
non-zero entry, are called nonhomogeneous systems, and systems of the form Ax = 0 are called
homogeneous systems. For every nonhomogeneous system Ax = b there is a corresponding
homogeneous system Ax = 0. We now investigate the connection between the solutions to the
nonhomogeneous system and the corresponding homogeneous system.

Activity 5.3. In this activity we will consider the relationship between the solution sets of nonho-
mogeneous systems and those of the corresponding homogeneous systems.

(a) Find the solution sets of the system
Ax = b

where

A =

[
1 1 2
1 2 1

]
, x =

 x1

x2

x3

 , and b =

[
0
−2

]
and the corresponding homogeneous system (i.e. where we replace b with 0.)

(b) Find the solution sets of the system
Ax = b

where

A =

[
1 2 −1
2 4 −2

]
, x =

 x1

x2

x3

 , and b =

[
−1

1

]
and the corresponding homogeneous system.

(c) What are the similarities/differences between solutions of the nonhomogeneous system and
its homogeneous counterpart?

As we saw in the above activity, there is a relationship between solutions of a nonhomogeneous
and the corresponding homogeneous system. Let us formalize this relationship. If the general
solution of a system involves free variables, we can represent the solutions in parametric vector
form to have a better idea about the geometric representation of the solution set. Suppose the
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solution is that x3 is free, x2 = −2 + x3, and x1 = 2− 3x3. In vector form, we can represent this
general solution as  x1

x2

x3

 =

 2− 3x3

x3 − 2
x3

 =

 2
−2

0

+ x3

 −3
1
1

 . (5.4)

From this representation, we see that the solution set is a line through the origin (formed by mul-

tiples of

 −3
1
1

) shifted by the added vector

 2
−2

0

. The solution to the homogeneous system

on the other does not have the shift.

Algebraically, we see that every solution to the nonhomogeneous system Ax = b can be writ-
ten in the form p + vh, where p is a particular solution to Ax = b and vh is a solution to the
corresponding homogeneous system Ax = 0.

To understand why this always happens, we will verify the result algebraically for an arbitrary
A and b. Assuming that p is a particular solution to the nonhomogeneous system Ax = b, we
need to show that:

• if v is an arbitrary solution to the nonhomogeneous system, then v = p + vh, where vh is
some solution to the homogeneous system Ax = 0, and

• if vh is an arbitrary solution to the homogeneous system, then p + vh is a solution to the
nonhomogeneous system.

To verify the first condition, suppose that v is a solution to the nonhomogeneous system Ax =
b. Since we want v = p + vh, we need to verify that v − p is a solution for the homogeneous
system so that we can assign vh = v − p. Note that

A(v − p) = Av −Ap = b− b = 0 ,

using the distributive property of matrix-vector product over vector addition. Hence v is of the form
p + vh with vh = 0.

To verify the second condition, consider a vector of the form p+vh, where vh is a homogeneous
solution. We have

A(p + vh) = Ap +Avh = b + 0 = b,

and so p + vh is a solution to Ax = b.

Our work above proves the following theorem.

Theorem 5.4. Suppose the equation Ax = b is consistent for some b and p is a solution. Then
the solution set of Ax = b consists of all vectors of the form v = p + vh where vh is a solution to
Ax = 0.
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The Geometry of Solutions to the Homogeneous System

There is a simple geometric interpretation to the solution set of the homogeneous system Ax = 0
based on the number of free variables that imposes a geometry on the solution set of the correspond-
ing nonhomogeneous system Ax = b (when consistent) due to Theorem 5.4.

Activity 5.4. In this activity we consider geometric interpretations of the solution sets of homoge-
neous and nonhomogeneous systems.

(a) Consider the system Ax = b where A =

 1 −3
−3 9
−1 3

 and b =

 2
−6
−2

. The general

solution to this system has the form
[

2
0

]
+ x2

[
3
1

]
, where x2 is any real number.

i. Let v =

[
3
1

]
. What does the set of all vectors of the form x2v look like geometri-

cally? Draw a picture in R2 to illustrate. (Recall that we refer to all the vectors of the
form x2v simply as Span{v}.)

ii. Let p =

[
2
0

]
. What effect does adding the vector p to each vector in Span{v} have

on the geometry of Span{v}? Finally, what does this mean about the geometry of the
solution set to the nonhomogeneous system Ax = b?

(b) Consider the system Ax = b where A =

[
1 2 −1
3 6 −3

]
and b =

[
−2
−6

]
. The general

solution to this system has the form

 −2
0
0

+ x2

 −2
1
0

+ x3

 1
0
1

, where x2, x3 are

any real numbers.

i. Let u =

 −2
1
0

 ,v =

 1
0
1

. Use our results from Section 4 to determine the geo-

metric shape of Span{u,v}, the set of all vectors of the form x2

 −2
1
0

+x3

 1
0
1

,

where x2, x3 are any real numbers.

ii. Let p =

 −2
0
0

. What’s the geometric effect of adding the vector p to each vector

in Span{u,v}? Finally, what does this mean about the geometry of the solution set
to the nonhomogeneous system Ax = b?

Our work in the above activity shows the geometric shape of the solution set of a consistent
nonhomogeneous system is the same as the geometric shape of the solution set of the corresponding
homogeneous system. The only difference between the two solution sets is that one is a shifted
version of the other.
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Examples

What follows are worked examples that use the concepts from this section.

Example 5.5. We now have several different ways to represent a system of linear equations.
Rewrite the system in an equivalent form

11x1 + 4x2 − 5x3 − 2x4 =63

15x1 + 5x2 + 2x3 − 2x4 =68

6x1 + 2x2 + x3 − x4 =26

9x1 + 3x2 + 2x3 − x4 =40.

(a) as an augmented matrix

(b) as an equation involving a linear combination of vectors

(c) using a matrix-vector product

Then solve the system.

Example Solution.

(a) The augmented matrix for this system is
11 4 −5 −2 63
15 5 2 −2 68
6 2 1 −1 26
9 3 2 −1 40

 .
(b) If we make vectors from the columns of the augmented matrix, we can write this system in

vector form as

x1


11
15
6
9

+ x2


4
5
2
3

+ x3


−5

2
1
2

+ x4


−2
−2
−1
−1

 =


63
68
26
40

 .

(c) The coefficient matrix for this system is


11 4 −5 −2
15 5 2 −2
6 2 1 −1
9 3 2 −1

, and the matrix-vector form

of the system is 
11 4 −5 −2
15 5 2 −2
6 2 1 −1
9 3 2 −1



x1

x2

x3

x4

 =


63
68
26
40

 .
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Using technology, we find that the reduced row echelon form of the augmented matrix for this
system is 

1 0 0 0 3
0 1 0 0 7
0 0 1 0 −2
0 0 0 1 4

 .
So the solution to this system is x1 = 3, x2 = 7, x3 = −2, and x4 = 4.

Example 5.6. Consider the homogeneous system

x1 + 8x2 − x3 =0

x1 − 7x2 + 2x3 =0

3x1 + 4x2 + x3 =0.

(a) Find the general solution to this homogeneous system and express the system in parametric
vector form.

(b) Let A =

 1 8 −1
1 −7 2
3 4 1

, and let b =

 −6
9
2

. Show that

 −1
0
5

 is a solution to the

non-homogeneous system Ax = b.

(c) Use the results from part (a) and (b) to write the parametric vector form of the general
solution to the non-homogeneous system Ax = b. (Do this without directly solving the
system Ax = b.)

(d) Describe what the general solution to the homogeneous system Ax = 0 and the general
solution to the non-homogeneous system Ax = b look like geometrically.

Example Solution.

(a) The augmented matrix of the homogeneous system is 1 8 −1 0
1 −7 2 0
3 4 1 0

 ,
and the reduced row echelon form of this augmented matrix is

1 0 3
5 0

1 −1
5 0

0 0 0 0

 .
Since there is no corresponding equation of the form 0 = b for a nonzero constant b, this
system is consistent. The third column contains no pivot, so the variable x3 is free, x2 =
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1
5x3 and x1 = −3

5x3. In parametric vector form the general solution to the homogeneous
system is

 x1

x2

x3

 =


−3

5x3

1
5x3

x3

 = x3


−3

5

1
5

1

 .

(b) Since

A

 −1
0
5

 = (−1)

 1
1
3

+ (0)

 8
−7

4

+ (5)

 −1
2
1


=

 −1− 5
−1 + 10
−3 + 5

 =

 −6
9
2

 ,

we conclude that

 −1
0
5

 is a solution to the non-homogeneous system Ax = b.

(c) We know that every solution to the non-homogeneous system Ax = b has the form of
the general solution to the homogeneous system plus a particular solution to the non-
homogeneous system. Combining the results of (a) and (b) we see that the general solution
to the non-homogeneous system Ax = b is

 x1

x2

x3

 =

 −1
0
5

+ x3


−3

5

1
5

1

 ,

where x3 can be any real number.

(d) The solution to the homogeneous system Ax = 0 is the span of the vector


−3

5

1
5

1

.

Geometrically, this set of points is a line through the origin and the point (−3, 1, 5) in
R3. The solution to the non-homogeneous system Ax = b is the translation of the line

through the origin and (−3, 1, 5) by the vector

 −1
0
5

. In other words, the solution to

the non-homogeneous system Ax = b is the line in R3 through the points (−1, 0, 5) and
(−4, 1, 10).
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Summary

• If A = [c1 c2 · · · cn] is an m × n matrix with columns c1, c2, . . ., cn, and if x =


x1

x2
...
xn


is a vector in Rn, then the matrix-vector product Ax is defined to be the linear combination
of the columns of A with corresponding weights from x – that is

Ax = x1c1 + x2c2 + · · ·+ xncn.

• A linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + a2mx2 + · · ·+ amnxn = bm

can be written in matrix form as
Ax = b,

where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

 , x =


x1

x2
...
xn

 , and b =


b1
b2
...
bm

 .
• The matrix equation Ax = b has a solution if and only if b is a linear combination of the

columns of A.

• The system Ax = b is consistent for every vector b if every row of A contains a pivot.

• A homogeneous system is a system of the form Ax = 0 for some m×n matrix A. Since the
zero vector in Rn satisfies Ax = 0, a homogeneous system is always consistent.

• A homogeneous system can have one or infinitely many different solutions. The homoge-
neous system Ax = 0 has exactly one solution if and only if each column of A is a pivot
column.

• The solutions to the consistent nonhomogeneous system Ax = b have the form p + vh,
where p is a particular solution to the nonhomogeneous system Ax = b and vh is a solution
to the homogeneous system Ax = 0. In other words, the solution space to a consistent
nonhomogeneous system Ax = b is a translation of the solution space of the homogeneous
system Ax = 0 by a particular solution to the nonhomogeneous system.

Finally, we argued an important theorem.
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Theorem 5.7. Let A be an m× n matrix. The following statements are equivalent.

(1) The matrix equation Ax = b has a solution for every vector b in Rm.

(2) Every vector b in Rm can be written as a linear combination of the columns of A.

(3) The span of the columns of A is Rm.

(4) The matrix A has a pivot position in each row.

We will continue to add to this theorem, so it is a good idea for you to begin now to remember
the equivalent conditions of this theorem.

Exercises

(1) Write the system

x1 + 2x2 + 2x3 + x4 = −1

4x1 − 8x2 + 3x3 − 9x4 = 2

x1 + 6x2 − 4x3 + 12x4 = −1

in matrix-vector form. Explicitly identify the coefficient matrix and the vector of constants.

(2) Write the linear combination

x1

[
1
5

]
+ x2

[
−3
10

]
+ x3

[
2
2

]
as a matrix-vector product.

(3) Represent the following matrix-vector equation as a linear system and find its solution.

[
2 3 4
1 −2 3

] x1

x2

x3

 =

[
4
−6

]

(4) Represent the following matrix-vector equation as a linear system and find its solution. 1 −2 −1
2 2 −2
3 1 1

 x1

x2

x3

 =

 1
−4

8


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(5) Another way of defining the matrix-vector product uses the concept of the scalar product of

vectors.2 Given a 1 × n matrix u = [u1 u2 . . . un]3 and an n × 1 vector v =


v1

v2
...
vn

, we

define the scalar product u · v as

u · v = u1v1 + u2v2 + u3v3 + · · ·+ unvn.

We then define the matrix-vector product Ax as the vector whose entries are the scalar prod-

ucts of the rows of A with x. As an example, if A =

[
2 3 4
1 −2 3

]
and x =

 x1

x2

x3

,

then

Ax =

[
2x1 + 3x2 + 4x3

x1 + (−2)x2 + 3x3

]
.

Calculate the matrix-vector product Ax where A =

[
a b
c d

]
and x =

[
x1

x2

]
using both

methods of finding the matrix-vector product to show that the two definitions are equivalent
for size 2× 2 matrices.

(6) Find the value of a such that 1 2 2
1 −1 3
1 2 4

 1
−1
a

 =

 ∗
−5
∗


where ∗’s represent unknown values.

(7) Suppose we have  1 2 1 2
−1 2 3 1

2 3 1 a




1
2
−2

3

 =

 b1
b2
b3


where bi’s represent unknown values.

(a) In order to find the value of a, which of the bi’s do we need to know? Why?

(b) Suppose the bi(s) that we need to know is(are) equal to 9. What is the value of a?

(8) Suppose we are given

Au =

[
1
1

]
and Av =

[
1
3

]
for an unknown A and two unknown vectors u,v in R3. Using matrix-vector product prop-
erties, evaluate Aw where w = 2u− 3v.

2Note that some authors refer to the scalar product as the dot product.

3We can identify a 1 × n matrix u = [u1 u2 . . . un] with the n × 1 vector u =


u1

u2

...
un

, so we ofter refer to

[u1 u2 . . . un] as a vector.
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(9) Suppose we are given

A

 1
2
1

 =

[
1
1

]
and A

 1
0
2

 =

[
0
2

]
.

After expressing

 −1
6
−5

 as a linear combination of

 1
2
1

 and

 1
0
2

, use the matrix-vector

product properties to determine A

 −1
6
−5

.

(10) (a) The non-homogeneous system (with unknown constants a and b)

x+ y − z = 2

2x+ ay + bz = 4

has a solution which lies on the x-axis (i.e. y = z = 0). Find this solution.

(b) If the corresponding homogeneous system

x+ y − z = 0

2x+ ay + bz = 0

has its general solution expressed in parametric vector form as z ·

 0
1
1

, find the

general solution for the non-homogeneous system using your answer to part (a).

(c) Find the conditions on a and b that make the system from (a) have the general solution
you found in (b).

(11) Find the general solution to the non-homogeneous system

x− 2y + z = 3

−2x+ 4y − 2z = −6.

Using the parametric vector form of the solutions, determine what the solution set to this
non-homogeneous system looks like geometrically. Be as specific as possible. (Include in-
formation such as whether the solution set is a point, a line, or a plane, etc.; whether the
solution set passes through the origin or is shifted from the origin in a specific direction by a
specific number of units; and how the solution is related to the corresponding homogeneous
system.)

(12) Come up with an example of a 3× 3 matrix A for which the solution set of Ax = 0 is a line,
and a 3× 3 matrix A for which the solution set of Ax = 0 is a plane.

(13) Suppose we have three vectors v1,v2 and v3 satisfying v3 = 2v1 − v2. Let A be the matrix
with vectors v1,v2 and v3 as the columns in that order. Find a non-zero x such that Ax = 0
using this information.
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(14) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If the system Ax = 0 has infinitely many solutions, then so does the
system Ax = b for any right-hand-side b.

(b) True/False If x1 is a solution for Ax = b1 and x2 is a solution for Ax = b2, then
x1 + x2 is a solution for Ax = b1 + b2.

(c) True/False If an m×n matrix A has a pivot in every row, then the equation Ax = b
has a unique solution for every b.

(d) True/False If an m×n matrix A has a pivot in every row, then the equation Ax = b
has a solution for every b.

(e) True/False If A and B are row equivalent matrices and the columns of A span Rm,
then so do the columns of B.

(f) True/False All homogeneous systems have either a unique solution or infinitely
many solutions.

(g) True/False If a linear system is not homogeneous, then the solution set does not
include the origin.

(h) True/False If a solution set of a linear system does not include the origin, the system
is not homogeneous.

(i) True/False If the system Ax = b has a unique solution for some b, then the homo-
geneous system has only the trivial solution.

(j) True/False If A is a 3 × 4 matrix, then the homogeneous equation Ax = 0 has
non-trivial solutions.

(k) True/False If A is a 3 × 2 matrix, then the homogeneous equation Ax = 0 has
non-trivial solutions.

Project: Input-Output Models

There are two basic types of input-output models: closed and open. The closed model assumes that
all goods produced are consumed within the economy – no trading takes place with outside entities.
In the open model, goods produced within the economy can be traded outside the economy.

To work with a closed model, we use an example (from Input-Output Economics by Wassily
Leontief). Assume a simple three-sector economy consisting of agriculture (growing wheat), man-
ufacturing (producing cloth), and households (supplying labor). Each sector of the economy relies
on goods from the other sectors to operate (e.g., people must eat to work and need to be clothed).
To model the interactions between the sectors, we consider how many units of product is needed as
input from one sector to another to produce one unit of product in the second sector. For example,
assume the following:

• to produce one unit (say dollars worth) of agricultural goods requires 25% of a unit of agricul-
tural output, 28% of a unit of manufacturing output, and 27% of a unit of household output;
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• to produce one unit of manufactured goods requires 20% of a unit of agricultural output, 60%
of a unit of manufacturing output, and 60% of a unit of household output;

• to produce one unit of household goods requires 55% of a unit of agricultural output, 12% of
a unit of manufacturing output, and 13% of a unit of household output.

These assumptions are summarized in Table 5.1.

into\from Agriculture Manufacture Households
Agriculture 0.25 0.28 0.27
Manufacture 0.20 0.60 0.60
Households 0.55 0.12 0.13

Table 5.1: Summary of simple three sector economy.

This model is said to be closed because all good produced are used up within the economy. If
there are goods that are not used within the economy the model is said to be open. Open models
will be examined later.

The economist’s goal is to determine what level of production in each section meets the follow-
ing requirements:

• the production from each sector meets the needs of all of the sectors and
• there is no overproduction.

Project Activity 5.1. We can use techniques from linear algebra to determine the levels of produc-
tion that precisely meet the two goals of the economist.

(a) Suppose that the agricultural output is x1 units, the manufacturing output is x2 units, and

the household output is x3 units. We represent this data as a production vector

 x1

x2

x3

. To

produce a unit of agriculture requires 0.25 units of agriculture, 0.28 units of manufacturing,
and 0.27 units of household. If x1 units of agriculture, x2 units of manufacturing, and x3

units of household products are are produced, then agriculture can produce

0.25x1 + 0.28x2 + 0.27x3

units. In order to meet the needs of agriculture and for there to be no overproduction, we
must then have

0.25x1 + 0.28x2 + 0.27x3 = x1.

Write similar equations for the manufacturing and household sectors of the economy.

(b) Find the augmented matrix for the system of linear equations that represent production of
the three sectors from part (a), and then solve the system to find the production levels that
meet the economist’s two goals.
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(c) Suppose the production level of the household sector is 200 million units (dollars). Find the
production levels of the agricultural and manufacturing sectors that meet the economist’s
two goals.

In general, a matrix derived from a table like Table 5.1 is called a consumption matrix, which

we will denote as C. (In the example discussed here C =

 0.25 0.28 0.27
0.20 0.60 0.60
0.55 0.12 0.13

.) A consumption

matrix C = [cij ], where cij represents the proportion of the output of sector j that is consumed by
sector i, satisfies two important properties.

• Since no sector can consume a negative amount or an amount that exceeds the output of
another sector, we must have 0 ≤ cij ≤ 1 for all i and j.

• If there are n sectors in the economy, the fact that all output is consumed within the economy
implies that c1j + c2j + · · ·+ cnj = 1. In other words, the column sums of C are all 1.

In our example, if we let x =

 x1

x2

x3

, then we can write the equations that guarantee that the

production levels satisfy the two economists’ goal in matrix form as

x = Cx. (5.5)

Now we can rephrase the question to be answered as which production vectors x satisfy equation
(5.5). When Cx = x, then the system is in equilibrium, that is output exactly meets needs. Any
solution x that satisfies (5.5) is called a steady state solution.

Project Activity 5.2. Is there a steady state solution for the closed system of Agriculture, Manu-
facturing, and Households? If so, find the general steady state solution. If no, explain why.

So far, we considered the case where the economic system was closed. This means that the
industries that were part of the system sold products only to each other. However, if we want to
represent the demand from other countries, from households, capital building, etc., we need an open
model. In an article in the Scientific American Leontief organized the 1958 American economy
into 81 sectors. The production of each of these sectors relied on production from the all of the
sectors. Here we present a small sample from Leontief’s 81 sectors, using Petroleum, Textiles,
Transportation, and Chemicals as our sectors of the economy. Leontief’s model assumed that the
production of 1 unit of output of

• petroleum requires 0.1 unit of petroleum, 0.2 units of transportation, and 0.4 units of chemi-
cals;

• textiles requires 0.4 units of petroleum, 0.1 unit of textiles, 0.15 units of transportation, and
0.3 units of chemicals;

• transportation requires 0.6 units of petroleum, 0.1 unit of transportation, and 0.25 units of
chemicals;
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• chemicals requires 0.2 units of petroleum, 0.1 unit of textiles, 0.3 units of transportation, and
0.2 units of chemicals.

A summary of this information is in Table 5.2. Assume the units are measured in dollars.

into\from Petroleum Textiles Transportation Chemicals
Petroleum 0.10 0.00 0.20 0.40
Textiles 0.40 0.10 0.15 0.30
Transportation 0.60 0.00 0.10 0.25
Chemicals 0.20 0.10 0.30 0.20

Table 5.2: Summary of four sector economy.

In the open model, there is another part of the economy, called the open sector, that does
not produce goods or services but only consumes them. If this sector (think end consumers, for
example) demands/consumes d1 units of Petroleum, d2 units of Textiles, d3 units of Transportation,

and d4 units of Chemicals, we put this into a final demand vector d =


d1

d2

d3

d4

.

An economist would want to find the production level where the demand from the good/service
producing sectors of the economy plus the final demand from the open sector exactly matches
the output in each of the sectors. Let x1 represent the number of units of petroleum output, x2

the number of units of textiles output, x3 the number of units of transportation output, and x4

the number of units of chemical output during any time period. Then the production vector is

x =


x1

x2

x3

x4

. So an economist wants to find the production vectors x such that

0.10x1 + 0.20x3 + 0.40x4 + d1 = x1

0.40x1 + 0.10x2 + 0.15x3 + 0.30x4 + d2 = x2

0.60x1 + 0.10x3 + 0.25x4 + d3 = x3

0.20x1 + 0.10x2 + 0.30x3 + 0.20x4 + d4 = x4,

where d =


d1

d2

d3

d4

 is the demand vector from the open market. The matrix

E =


0.10 0.00 0.20 0.40
0.40 0.10 0.15 0.30
0.60 0.00 0.10 0.25
0.20 0.10 0.30 0.20


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derived from Table 5.2, is called the exchange matrix.

Project Activity 5.3.

(a) Suppose the final demand vector in our four sector economy is


500
200
400
100

. Find the produc-

tion levels that satisfy our system.

(b) Does this economy defined by the exchange matrix E have production levels that exactly
meet internal and external demands regardless of the external demands? That is, does the
system of equations

0.10x1 + 0.20x3 + 0.40x4 + d1 = x1

0.40x1 + 0.10x2 + 0.15x3 + 0.30x4 + d2 = x2

0.60x1 + 0.10x3 + 0.25x4 + d3 = x3

0.20x1 + 0.10x2 + 0.30x3 + 0.20x4 + d4 = x4

have a solution regardless of the values of d1, d2, d3, and d4? Explain.





Section 6

Linear Dependence and Independence

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What are two ways to describe what it means for a set of vectors in Rn to
be linearly independent?

• What are two ways to describe what it means for a set of vectors in Rn to
be linearly dependent?

• If S is a set of vectors, what do we mean by a basis for Span S?

• Given a nonzero set S of vectors, how can we find a linearly independent
subset of S that has the same span as S?

• How do we recognize if the columns of a matrix A are linearly indepen-
dent?

• How can we use a matrix to determine if a set {v1,v2, . . . ,vk} of vectors
is linearly independent?

• How can we use a matrix to find a minimal spanning set for a set
{v1,v2,v3, . . . ,vk} of vectors in Rn?

Application: Bézier Curves

Bézier curves are simple curves that were first developed in 1959 by French mathematician Paul
de Casteljau, who was working at the French automaker Citroën. The curves were made public in
1962 by Pierre Bézier who used them in his work designing automobiles at the French car maker
Renault. In addition to automobile design, Bézier curves have many other uses. Two of the most
common applications of Bézier curves are font design and drawing tools. As an example, the letter

103
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“S” in Palatino font is shown using Bézier curves in Figure 6.1. If you’ve used Adobe Illustrator,
Photoshop, Macromedia Freehand, Fontographer, or any other of a number of drawing programs,
then you’ve used Bézier curves. At the end of this section we will see how Bézier curves can be
defined using linearly independent vectors and linear combinations of vectors.

Figure 6.1: A letter S.

Introduction

In Section 4 we saw how to represent water-benzene-acetic acid chemical solutions with vectors,
where the components represent the water, benzene and acid percentages. We then considered
a problem of determining if a given chemical solution could be made by mixing other chemical
solutions. Suppose we now have three different water-benzene-acetic acid chemical solutions, one
with 40% water, 50% benzene and 10% acetic acid, the second with 52% water, 42% benzene and
6% acid, and a third with 46% water, 46% benzene and 8% acid. We represent the first chemical

solution with the vector v1 =

 40
50
10

, the second with the vector v2 =

 52
42
6

, and the third with

the vector v3 =

 46
46
8

. By combining these three chemical solutions we can make a chemical

solution with 43% water, 48% benzene and 9% acid as follows

7

12
v1 +

1

12
v2 +

1

3
v3 =

 43
48
9

 .
However, if we had noticed that the third chemical solution can actually be made from the first two,
that is,

1

2
v1 +

1

2
v2 = v3,
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we might have realized that we don’t need the third chemical solution to make the 43% water, 48%
benzene and 9% acid chemical solution. In fact,

3

4
v1 +

1

4
v2 =

 43
48
9

 .
(See Exercise 5 of Section 4.) Using the third chemical solution (represented by v3) uses more
information than we actually need to make the desired 43% water, 48% benzene and 9% acid
chemical solution because the vector v3 is redundant – all of the material we need to make v3 is
contained in v1 and v2. This is the basic idea behind linear independence – representing information
in the most efficient way.

Information is often contained in and conveyed through vectors – especially linear combinations
of vectors. In this section we will investigate the concepts of linear dependence and independence
of a set of vectors. Our goal is to be able to efficiently determine when a given set of vectors forms
a minimal spanning set. A minimal spanning set is a spanning set that contains the smallest number
of vectors to obtain all of the vectors in the span. An important aspect of a minimal spanning set
is that every vector in the span can be written in one and only one way as a linear combination of
the vectors in the minimal spanning set. This will allow us to define the important notion of the
dimension of a vector space.

Review of useful information: Recall that a linear combination of vectors v1, v2, . . ., vk in Rn is
a sum of scalar multiples of v1, v2, . . ., vk. That is, a linear combination of the vectors v1, v2, . . .,
vk is a vector of the form

c1v1 + c2v2 + · · ·+ ckvk,

where c1, c2, . . ., ck are scalars.

Recall also that the collection of all linear combinations of a set {v1, v2, . . ., vk} of vectors in
Rn is called the span of the set of vectors. That is, the span Span{v1,v2, . . . ,vk} of the set v1, v2,
. . ., vk of vectors in Rn is the set

{c1v1 + c2v2 + · · ·+ ckvk : where c1, c2, . . . , ck are scalars}.

For example, a linear combination of vectors v1 =

 1
1
2

 and v2 =

 0
−2

1

 is 2v1 − 3v2 = 2
8
1

. All linear combinations of these two vectors can be expressed as the collection of vectors

of the form

 c1

c1 − 2c2

2c1 + c2

 where c1, c2 are scalars. Suppose we want to determine whether w = 1
2
3

 is in the span, in other words if w is a linear combination of v1,v2. This means we are



106 Section 6. Linear Dependence and Independence

looking for c1, c2 such that  c1

c1 − 2c2

2c1 + c2

 =

 1
2
3

 .
we solve for the system represented with the augmented matrix 1 0 1

1 −2 2
2 1 3

 .
By reducing this matrix, we find that there are no solutions of the system, which implies that w is
not a linear combination of v1,v2. Note that we can use any names we please for the scalars, say
x1, x2, if we prefer.

Preview Activity 6.1. Let v1 =

 2
1
−3

, v2 =

 1
1
0

, and v3 =

 1
−1
−6

, and let b =

 0
1
3

.

If b is in Span{v1,v2,v3}, we are interested in the most efficient way to represent b as a linear
combination of v1, v2, and v3.

(1) The vector b is in Span{v1,v2,v3} if there exist x1, x2, and x3 so that

x1v1 + x2v2 + x3v3 = b.

(Recall that we can use any letters we want for the scalars. They are simply unknown scalars
we want to solve for.)

(a) Explain why b is in Span{v1,v2,v3}. (Hint: What is the matrix we need to reduce?)

(b) Write b as a linear combination of v1, v2, and v3. In how many ways can b be
written as a linear combination of the vectors v1, v2, and v3? Explain.

(2) In problem 1 we saw that the vector b could be written in infinitely many different ways as
linear combinations of v1, v2, and v3. We now ask the question if we really need all of the
vectors v1, v2, and v3 to make b as a linear combination in a unique way.

(a) Can the vector b be written as a linear combination of the vectors v1 and v2? If not,
why not? If so, in how many ways can b be written as a linear combination of v1

and v2? Explain.

(b) If possible, write b as a linear combination of v1 and v2.

(3) In problem 1 we saw that b could be written in infinitely many different ways as a linear
combination of the vectors v1, v2, and v3. However, the vector b could only be written
in one way as a linear combination of v1 and v2. So b is in Span{v1,v2,v3} and b is
also in Span{v1,v2}. This raises a question – is any vector in Span{v1,v2,v3} also in
Span{v1,v2}. If so, then the vector v3 is redundant in terms of forming the span of v1, v2,
and v3. For the sake of efficiency, we want to recognize and eliminate this redundancy.

(a) Can v3 be written as a linear combination of the vectors v1 and v2? If not, why not?
If so, write v3 as a linear combination of v1 and v2.

(b) Use the result of part (a) to decide if any vector in Span{v1,v2,v3} is also in
Span{v1,v2}.
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Linear Independence

In this section we will investigate the concepts of linear dependence and independence of a set of
vectors. Our goal is to be able to efficiently determine when a given set of vectors forms a minimal
spanning set. This will involve the concepts of span and linear independence. Minimal spanning
sets are important in that they provide the most efficient way to represent vectors in a space, and
will later allow us to define the dimension of a vector space.

In Preview Activity 6.1 we considered the case where we had a set {v1,v2,v3} of three vectors,
and the vector v3 was in the span of {v1,v2}. So the the vector v3 did not add anything to the span
of {v1,v2}. In other words, the set {v1,v2,v3} was larger than it needed to be in order to generate
the vectors in its span – that is, Span{v1,v2,v3} = Span{v1,v2}. However, neither of the vectors
in the set {v1,v2} could be removed without changing its span. In this case, the set {v1,v2} is
what we will call a minimal spanning set or a basis for Span S. There are two important properties
that make {v1,v2} a basis for Span S. The first is that every vector in Span S can be written as
linear combinations of v1 and v2 (we also use the terminology that the vectors v1 and v2 span
Span S), and the second is that every vector in Span S can be written in exactly one way as a linear
combination of v1 and v2. This second property is the property of linear independence, and it is
the property that makes the spanning set minimal.

To make a spanning set minimal, we want to be able to write every vector in the span in a unique
way in terms of the spanning vectors. Notice that the zero vector can always be written as a linear
combination of any set of vectors using 0 for all of the weights. So to have a minimal or linearly
independent spanning set, that is, to have a unique representation for each vector in the span, it will
need to be the case that the only way we can write the zero vector as a linear combination of a set
of vectors is if all of the weights are 0. This leads us to the definition of a linearly independent set
of vectors.

Definition 6.1. A set {v1,v2, . . . ,vk} of vectors in Rn is linearly independent if the vector equa-
tion

x1v1 + x2v2 + · · ·+ xkvk = 0

for scalars x1, x2, . . . , xk has only the trivial solution

x1 = x2 = x3 = · · · = xk = 0.

If a set of vectors is not linearly independent, then the set is linearly dependent.

Alternatively, we say that the vectors v1,v2, . . . ,vk are linearly independent (or dependent) if
the set {v1,v2, . . . ,vk} is linearly independent (or dependent).

Note that the definition tells us that a set {v1,v2, . . . ,vk} of vectors in Rn is linearly dependent
if there are scalars x1, x2, . . ., xn, not all of which are 0 so that

x1v1 + x2v2 + · · ·+ xkvk = 0.

Activity 6.1. Which of the following sets in R2 or R3 is linearly independent and which is linearly
dependent? Why? For the linearly dependent sets, write one of the vectors as a linear combination
of the others, if possible.
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(a) S1 =


 2

0
1

 ,
 −2

8
1

 ,
 −4

8
0

.

(b) S2 =


 1

2
1

 ,
 0

2
3

. (Hint: What relationship must exist between two vectors if they

are linearly dependent?)

(c) The vectors u, v, and w as shown in Figure 6.2.

u

v

w

x

y

O

Figure 6.2: Vectors u, v, and w.

Activity 6.1 (a) and (c) illustrate how we can write one of the vectors in a linearly dependent set
as a linear combination of the others. This would allow us to write at least one of the vectors in the
span of the set in more than one way as a linear combination of vectors in this set. We prove this
result in general in the following theorem.

Theorem 6.2. A set {v1,v2, . . . ,vk} of vectors in Rn is linearly dependent if and only if at least
one of the vectors in the set can be written as a linear combination of the remaining vectors in the
set.

The next activity is intended to help set the stage for the proof of Theorem 6.2.

Activity 6.2. The statement of Theorem 6.2 is a bi-conditional statement (an if and only if state-
ment). To prove this statement about the set S we need to show two things about S. One: we must
demonstrate that if S is a linearly dependent set, then at least one vector in S is a linear combination
of the other vectors (this is the “only if” part of the biconditional statement) and Two: if at least
one vector in S is a linear combination of the others, then S is linearly dependent (this is the “if”
part of the biconditional statement). We illustrate the main idea of the proof using a three vector set
S = {v1,v2,v3}.

(a) First let us assume that S is a linearly dependent set and show that at least one vector in S
is a linear combination of the other vectors. Since S is linearly dependent we can write the
zero vector as a linear combination of v1, v2, and v3 with at least one nonzero weight. For
example, suppose

2v1 + 3v2 + 4v3 = 0. (6.1)
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Solve Equation (6.1) for the vector v2 to show that v2 can be written as a linear combination
of v1 and v3. Conclude that v2 is a linear combination of the other vectors in the set S.

(b) Now we assume that at least one of the vectors in S is a linear combination of the others.
For example, suppose that

v3 = v1 + 5v2. (6.2)

Use vector algebra to rewrite Equation 6.2 so that 0 is expressed as a linear combination of
v1, v2, and v3 such that the weight on v3 is not zero. Conclude that the set S is linearly
dependent.

Now we provide a formal proof of Theorem 6.2, using the ideas from Activity 6.2.

Proof of Theorem 6.2. Let S = {v1,v2, . . . ,vk} be a set of vectors in Rn. We will begin by
verifying the first statement.

We assume that S is a linearly dependent set and show that at least one vector in S is a linear
combination of the others. Since S is linearly dependent, there are scalars x1, x2, . . ., xn, not all of
which are 0, so that

x1v1 + x2v2 + · · ·+ xkvk = 0. (6.3)

We don’t know which scalar(s) are not zero, but there is at least one. So let us assume that xi is not
zero for some i between 1 and k. We can then subtract xivi from both sides of Equation (6.3) and
divide by xi to obtain

vi =
x1

xi
v1 +

x2

xi
v2 + · · ·+ xi−1

xi
vi−1 +

xi+1

xi
vi+1 +

xi+2

xi
vi+2 + · · ·+ xk

xi
vk.

Thus, the vector vi is a linear combination of v1, v2, . . ., vi−1, vi+1, . . ., vk, and at least one of
the vectors in S is a linear combination of the other vectors in S.

To verify the second statement, we assume that at least one of the vectors in S can be written
as a linear combination of the others and show that S is then a linearly dependent set. We don’t
know which vector(s) in S can be written as a linear combination of the others, but there is at least
one. Let us suppose that vi is a linear combination of the vectors v1, v2, . . ., vi−1, vi+1, . . ., vk
for some i between 1 and k. Then there exist scalars x1, x2, . . ., x−1, xi+1, . . ., xn so that

vi = x1v1 + x2v2 + · · ·+ xi−1vi−1 + xi+1vi+1 + xi+2vi+2 + · · ·+ xkvk.

It follows that

0 = x1v1 + x2v2 + · · ·+ xi−1vi−1 + (−1)vi + xi+1vi+1 + xi+2vi+2 + · · ·+ xkvk.

So there are scalars there are scalars x1, x2, . . ., xn (with xi = −1), not all of which are 0, so that

x1v1 + x2v2 + · · ·+ xkvk = 0.

This makes S a linearly dependent set. �

With a linearly dependent set, at least one of the vectors in the set is a linear combination of the
others. With a linearly independent set, this cannot happen – no vector in the set can be written as
a linear combination of the others. This result is given in the next theorem. You may be able to see
how Theorems 6.2 and 6.3 are logically equivalent.
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Theorem 6.3. A set {v1,v2, . . . ,vk} of vectors in Rn is linearly independent if and only if no
vector in the set can be written as a linear combination of the remaining vectors in the set.

Activity 6.3. As was hinted at in Preview Activity 6.1, an important consequence of a linearly
independent set is that every vector in the span of the set can be written in one and only one way as
a linear combination of vectors in the set. It is this uniqueness that makes linearly independent sets
so useful. We explore this idea in this activity for a linearly independent set of three vectors. Let
S = {v1,v2,v3} be a linearly independent set of vectors in Rn for some n, and let b be a vector
in Span S. To show that b can be written in exactly one way as a linear combination of vectors in
S, we assume that

b = x1v1 + x2v2 + x3v3 and b = y1v1 + y2v2 + y3v3

for some scalars x1, x2, x3, y1, y2, and y3. We need to demonstrate that x1 = y1, x2 = y2, and
x3 = y3.

(a) Use the two different ways of writing b as a linear combination of v1,v2 and v3 to come
up with a linear combination expressing 0 as a linear combination of these vectors.

(b) Use the linear independence of the vectors v1,v2 and v3 to explain why x1 = y1, x2 = y2,
and x3 = y3.

Activity 6.3 contains the general ideas to show that any vector in the span of a linearly indepen-
dent set can be written in one and only one way as a linear combination of the vectors in the set. The
weights of such a linear combination provide us a coordinate system for the vectors in terms of the
basis. Two familiar examples of coordinate systems are the Cartesian coordinates in the xy-plane,
and xyz-space. We will revisit the coordinate system idea in a later chapter.

In the next theorem we state and prove the general case of any number of linearly independent
vectors producing unique representations as linear combinations.

Theorem 6.4. Let S = {v1,v2, . . . ,vk} be a linearly independent set of vectors in Rn. Any vector
in Span S can be written in one and only one way as a linear combination of the vectors v1, v2,
. . ., vk.

Proof. Let S = {v1,v2, . . . ,vk} be a linearly independent set of vectors in Rn, and let b be a
vector in Span S. By definition, it follows that b can be written as a linear combination of the
vectors in S. It remains for us to show that this representation is unique. So assume that

b = x1v1 + x2v2 + · · ·+ xkvk and b = y1v1 + y2v2 + · · ·+ ykvk (6.4)

for some scalars x1, x2, . . ., xk, and y1, y2, . . ., yk. Then

x1v1 + x2v2 + · · ·+ xkvk = y1v1 + y2v2 + · · ·+ ykvk.

Subtracting all terms from the right side and using a little vector algebra gives us

(x1 − y1)v1 + (x2 − y2)v2 + · · ·+ (xk − yk)vk = 0.

The fact that S is a linearly independent set implies that

x1 − y1 = 0, x2 − y2 = 0, . . . , xk − yk = 0,

showing that xi = yi for every i between 1 and k. We conclude that the representation of b as a
linear combination of the linearly independent vectors in S is unique.

�
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Determining Linear Independence

The definition and our previous work give us a straightforward method for determining when a set
of vectors in Rn is linearly independent or dependent.

Activity 6.4. In this activity we learn how to use a matrix to determine in general if a set of vectors
in Rn is linearly independent or dependent. Suppose we have k vectors v1, v2, . . ., vk in Rn. To
see if these vectors are linearly independent, we need to find the solutions to the vector equation

x1v1 + x2v2 + · · ·+ xkvk = 0. (6.5)

If we let A = [v1 v2 v3 · · · vk] and x =


x1

x2
...
xk

, then we can write the vector equation (6.5) in

matrix form Ax = 0. Let B be the reduced row echelon form of A.

(a) What can we say about the pivots of B in order for Ax = 0 to have exactly one solution?
Under these conditions, are the vectors v1, v2, . . ., vk linearly independent or dependent?

(b) What can we say about the rows or columns of B in order for Ax = 0 to have infinitely
many solutions? Under these conditions, are the vectors v1, v2, . . ., vk linearly indepen-
dent or dependent?

(c) Use the result of parts (a) and (b) to determine if the vectors v1 =


1
−1

2
0

, v2 =


1
0
2
3

,

and v3 =


0
0
2
1

 in R4 are linearly independent or dependent. If dependent, write one

of the vectors as a linear combination of the others. You may use the fact that the matrix
1 1 0
−1 0 0

2 2 2
0 3 1

 is row equivalent to


1 0 0
0 1 0
0 0 1
0 0 0

.

Minimal Spanning Sets

It is important to note the differences and connections between linear independence, span, and
minimal spanning set.

• The set S =


 1

0
0

 ,
 0

1
0

 is not a minimal spanning set for R3 even though S is a
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linearly independent set. Note that S does not span R3 since the vector

 0
0
1

 is not in

Span S.

• The set T =


 1

0
0

 ,
 0

1
0

 ,
 0

0
1

 ,
 1

1
1

 is not a minimal spanning set for R3 even

though Span T = R3. Note that 1
1
1

 =

 1
0
0

+

 0
1
0

+

 0
0
1

 ,
so T is not a linearly independent set.

• The set U =


 1

0
0

 ,
 0

1
0

 ,
 0

0
1

 is a minimal spanning set for R3 since it satisfies

both characteristics of a minimal spanning set: Span U = R3 AND U is linearly independent.

The three concepts – linear independence, span, and minimal spanning set – are different. The
important point to note is that minimal spanning set must be both linearly independent and span the
space.

To find a minimal spanning set we will often need to find a smallest subset of a given set of
vectors that has the same span as the original set of vectors. In this section we determine a method
for doing so.

Activity 6.5. Let v1 =

 −1
0
2

, v2 =

 2
0
−4

, v3 =

 0
1
3

, and v4 =

 −3
4

18

 in R3. Assume

that the reduced row echelon form of the matrixA =

 −1 2 0 −3
0 0 1 4
2 −4 3 18

 is

 1 −2 0 3
0 0 1 4
0 0 0 0

.

(a) Write the general solution to the homogeneous systemAx = 0, where x =


x1

x2

x3

x4

. Write

all linear combinations of v1, v2, v3, and v4 that are equal to 0, using weights that only
involve x2 and x4.

(b) Explain how we can conveniently choose the weights in the general solution to Ax = 0 to
show that the vector v4 is a linear combination of v1, v2, and v3. What does this tell us
about Span{v1,v2,v3} and Span{v1,v2,v3,v4}?

(c) Explain how we can conveniently choose the weights in the general solution to Ax = 0 to
show why the vector v2 is a linear combination of v1 and v3. What does this tell us about
Span{v1,v3} and Span{v1,v2,v3}?
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(d) Is {v1,v3} a minimal spanning set for Span{v1,v2,v3,v4}? Explain your response.

Activity 6.5 illustrates how we can use a matrix to determine a minimal spanning set for a given
set of vectors {v1,v2, . . . ,vk} in Rn.

• Form the matrix A = [v1 v2 · · · vk].

• Find the reduced row echelon form [B | 0] of [A | 0]. If B contains non-pivot columns,
say for example that the ith column is a non-pivot column, then we can choose the weight
xi corresponding to the ith column to be 1 and all weights corresponding to the other non-
pivot columns to be 0 to make a linear combination of the columns of A that is equal to 0.
This allows us to write vi as a linear combination of the vectors corresponding to the pivot
columns of A as we did in the proof of Theorem 6.3. So every vector corresponding to a
non-pivot column is in the span of the set of vectors corresponding to the pivot columns. The
vectors corresponding to the pivot columns are linearly independent, since the matrix with
those columns has every column as a pivot column. Thus, the set of vectors corresponding to
the pivot columns of A forms a minimal spanning set for {v1,v2, . . . ,vk}.

IMPORTANT NOTE! The set of pivot columns of the reduced row echelon form of A will nor-
mally not have the same span as the set of columns of A, so it is critical that we use columns of A,
NOT B in our minimal spanning set.

Activity 6.6. Find a minimal spanning set for the span of the set


1
1
0
0

 ,


2
3
0
0

 ,


0
1
2
0

 ,


4
1
0
0


 .

Activity 6.5 also illustrates a general process by which we can find a minimal spanning set –
that is the smallest subset of vectors that has the same span. This process will be useful later when
we consider vectors in arbitrary vector spaces. The idea is that if we can write one of the vectors
in a set S as a linear combination of the remaining vectors, then we can remove that vector from
the set and maintain the same span. In other words, begin with the span of a set S and follow these
steps:

Step 1. If S is a linearly independent set, we already have a minimal spanning set.

Step 2. If S is not a linearly independent set, then one of the vectors in S is a linear combination
of the others. Remove that vector from S to obtain a new set T . It will be the case that
Span T = Span S.

Step 3. If T is a linearly independent set, then T is a minimal spanning set. If not, repeat steps 2
and 3 for the set T until you arrive at a linearly independent set.

This process is guaranteed to stop as long as the set contains at least one nonzero vector. A verifi-
cation of the statement in Step 2 that Span T = Span S is given in the next theorem.
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Theorem 6.5. Let {v1,v2, . . . ,vk} be a set of vectors in Rn so that for some i between 1 and k,
vi is in Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk}. Then

Span{v1,v2, . . . ,vk} = Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk}.

Proof. Let {v1,v2, . . . ,vk} be a set of vectors in Rn so that vi is in the span of v1, v2, . . ., vi−1,
vi+1, . . ., and vk for some i between 1 and k. To show that

Span{v1,v2, . . . ,vk} = Span{v1, . . . ,vi−1,vi+1, . . . ,vk},

we need to show that

(1) every vector in Span{v1,v2, . . . ,vk} is in Span{v1, . . . ,vi−1,vi+1, . . . ,vk}, and

(2) every vector in Span{v1, . . . ,vi−1,vi+1, . . . ,vk} is in
Span{v1, . . . ,vk}.

Let us consider the second containment. Let x be a vector in the span of v1, v2, . . ., vi−1, vi+1,
. . ., and vk. Then

x = x1v1 + x2v2 + · · ·+ xi−1vi−1 + xi+1vi+1 + · · ·+ xkvk

for some scalars x1, x2, . . ., xi−1, xi+1, . . ., xk. Note that

x = x1v1 + x2v2 + · · ·+ xi−1vi−1 + (0)vi + xi+1vi+1 + · · ·+ xkvk

as well, so x is in Span{v1,v2, . . . ,vk}. Thus,

Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk} ⊆ Span{v1,v2, . . . ,vk}.

(This same argument shows a more general statement that if S is a subset of T , then Span S ⊆
Span T .)

Now we demonstrate the first containment. Here we need the assumption that vi is in Span{v1,
v2, . . ., vi−1, vi+1, . . ., vk} for some i between 1 and k. That assumption gives us

vi = c1v1 + c2v2 + · · ·+ ci−1vi−1 + ci+1vi+1 + · · ·+ ckvk (6.6)

for some scalars c1, c2, . . ., ci−1, ci+1, . . ., ck. Now let x be a vector in the span of v1, v2, . . ., vk.
Then

x = x1v1 + x2v2 + · · ·+ xkvk

for some scalars x1, x2, . . ., xk. Substituting from (6.6) shows that

x = x1v1 + x2v2 + · · ·+ xkvk

= x1v1 + x2v2 + · · ·+ xi−1vi−1 + xivi + xi+1vi+1 + · · ·+ xkvk

= x1v1 + x2v2 + · · ·+ xi−1vi−1

+ xi[c1v1 + c2v2 + · · ·+ ci−1vi−1 + ci+1vi+1 + · · ·+ ckvk]

+ xi+1vi+1 + · · ·+ xkvk

= (x1 + xic1)v1 + (x2 + xic2)v2 + · · ·+ (xi−1 + xici−1)vi−1

+ (xi+1 + xici+1)vi+1 · · ·+ (xk + xick)vk.
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So x is in Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk} and

Span{v1,v2, . . . ,vk} ⊆ Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk}.

Since the two sets are subsets of each other, they must be equal sets. We conclude that

Span{v1,v2, . . . ,vk} = Span{v1,v2, . . . ,vi−1,vi+1, . . . ,vk}.

�

The result of Theorem 6.5 is that if we have a finite set S of vectors in Rn, we can eliminate
those vectors that are linear combinations of others until we obtain a smallest set of vectors that still
has the same span. As mentioned earlier, we call such a minimal spanning set a basis.

Definition 6.6. Let S be a set of vectors in Rn. A subset B of S is a basis for Span S if B is
linearly independent and Span B = Span S.

IMPORTANT NOTE: A basis is defined by two characteristics. A basis must span the space in
question and a basis must be a linearly independent set. It is the linear independence that makes a
basis a minimal spanning set.

We have worked with a familiar basis in R2 throughout our mathematical careers. A vector[
a
b

]
in R2 can be written as

[
a
b

]
= a

[
1
0

]
+ b

[
0
1

]
.

So the set {e1, e2}, where e1 =

[
1
0

]
and e2 =

[
0
1

]
spans R2. Since the columns of [e1 e2]

are linearly independent, so is the set {e1, e2}. Therefore, the set {e1, e2} is a basis for R2. The
vector e1 is in the direction of the positive x-axis and the vector e2 is in the direction of the positive

y-axis, so decomposing a vector
[
a
b

]
as a linear combination of e1 and e2 is akin to identifying

the vector with the point (a, b) as we discussed earlier. The set {e1, e2} is called the standard basis
for R2.

This idea is not restricted to R2. Consider the vectors

e1 =



1
0
0
...
0
0


, e2 =



0
1
0
...
0
0


, · · · , en =



0
0
0
...
0
1


in Rn. That is, the vector ei is the vector with a 1 in the ith position and 0s everywhere else. Since
the matrix [e1 e2 · · · en] is the identity matrix, the set {e1, e2, . . . , en} is a basis for Rn. The set
{e1, e2, . . . , en} is called the standard basis for Rn.



116 Section 6. Linear Dependence and Independence

As we will see later, bases1 are of fundamental importance in linear algebra in that bases will
allow us to define the dimension of a vector space and will provide us with coordinate systems.

We conclude this section with an important theorem that is similar Theorem 5.3.

Theorem 6.7. Let A be an m× n matrix. The following statements are equivalent.

(1) The matrix equation Ax = b has a unique solution for every vector b in the span of the
columns of A.

(2) The matrix equation Ax = 0 has the unique solution x = 0.

(3) The columns of A are linearly independent.

(4) The matrix A has a pivot position in each column.

Examples

What follows are worked examples that use the concepts from this section.

Example 6.8. Let v1 =


1
2
0
1

, v2 =


0
6
−1

5

, v3 =


3
−6

2
−7

, and v4 =


5
−2

2
−5

.

(a) Is the set S = {v1,v2,v3,v4} linearly independent or dependent. If independent, explain
why. If dependent, write one of the vectors in S as a linear combination of the other vectors
in S.

(b) Find a subset B of S that is a basis for Span S. Explain how you know you have a basis.

Example Solution.

(a) We need to know the solutions to the vector equation

x1v1 + x2v2 + x3v3 + x4v4 = 0.

If the equation has as its only solution x1 = x2 = x3 = x4 = 0 (the trivial solution), then
the set S is linearly independent. Otherwise the set S is linearly dependent.

To find the solutions to this system, we row reduce the augmented matrix
1 0 3 5 0
2 6 −6 −2 0
0 −1 2 2 0
1 5 −7 −5 0

 .
1The plural of basis is bases.
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(Note that we really don’t need the augmented column of zeros – row operations won’t
change that column at all. We just need to know that the column of zeros is there.) Tech-
nology shows that the reduced row echelon form of this augmented matrix is

1 0 3 5 0
0 1 −2 −2 0
0 0 0 0 0
0 0 0 0 0

 .
The reduced row echelon form tells us that the vector equation is consistent, and the fact
that there is no pivot in the fourth column shows that the system has a free variable and
more than just the trivial solution. We conclude that S is linearly dependent.

Moreover, the general solution to our vector equation is

x1 = −3x3 − 5x4

x2 = 2x3 + 2x4

x3 is free

x4 is free.

Letting x4 = 0 and x3 = 1 shows that one non-trivial solution to our vector equation is

x1 = −3, x2 = 2, x3 = 1, and x4 = 0.

Thus,
−3v1 + 2v2 + v3 = 0,

or
v3 = 3v1 − 2v2

and we have written one vector in S as a linear combination of the other vectors in S.

(b) We have seen that the pivot columns in a matrix A form a minimal spanning set (or basis)
for the span of the columns ofA. From part (a) we see that the pivot columns in the reduced
row echelon form of A = [v1 v2 v3 v4] are the first and second columns. So a basis for
the span of the columns of A is {v1,v2}. Since the elements of S are the columns of A,
we conclude that the set B = {v1,v2} is a subset of S that is a basis for Span S.

Example 6.9. Let v1 =

 1
1
0

, v2 =

 3
−7

2

, and v3 =

 −5
6

10

.

(a) Is the set S = {v1,v2,v3} a basis for R3? Explain.

(b) Let v4 =

 −5
6
h

, where h is a scalar. Are there any values of h for which the set

S′ = {v1,v2,v4} is not a basis for R3? If so, find all such values of h and explain why S′

is not a basis for R3 for those values of h.

Example Solution.
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(a) We need to know if the vectors in S are linearly independent and span R3. Technology
shows that the reduced row echelon form of

A =

 1 3 −5
1 −7 6
0 2 10


is  1 0 0

0 1 0
0 0 1

 .
Since every column of [v1 v2 v3] is a pivot column, the set {v1,v2,v3} is linearly inde-
pendent. The fact that there is a pivot in every row of the matrix A means that the equation
Ax = b is consistent for every b in R3. Since Ax is a linear combination of the columns
of A with weights from x, tt follows that the columns of A span R3. We conclude that the
set S is a basis for R3.

(b) Technology shows that a row echelon form of A = [v1 v2 v4] is
1 0 0

0 −10 11

0 0 h+ 11
5

 .
The columns of A are all pivot columns (hence linearly independent) as long as h 6= −11

5 ,
and are linearly dependent when h = −11

5 . So the only value of h for which S′ is not a
basis for R3 is h = −11

5 .

Summary

• A set {v1,v2, . . . ,vk} of vectors in Rn is linearly independent if the vector equation

x1v1 + x2v2 + · · ·+ xkvk = 0

for scalars x1, x2, . . . , xk has only the trivial solution

x1 = x2 = x3 = · · · = xk = 0.

Another way to think about this is that a set of vectors is linearly independent if no vector in
the set can be written as a linear combination of the other vectors in the set.

• A set {v1,v2, . . . ,vk} of vectors in Rn is linearly dependent if the vector equation

x1v1 + x2v2 + · · ·+ xkvk = 0

has a nontrivial solution. That is, we can find scalars x1, x2, . . . , xk that are not all 0 so that

x1v1 + x2v2 + · · ·+ xkvk = 0.

Another way to think about this is that a set of vectors is linearly dependent if at least one
vector in the set can be written as a linear combination of the other vectors in the set.
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• If S is a set of vectors, a subset B of S is a basis for Span S if B is a linearly independent set
and Span B = Span S.

• Given a nonzero set S of vectors, we can remove vectors from S that are linear combinations
of remaining vectors in S to obtain a linearly independent subset of S that has the same span
as S.

• The columns of a matrix A are linearly independent if the equation Ax = 0 has only the
trivial solution x = 0.

• The set {v1,v2, . . . ,vk} is linearly independent if and only if every column of the matrix
A = [v1 v2 v3 · · · vk], is a pivot column.

• IfA = [v1 v2 v3 · · · vk], then the vectors in the pivot columns ofA form a minimal spanning
set for Span{v1,v2, . . . ,vk}.

Exercises

(1) Consider the following vectors in R3:

v1 =

 1
1
1

 , v2 =

 1
2
1

 , v3 =

 1
3
1


Is the set consisting of these vectors linearly independent? If so, explain why. If not, make a
single change in one of the vectors so that the set is linearly independent.

(2) Consider the following vectors in R3:

v1 =

 1
2
1

 , v2 =

 1
−1

2

 , v3 =

 1
1
c


For which values of c is the set consisting of these vectors linearly independent?

(3) In a lab, there are three different water-benzene-acetic acid solutions: The first one with 36%
water, 50% benzene and 14% acetic acid; the second one with 44% water, 46% benzene and
10% acetic acid; and the last one with 38% water, 49% benzene and 13% acid. Since the lab
needs space, the lab coordinator wants to determine whether all solutions are needed, or if it is
possible to create one of the solutions using the other two. Can you help the lab coordinator?

(4) Given vectors v1 =

 1
2
3

 and v2 =

 0
2
1

, find a vector v3 in R3 so that the set consisting

of v1,v2 and v3 is linearly independent.
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(5) Consider the span of S = {v1,v2,v3,v4} where

v1 =


1
1
1
4

 , v2 =


2
1
0
3

 , v3 =


3
2
−1

1

 , v4 =


3
3
1
6

 .

(a) Is the set S a minimal spanning set of Span S? If not, determine a minimal spanning
set, i.e. a basis, of Span S.

(b) Check that the vector u =


6
5
−2

1

 is in Span S. Find the unique representation of

u in terms of the basis vectors.

(6) Come up with a 4 × 3 matrix with linearly independent columns, if possible. If not, explain
why not.

(7) Come up with a 3 × 4 matrix with linearly independent columns, if possible. If not, explain
why not.

(8) Give an example of vectors v1,v2,v3 such that a minimal spanning set for Span{v1,v2,v3}
is equal to that of Span{v1,v2}; and an example of three vectors v1,v2,v3 such that a
minimal spanning set for Span{v1,v2,v3} is equal to that of Span{v1,v3}.

(9) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False If v1, v2 and v3 are three vectors none of which is a multiple of another,
then these vectors form a linearly independent set.

(b) True/False If v1, v2 and v3 in Rn are linearly independent vectors, then so are v1,
v2, v3 and v4 for any v4 in Rn.

(c) True/False If v1, v2, v3 and v4 in Rn are linearly independent vectors, then so are
v1, v2 and v3.

(d) True/False A 3× 4 matrix cannot have linearly independent columns.

(e) True/False If two vectors span R2, then they are linearly independent.

(f) True/False The space R3 cannot contain four linearly independent vectors.

(g) True/False If two vectors are linearly dependent, then one is a scalar multiple of the
other.

(h) True/False If a set of vectors in Rn is linearly dependent, then the set contains more
than n vectors.

(i) True/False The columns of a matrixA are linearly independent if the equationAx =
0 has only the trivial solution.
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(j) True/False Let W = Span{v1,v2,v3,v4}. If {v1,v2,v3} is a minimal spanning
set for W , then {v1,v2,v4} cannot also be a minimal spanning set for W .

(k) True/False Let W = Span{v1,v2,v3,v4}. If {v1,v2,v3} is a minimal spanning
set for W , then {v1,v2} cannot also be a minimal spanning set for W .

(l) True/False If v3 = 2v1 − 3v2, then {v1,v2} is a minimal spanning set for
Span{v1,v2,v3}.

Project: Generating Bézier Curves

Bézier curves can be created as linear combinations of vectors. In this section we will investigate
how cubic Bézier curves (the ones used for fonts) can be realized through linear and quadratic
Bézier curves. We begin with linear Bézier curves.

Project Activity 6.1. Start with two vectors p0 and p1. Linear Bézier curves are linear combina-
tions

q = (1− t)p0 + tp1

of the vectors p0 and p1 for scalars t between 0 and 1. (You can visualize these linear com-
binations using the GeoGebra file Linear Bezier at https://www.geogebra.org/m/
HvrPhh86. With this file you can draw the vectors q for varying values of t. You can move the
points p0 and p1 in the GeoGebra file, and the slider controls the values of t. The point identified
with q is traced as t is changed.) For this activity, we will see what the curve q corresponds to by

evaluating certain points on the curve in a specific example. Let p0 =

[
2
1

]
and p1 =

[
6
3

]
.

(a) What are the components of the vector (1 − t)p0 + tp1 if t = 1
2? Where is this vector in

relation to p0 and p1? Explain.

(b) What are the components of the vector (1 − t)p0 + tp1 if t = 1
3? Where is this vector in

relation to p0 and p1? Explain.

(c) What are the components of the vector (1 − t)p0 + tp1 for an arbitrary t? Where is this
vector in relation to p0 and p1? Explain.

For each value of t, the vector q = (1 − t)p0 + tp1 is a linear combination of the vectors p0

and p1. Note that when t = 0, we have q = p0 and when t = 1 we have q = p1, and for 0 ≤ t ≤ 1
Project Activity 6.1 shows that the vectors q trace out the line segment from p0 to p1. The span
{(1− t)p0 + tp1} of the vectors p0 and p1 for 0 ≤ t ≤ 1 is a linear Bézier curve. Once we have a
construction like this, it is natural in mathematics to extend it and see what happens. We do that in
the next activity to construct quadratic Bézier curves.

Project Activity 6.2. Let p0, p1, and p2 be vectors in the plane. We can then let

q0 = (1− t)p0 + tp1 and q1 = (1− t)p1 + tp2

be the linear Bézier curves as defined in Project Activity 6.1. Since q0 and q1 are vectors, we can
define r as

r = (1− t)q0 + tq1.

https://www.geogebra.org/m/HvrPhh86
https://www.geogebra.org/m/HvrPhh86
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(You can visualize these linear combinations using the GeoGebra file Quadraric Bezier at
https://www.geogebra.org/m/VWCZZBXz. With this file you can draw the vectors r for
varying values of t. You can move the points p0, p1, and p2 in the GeoGebra file, and the slider
controls the values of t. The point identified with r is traced as t is changed.) In this activity we

investigate how the vectors r change as t changes. For the remainder of this activity, let p0 =

[
2
3

]
,

p1 =

[
8
4

]
, and p2 =

[
6
−3

]
.

(a) At what point (in terms of p0, p1, and p2) is the vector r = (1− t)q0 + tq1 when t = 0?
Explain using the definition of r.

(b) At what point (in terms of p0, p1, and p2) is the vector r = (1− t)q0 + tq1 when t = 1?
Explain using the definition of r.

(c) Find by hand the components of the vector (1− t)q0 + tq1 with t = 1
4 . Compare with the

result of the GeoGebra file.

The span {(1−t)q0+tq1} of the vectors q0 and q1, or the set of points traced out by the vectors
r for 0 ≤ t ≤ 1, is a quadratic Bézier curve. To understand why this curve is called quadratic, we
examine the situation in a general context in the following activity.

Project Activity 6.3. Let p0, p1, and p2 be arbitrary vectors in the plane. Write r = (1−t)q0+tq1

as a linear combination of p0, p1, and p2. That is, write r in the form a0p0 + a1p1 + a2p2 for
some scalars (that may depend on t) a0, a1, and a2. Explain why the result leads us to call these
vectors quadratic Bézier curves.

Notice that if any one of the pi lies on the line determined by the other two vectors, then the
quadratic Bézier curve is just a line segment. So to obtain something non-linear we need to choose
our vectors so that that doesn’t happen.

Quadratic Bézier curves are limited, because their graphs are parabolas. For applications we
need higher order Bézier curves. In the next activity we consider cubic Bézier curves.

Project Activity 6.4. Start with four vectors p0, p1, p2, p3 – the points defined by these vectors
are called control points for the curve. As with the linear and quadratic Bézier curves, we let

q0 = (1− t)p0 + tp1, q1 = (1− t)p1 + tp2, and q2 = (1− t)p2 + tp3.

Then let
r0 = (1− t)q0 + tq1 and r1 = (1− t)q1 + tq2.

We take this one step further to generate the cubic Bézier curves by letting

s = (1− t)r0 + tr1.

(You can visualize these linear combinations using the GeoGebra file Cubic Bezier at https:
//www.geogebra.org/m/EDAhudy9. With this file you can draw the vectors s for varying
values of t. You can move the points p0, p1, p2, and p3 in the GeoGebra file, and the slider
controls the values of t. The point identified with s is traced as t is changed.) In this activity we

https://www.geogebra.org/m/VWCZZBXz
https://www.geogebra.org/m/EDAhudy9
https://www.geogebra.org/m/EDAhudy9
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investigate how the vectors s change as t changes. For the remainder of this activity, let p0 =

[
1
3

]
,

p1 =

[
4
5

]
, p2 =

[
9
−3

]
, and p3 =

[
2
0

]
.

(a) At what point (in terms of p0, p1, p2, and p3) is the vector s = (1 − t)r0 + tr1 when
t = 0? Explain using the definition of s.

(b) At what point (in terms of p0, p1, p2, and p3) is the vector s = (1 − t)r0 + tr1 when
t = 1? Explain using the definition of s.

(c) Find by hand the components of the vector (1− t)r0 + tr1 with t = 3
4 . Compare with the

result of the GeoGebra file.

The span {(1− t)r0 + tr1} of the vectors r0 and r1, or the set of points traced out by the vectors
s for 0 ≤ t ≤ 1, is a cubic Bézier curve. To understand why this curve is called cubic, we examine
the situation in a general context in the following activity.

Project Activity 6.5. Let p0, p1, p2, and p3 be arbitrary vectors in the plane. Write s = (1 −
t)r0 + tr1 as a linear combination of p0, p1, p2, and p3. That is, write s in the form b0p0 + b1p1 +
b2p2 + b3p3 for some scalars (that may depend on t) b0, b1, b2, and b3. Explain why the result leads
us to call these vectors cubic Bézier curves.

Just as with the quadratic case, we need certain subsets of the set of control vectors to be linearly
independent so that the cubic Bézier curve does not degenerate to a quadratic or linear Bézier curve.

More complicated and realistic shapes can be represented by piecing together two or more
Bézier curves as illustrated with the letter “S” in Figure 6.1. Suppose we have two cubic Bézier
curves, the first with control points p0, p1, p2, and p3 and the second with control points p′0, p′1,
p′2, and p′3. You may have noticed that p1 lies on the tangent line to the first Bézier curve at p0

and that p2 lies on the tangent line to the first Bézier curve at p3. (Play around with the program
Cubic Bezier to convince yourself of these statements. This can be proved in a straightforward
manner using vector calculus.) So if we want to make a smooth curve from these two Bézier
curves, the curves will need to join together smoothly at p3 and p′0. This will force p3 = p′0 and
the tangents at p3 = p′0 will have to match. This implies that p2, p3, and p′1 all have to lie on this
common tangent line. Keeping this idea in mind, use the GeoGebra file Cubic Bezier Pair
at https://www.geogebra.org/m/UwxQ6RPk to find control points for the pair of Bézier
curves that create your own letter S.

https://www.geogebra.org/m/UwxQ6RPk
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Matrix Transformations

Focus Questions

By the end of this section, you should be able to give precise and thorough
answers to the questions listed below. You may want to keep these questions
in mind to focus your thoughts as you complete the section.

• What is a matrix transformation?

• What properties do matrix transformations have? (In particular, what prop-
erties make matrix transformations linear?)

• What is the domain of a matrix transformation defined by anm×nmatrix?
Why?

• What are the range and codomain of a matrix transformation defined by an
m× n matrix? Why?

• What does it mean for a matrix transformation to be one-to-one? If T is a
matrix transformation represented as T (x) = Ax, what are the conditions
on A that make T a one-to-one transformation?

• What does it mean for a matrix transformation to be onto? If T is a matrix
transformation represented as T (x) = Ax, what are the conditions on A
that make T an onto transformation?

Application: Computer Graphics

As we will discuss, left multiplication by an m×n matrix defines a function from Rn to Rm. Such
a function defined by matrix multiplication is called a matrix transformation. In this section we
study some of the properties of matrix transformations and understand how, using the pivots of the
matrix, to determine when the output of a matrix transformation covers the whole space Rm or
when a transformation maps distinct vectors to distinct outputs.

Matrix transformations are used extensively in computer graphics to produce animations as seen

125



126 Section 7. Matrix Transformations

in video games and movies. For example, consider the dancing figure at left in Figure 7.1. We can
identify certain control points (e.g., the point at the neck, where the arms join the torso, etc.) to mark
the locations of important points. Using just the control points we can reconstruct the figure. Each
control point can be represented as a vector, and so we can manipulate the figure by manipulating
the control points with matrix transformations. We will explore this idea in more detail later in this
section.

Figure 7.1: A dancing figure and a rotated dancing figure.

Introduction

In this section we will consider special functions which take vectors as inputs and produce vectors
as outputs. We will use matrix multiplication to produce the output vectors.

If A is an m × n matrix and x is a vector in Rn, then the matrix-vector product Ax is a
vector in Rm. (Pick some specific n,m values to understand this statement better.) Therefore, left
multiplication by the matrix A takes an input vector x in Rn and produces an output vector Ax in
Rm, which we will refer to as the image of x under the transformation. This defines a function T
from Rn to Rm where

T (x) = Ax .

These functions are the matrix transformations.

Definition 7.1. A matrix transformation is a function T : Rn → Rm defined by

T (x) = Ax

for some m× n matrix A.

Many of the transformations we consider in this section are from R2 to R2 so that we can
visualize the transformations. As an example, let us consider the transformation T defined by

T

([
x1

x2

])
=

[
1 0
0 −1

] [
x1

x2

]
.

If we plot the input vectors u1 =

[
1
0

]
, u2 =

[
0
1

]
, u3 =

[
1
2

]
, and u4 =

[
−1

1

]
(as (blue) circles) and their images T (u1) =

[
1 0
0 −1

] [
1
0

]
=

[
1
0

]
, T (u2) =

[
0
−1

]
,
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T (u3) =

[
1
−2

]
, and T (u4) =

[
−1
−1

]
(as (red) ×’s) on the same set of axes as shown in Figure

7.2, we see that this transformation reflects the input vectors across the x-axis. We can also see this
algebraically since the reflection of the point (x1, x2) around the x-axis is the point (x1,−x2), and

T

([
x1

x2

])
=

[
x1

−x2

]
.

u1

T (u1)

u2

T (u2)

u3

T (u3)

u4

T (u4)

Figure 7.2: Inputs and outputs of the transformation T .

Preview Activity 7.1. We now consider other transformations from R2 to R2.

(1) Suppose a transformation T is defined by

T

([
x1

x2

])
=

[
2 0
0 2

] [
x1

x2

]
.

(a) Find T (ui) for each of u1 =

[
1
0

]
, u2 =

[
0
1

]
, u3 =

[
1
2

]
, and u4 =

[
−1

1

]
.

(In other words, substitute u1,u2,u3,u4 into the formula above to see what output
is obtained.)

(b) Plot all input vectors and their images on the same axes in R2. Clearly identify which
image corresponds to which input vector. Then give a geometric description of what
this transformation does.

(2) The transformation in the introduction performs a reflection across the x-axis. Find a matrix
transformation that performs a reflection across the y-axis.



128 Section 7. Matrix Transformations

(3) Suppose a transformation T is defined by

T (x) = Ax,

where

A =

[
1 0
0 0

]
.

(a) Find T (ui) for each of u1 =

[
1
0

]
, u2 =

[
0
1

]
, u3 =

[
1
2

]
, and u4 =

[
−1

1

]
.

(b) Plot all input vectors and their images on the same axes in R2. Give a geometric
description of this transformation.

(c) Is there an input vector which produces b =

[
1
1

]
as an output vector?

(d) Find all input vectors that produce the output vector b =

[
1
0

]
. Is there a unique

input vector, or multiple input vectors?

Properties of Matrix Transformations

A matrix transformation is a function. When dealing with functions in previous mathematics
courses we have used the terms domain and range with our functions. Recall that the domain
of a function is the set of all allowable inputs into the function and the range of a function is the set
of all outputs of the function. We do the same with transformations. If T is the matrix transforma-
tion T (x) = Ax for some m × n matrix A, then T maps vectors from Rn into Rm. So Rn is the
domain of T – the set of all input vectors. However, the set Rm is only the target set for T and not
necessarily the range of T . We call Rm the codomain of T , while the range of T is the set of all
output vectors. The range is always a subset of the codomain, but the two sets do not have to be
equal. In addition, if a vector b in Rm satisfies b = T (x) for some x in Rn, then we say that b is
the image of x under the transformation T .

Because of the properties of the matrix-vector product, if the matrix transformation T is defined
by T (x) = Ax for some m× n matrix A, then

T (u + v) = A(u + v) = Au +Av

and
T (cu) = A(cu) = cAu = cT (u)

for any vectors u and v in Rn and any scalar c. So every matrix transformation T satisfies the
following two important properties:

(1) T (u + v) = T (u) + T (v) and

(2) T (cu) = cT (v).

The first property says that a matrix transformation T preserves sums of vectors and the second that
T preserves scalar multiples of vectors.
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Activity 7.1. Let T be a matrix transformation, and let u and v be vectors in the domain of T so

that T (u) =

 1
2
0

 and T (v) =

 −3
1
4

.

(a) Exactly which vector is T (2u− 3v)? Explain.

(b) If a and b are any scalars, what is the vector T (au + bv)? Why?

As we saw in Activity 7.1, we can combine the two properties of a matrix transformation T into
one: for any scalars a and b and any vectors u and v in the domain of T we have

T (au + bv) = aT (u) + bT (v). (7.1)

We can then extend equation (7.1) (by mathematical induction) to any finite linear combination of
vectors. That is, if v1, v2, . . ., vk are any vectors in the domain of a matrix transformation T and if
x1, x2, . . ., xk are any scalars, then

T (x1v1 + x2v2 + · · ·+ xkvk) = x1T (v1) + x2T (v2) + · · ·+ xkT (vk). (7.2)

In other words, a matrix transformation preserves linear combinations. For this reason matrix trans-
formations are examples of a larger set of transformation that are called linear transformations. We
will discuss general linear transformations in a later section.

There is one other important property of a matrix transformation for us to consider. The func-
tions we encountered in earlier mathematics courses, e.g., f(x) = 2x + 1, could send the input 0
to any output. However, as a consequence of the definition, any matrix transformation T maps the
zero vector to the zero vector because

T (0) = A0 = 0 .

Note that the two vectors 0 in the last equation may not be the same vector – if T : Rn → Rm,
then the first 0 is in Rn and the second in Rm. It should be clear from the context which vector 0 is
meant.

Onto and One-to-One Transformations

The problems we have been asking about solutions to systems of linear equations can be rephrased
in terms of matrix transformations. The question about whether a system Ax = b is consistent for
any vector b is also a question about the existence of a vector x so that T (x) = b, where T is the
matrix transformation defined by T (x) = Ax.

Activity 7.2. Let T be the matrix transformation defined by T (x) = Ax where A is 1 0
0 1
0 2

 .
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(a) Find T
([

1
1

])
and T

 1
1
1

. If it is not possible to find one or both of the output

vectors, indicate why.

(b) What are the domain and codomain of T ? Why? (Recall that the domain is the space of all
input vectors, while the codomain is the space in which the output vectors are contained.)

(c) Can you find a vector x for which T (x) =

 2
3
6

? Can you find a vector x for which

T (x) =

 2
3
1

?

(d) Which b =

 a
b
c

 are the image vectors for this transformation? Is the range of T equal

to the codomain of T ? Explain.

(e) The previous question can be rephrased as a matrix equation question. We are asking
whether Ax = b is consistent for every b. How is the answer to this question related to the
pivots of A?

If T is a matrix transformation, Activity 7.2 illustrates that the range of a matrix transformation
T may not equal its codomain. In other words, there may be vectors b in the codomain of T that are
not the image of any vector in the domain of T . If it is the case for a matrix transformation T that
there is always a vector x in the domain of T such that T (x) = b for any vector b in the codomain
of T , then T is given a special name.

Definition 7.2. A matrix transformation T from Rn to Rm is onto if each b in Rm is the image of
at least one x in Rn.

So the matrix transformation T from Rn to Rm defined by T (x) = Ax is onto if the equation
Ax = b has a solution for each vector b in Rm. Since the vectors Ax are linear combinations of
the columns of A, T is onto exactly when the span of the columns of A is all of Rm. Activity 7.2
shows us that T is onto if every row of A contains a pivot.

Another question to ask about matrix transformations is how many vectors there can be that
map onto a given output vector.

Activity 7.3. Let T be the matrix transformation defined by T (x) = Ax where A is[
1 3 0
0 0 1

]
.

(a) Find T
([

1
1

])
and T

 1
1
1

. If it is not possible to find one or both of the output

vectors, indicate why.
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(b) What are the domain and codomain of T ? Why?

(c) Find T

 1
1
2

. Are there any other x’s for which T (x) is this same output vector?

(Hint: Set up an equation to solve for such x’s.)

(d) Assume more generally that for some vector b, there is a vector x so that T (x) = b. Write
this as a matrix equation to determine how many solutions this equation has. Explain. How
is the answer to this question related to the pivots of A?

The uniqueness of a solution to Ax = b is the same as saying that the matrix transformation T
defined by T (x) = Ax maps exactly one vector to b. A matrix transformation T that has the prop-
erty that every image vector is an image in exactly one way is also a special type of transformation.

Definition 7.3. A matrix transformation T from Rn to Rm is one-to-one if each b in Rm is the
image of at most one x in Rn.

So the matrix transformation T from Rn to Rm defined by T (x) = Ax is one-to-one if the
equation Ax = b has a unique solution whenever Ax = b is consistent. Since the vectors Ax are
linear combinations of the columns of A, the unique solution requirement indicates that any output
vector can be written in exactly one way as a linear combination of the columns of A. This implies
that the columns of A are linearly independent. Activity 7.3 indicates that this happens when every
column of A is a pivot column.

To summarize, if T is a matrix transformation defined by T (x) = Ax, then T is onto if every
row ofA contains a pivot, and T is one-to-one if every column ofA is a pivot column. It is important
to note the difference: being one-to-one depends on the rows of A and being onto depends on the
columns of A.

Having a matrix transformation from Rn to Rm can tell us things about m and n. For example,
when a matrix transformation from Rn to Rm is one-to-one, it means that there is a unique input
vector for every output vector. Since a matrix transformation preserves the algebraic structure of
Rn, this implies that the collection of the images of the vectors in the domain of T form a copy of
Rn inside of Rm. If we think of T as a one-to-one matrix transformation with T (x) = Ax for some
m × n matrix, then every column of A will have to be a pivot column. It follows that if there is
a one-to-one matrix transformation from Rn to Rm, we must have m ≥ n. Similarly, if a matrix
transformation T from Rn to Rm is onto, then for each b in Rm, if we select one vector in the
domain of T whose image is b, then the collection of these vectors in the domain of T is a copy of
Rm inside of Rn. So if there is an onto matrix transformation from Rn to Rm, then n ≥ m. As a
consequence, the only way a matrix transformation from Rn to Rm is both one-to-one and onto is
if n = m.

We conclude this section by adding new equivalent conditions to Theorems 5.3 and 6.7 from
Sections 5 and 6.

Theorem 7.4. Let A be an m× n matrix. The following statements are equivalent.

(1) The matrix equation Ax = b has a solution for every vector b in Rm.

(2) Every vector b in Rm can be written as a linear combination of the columns of A.
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(3) The span of the columns of A is Rm.

(4) The matrix A has a pivot position in each row.

(5) The matrix transformation T from Rn to Rm defined by T (x) = Ax is onto.

Theorem 7.5. Let A be an m× n matrix. The following statements are equivalent.

(1) The matrix equation Ax = b has a unique solution for every vector b in the span of the
columns of A.

(2) The matrix equation Ax = 0 has the unique solution x = 0.

(3) The columns of A are linearly independent.

(4) The matrix A has a pivot position in each column.

(5) The matrix transformation T from Rn to Rm defined by T (x) = Ax is one-to-one.

We will continue to add to these theorems, which will eventually give us many different but
equivalent perspectives to look at a linear algebra problem. Please keep these equivalent criteria in
mind when considering the best possible approach to a problem.

Examples

What follows are worked examples that use the concepts from this section.

Example 7.6. Let A =

 1 1 −1 −1
3 6 0 3
2 −1 −5 −8

 and let T (x) = Ax.

(a) Identify the domain of T . Explain your reasoning.

(b) Is T one-to-one. Explain.

(c) Is T onto? If yes, explain why. If no, describe the range of T as best you can, both
algebraically and graphically.

Example Solution.

(a) Since A is a 3 × 4 matrix, A has four columns. Now Ax is a linear combination of the
columns ofAwith weights from x, so x must have four entries to correspond to the columns
of A. We conclude that the domain of T is R4.

(b) Technology shows that the reduced row echelon form of A is 1 0 −2 −3
0 1 1 2
0 0 0 0

 .
SinceA contains non-pivot columns, the homogeneous systemAx = 0 has infinitely many
solutions. So T is not one-to-one. In other words, if there is a column of A that is a non-
pivot column, then A is not one-to-one.
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(c) Since the reduced row echelon form of A has rows of zeros, there will be vectors b in R3

such that the reduced row echelon form of [A b] will have a row of the form [0 00 0 c] for
some nonzero scalar c. This means that T (x) = Ax = b will have no solution and T is not
onto. In other words, if there is a row of A that does not contain a pivot, then T is not onto.

(d) To determine the vectors b =

 r
s
t

 so that T (x) = Ax = b is consistent, we row reduce

the augmented matrix [A | b]. Technology shows that an echelon form of [A b] is 1 1 −1 −1 r
0 3 3 6 s− 3r
0 0 0 0 t− 5r + s

 .
Thus, the system Ax = b is consistent if and only if −5r + s+ t = 0. We can then write
the general output vector to this system as

b =

 r
s

5r − s

 = r

 1
0
5

+ s

 0
1
−1

 ,
with r and s any scalars. Since there are two free variables, the vectors b in R3 define a
plane through the origin. Letting r = 0 and s = 1 and r = 1 and s = 0, we see that
two points that lie on this plane are (0, 1,−1) and (1, 0, 5). So the range of T is the plane
through the origin and the points (0, 1,−1) and (1, 0, 5).

Example 7.7. A matrix transformation T : R2 → R2 defined by

T

([
x
y

])
=

[
cx
y

]
is a contraction in the x direction if 0 < c < 1 and a dilation in the x direction if c > 1.

(a) Find a matrix A such that T (x) = Ax.

(b) Sketch the square S with vertices u1 =

[
0
0

]
, u2 =

[
1
0

]
, u3 =

[
1
1

]
, and u4 =

[
0
1

]
.

Determine and sketch the image of S under T if c = 2.

Example Solution.

(a) Since [
c 0
0 1

] [
x
y

]
=

[
cx
y

]
,

the matrix A =

[
c 0
0 1

]
has the property that T (x) = Ax.



134 Section 7. Matrix Transformations

(b) We can determine the image of S under T by calculating what T does to the vertices of S.
Notice that

T (u1) =

[
2 0
0 1

] [
0
0

]
=

[
0
0

]
T (u2) =

[
2 0
0 1

] [
1
0

]
=

[
2
0

]
T (u3) =

[
2 0
0 1

] [
1
1

]
=

[
2
1

]
T (u4) =

[
2 0
0 1

] [
0
1

]
=

[
0
1

]
Since T is a linear map, the image of S under T is the polygon with vertices (0, 0), (1, 0),
(2, 1), and (0, 1) as shown in Figure 7.3. From Figure 7.3 we can see that T stretches the
figure in the x direction only by a factor of 2.

Figure 7.3: The input square S and the output T (S).

Summary

In this section we determined how to represent any matrix transformation from Rn to Rm as a
matrix transformation, and what it means for a matrix transformation to be one-to-one and onto.

• A matrix transformation is a function T : Rn → Rm defined by T (x) = Ax for some m× n
matrix A.

• A matrix transformation T from Rn to Rm satisfies

T (au + bv) = aT (u) + bT (v)

for any scalars a and b and any vectors u and v in Rn. The fact that T preserves linear
combinations is why we say that T is a linear transformation.

• An m× n matrix A defines the matrix transformation T via

T (x) = Ax.
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The domain of this transformation is Rn because the matrix-vector productAx is only defined
if x is an n× 1 vector.

• IfA is anm×nmatrix, then the codomain of the matrix transformation T defined by T (x) =
Ax is Rm. This is because the matrix-vector product Ax with x an n× 1 vector is an m× 1
vector. The range of T is the subset of the codomain of T consisting of all vectors of the form
T (x) for vectors x in the domain of T .

• A matrix transformation T from Rn to Rm is one-to-one if each b in Rm is the image of
at most one x in Rn. If T is a matrix transformation represented as T (x) = Ax, then T
is one-to-one if each column of A is a pivot column, or if the columns of A are linearly
independent.

• A matrix transformation T from Rn to Rm is onto if each b in Rm is the image of at least
one x in Rn. If T is a matrix transformation represented as T (x) = Ax, then T is onto if
each row of A contains a pivot position, or if the span of the columns of A is all of Rm.

Exercises

(1) Given matrix A =

[
1 2 1
1 0 −3

]
, write the coordinate form of the transformation T defined

by T (x) = Ax. (Note: Writing a transformation in coordinate form refers to writing the
transformation in terms of the entries of the input and output vectors.)

(2) Suppose the transformation T is defined by T (x) = Ax where

A =

 1 1 −1
2 1 1
4 1 4

 .

Determine if b =

 1
0
0

 is in the range of T . If so, find all x’s which map to b.

(3) Suppose T is a matrix transformation and

T (v1) =

[
1
2

]
, T (v2) =

[
−2

3

]
Find T (2v1 − 5v2).

(4) Given a matrix transformation defined as

T

 x1

x2

x3

 =

 2x1 − x3

−x1 + 2x2 + x3

3x2 − 4x3


determine the matrix A for which T (x) = Ax.



136 Section 7. Matrix Transformations

(5) Suppose a matrix transformation T defined by T (x) = Ax for some unknown A matrix
satisfies

T

([
1
0

])
=

[
2
1

]
and T

([
0
1

])
=

[
−1

3

]
.

Use the matrix transformation properties to determine T (x) where x =

[
x1

x2

]
. Use the

expression for T (x) to determine the matrix A.

(6) For each of the following matrices, determine if the transformation T defined by T (x) = Ax
is onto and if T is one-to-one.

(a) A =

[
1 1 1
1 2 −3

]
(b) A =

[
1 1 2
2 2 4

]

(c) A =

 1 1 2
1 2 3
−1 1 2



(d) A =

 1 1
2 3
3 0


(7) Come up with an example of a one-to-one transformation from R3 to R4, if possible. If not,

explain why not.

(8) Come up with an example of an onto transformation from R3 to R4, if possible. If not, explain
why not.

(9) Come up with an example of a one-to-one but not onto transformation from R4 to R4, if
possible. If not, explain why not.

(10) Two students are talking about when a matrix transformation is one-to-one.

Student 1: If we have a matrix transformation, then we need to check thatAx = b
has a unique solution for every b for which Ax = b has a solution, right?

Student 2: Well, that’s the definition. Each b in the codomain has to be the image
of at most one x in the domain. So when b is in the range, corresponding to
Ax = b having a solution, then there is exactly one solution x.

Student 1: But wouldn’t it be enough to check that Ax = 0 has a unique solution?
Doesn’t that translate to the other b vectors? If there is a unique solution for one
b1, then there can’t be infinitely many solutions for another b2.

Student 2: I don’t know. It feels to me as if changing the right hand side could
change whether there is a unique solution, or infinitely many solutions, or no
solution.
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Which part of the above conversation do you agree with? Which parts need fixing?

(11) Show that if T is a matrix transformation from Rn to Rm and L is a line in Rn, then T (L),
the image of L, is a line or a single vector. (Note that a line in Rn is the set of all vectors of
the form v + cw where c is a scalar, and v,w are two fixed vectors in Rn.)

(12) Label each of the following statements as True or False. Provide justification for your re-
sponse.

(a) True/False The range of a transformation is the same as the codomain of the trans-
formation.

(b) True/False The codomain of a transformation T defined by T (x) = Ax is the span
of the columns of A.

(c) True/False A one-to-one transformation is a transformation where each input has a
unique output.

(d) True/False A one-to-one transformation is a transformation where each output can
only come from a unique input.

(e) True/False If a matrix transformation from Rn to Rn is one-to-one, then it is also
onto.

(f) True/False A matrix transformation from R2 to R3 cannot be onto.

(g) True/False A matrix transformation from R3 to R2 cannot be onto.

(h) True/False A matrix transformation from R3 to R2 cannot be one-to-one.

(i) True/False If the columns of a matrix A are linearly independent, then the transfor-
mation T defined by T (x) = Ax is onto.

(j) True/False If the columns of a matrix A are linearly independent, then the transfor-
mation T defined by T (x) = Ax is one-to-one.

(k) True/False If A is an m× n matrix with n pivots, then the transformation x 7→ Ax
is onto.

(l) True/False If A is an m× n matrix with n pivots, then the transformation x 7→ Ax
is one-to-one.

(m) True/False If u is in the range of a matrix transformation T , then there is an x in the
domain of T such that T (x) = u.

(n) True/False If T is a one-to-one matrix transformation, then T (x) = 0 has a non-
trivial solution.

(o) True/False If the transformations T1 : Rm → Rn and T2 : Rn → Rp are onto, then
the transformation T2 ◦ T1 defined by T2 ◦ T1(x) = T2(T1(x)) is also onto.

(p) True/False If the transformations T1 : Rm → Rn and T2 : Rn → Rp are one-to-one,
then the transformation T2◦T1 defined by T2◦T1(x) = T2(T1(x)) is also one-to-one.
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Project: The Geometry of Matrix Transformations

In this section we will consider certain types of matrix transformations and analyze their geometry.
Much more would be needed for real computer graphics, but the essential ideas are contained in our
examples. A GeoGebra applet is available at https://www.geogebra.org/m/rh4bzxee
for you to use to visualize the transformations in this project.

Project Activity 7.1. We begin with transformations that produce the rotated dancing image in
Figure 7.1. Let R be the matrix transformation from R2 to R2 defined by

R

([
x
y

])
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
.

These matrices are the rotation matrices.

(a) Suppose θ = π
2 . Then

R

([
x
y

])
=

[
0 −1
1 0

] [
x
y

]
.

i. Find the images of u1 =

[
1
0

]
, u2 =

 √
2

2√
2

2

, and u3 =

[
0
1

]
under R.

ii. Plot the points determined by the vectors from part i. The matrix transformation R
performs a rotation. Based on this small amount of data, what would you say the
angle of rotation is for this transformation R?

(b) Now let R be the general matrix transformation defined by the matrix[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Follow the steps indicated to show that R performs a counterclockwise rotation of an angle

θ around the origin. Let P be the point defined by the vector
[
x
y

]
=

[
cos(α)
sin(α)

]
and Q

the point defined by the vector
[
w
z

]
=

[
cos(α+ θ)
sin(α+ θ)

]
as illustrated in Figure 7.4.

i. Use the angle sum trigonometric identities

cos(A+B) = cos(A) cos(B)− sin(A) sin(B)

sin(A+B) = cos(A) sin(B) + cos(B) sin(A)

to show that

w = cos(θ)x− sin(θ)y

z = sin(θ)x+ cos(θ)y.

ii. Now explain why the counterclockwise rotation around the origin by an angle θ can
be represented by left multiplication by the matrix[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

https://www.geogebra.org/m/rh4bzxee
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α

θ

P = (x, y)

Q = (w, z)

Figure 7.4: A rotation in the plane.

Project Activity 7.1 presented the rotation matrices. Other matrices have different effects.

Project Activity 7.2. Different matrix transformations

(a) Let S be the matrix transformation from R2 to R2 defined by

S

([
x
y

])
=

[
1 0.5
0 1

] [
x
y

]
.

Determine the entries of the output vector S
([

x
y

])
and explain the action of the trans-

formation S on the dancing figure as illustrated in Figure 7.5. (The transformation S is
called a shear in the x direction.)

Figure 7.5: A dancing figure and a sheared dancing figure.

(b) Let C be the matrix transformation from R2 to R2 defined by

C

([
x
y

])
=

[
0.65 0

0 0.65

] [
x
y

]
.

Determine the entries of the output vector C
([

x
y

])
and explain the action of the trans-

formation C on the dancing figure as illustrated in Figure 7.6. (The transformation C is
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called a contraction.) How would your response change if each 0.65 was changed to 2 in
the matrix C?

Figure 7.6: A dancing figure and a contracted dancing figure.

So far we have seen specific matrix transformations perform a rotations, shears, and contrac-
tions. We can combine these, and other, matrix transformations by composition to change figures
in different ways, and to created animations of geometric figures. (As we will see later, combining
transformations needs to be done carefully in order to obtain the result we want. For example, if we
want to first rotate then translate, in what order should the matrices be applied?)


