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Abstract. Very recently by employing two well-known Euler’s trans-
formations for the hypergeometric function, Liu and Wang established
numerous general transformation formulas for the Kampé de Fériet func-
tion and deduced many new summation formulas for the Kampé de
Fériet function by using classical summation theorems for the series 2F1

due to Kummer, Gauss and Bailey. Here, we aim to establish 176 inter-
esting summation formulas for the Kampé de Fériet function in the form
of 16 general summation formulas based on the transformation formulas
due to Liu and Wang. The results are derived with the help of gener-
alizations of Kummer’s summation theorem, Gauss’ second summation
theorem and Bailey’s summation theorem established earlier by Lavoie
et al. The 176 formulas for the Kampé de Fériet function are pointed
out to contain 16 known formulas, which are also recalled as corollaries.
Keywords: Gamma function, Pochhammer symbol, Gauss’s hyperge-
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1. Introduction and Preliminaries

The natural generalization of the Gauss’s hypergeometric function 2F1 is
called the generalized hypergeometric series pFq (p, q ∈ N0) defined by (see,
e.g., [2], [29, p. 73] and [40, pp. 71-75]):

(1.1)
pFq

[
α1, . . . , αp;

β1, . . . , βq;
z

]
=

∞∑
n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z),
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where (λ)n is the Pochhammer symbol defined (for λ ∈ C) by (see [40, p. 2
and p. 5]):

(1.2)

(λ)n : =
Γ(λ+ n)

Γ(λ)
(λ ∈ C \ Z−0 )

=

{
1 (n = 0)

λ(λ+ 1) . . . (λ+ n− 1) (n ∈ N)

and Γ(λ) is the familiar Gamma function. Here an empty product is inter-
preted as 1, and we assume (for simplicity) that the variable z, the numerator
parameters α1, . . . , αp, and the denominator parameters β1, . . . , βq take on
complex values, provided that no zeros appear in the denominator of (1.1),
that is,

(1.3) (βj ∈ C \ Z−0 ; j = 1, . . . , q).

Here and in the following, let C, Z and N be the sets of complex numbers,
integers and positive integers, respectively, and let

N0 := N ∪ {0} and Z−0 := Z \ N.

For more details of pFq including its convergence, its various special and
limiting cases, and its further diverse generalizations, one may be referred,
for example, to [2, 3, 14,15,29,38,40,42,43].

It is worthy of note that whenever the generalized hypergeometirc func-
tion pFq (including 2F1) with its specified argument (for example, unit ar-
gument or 1

2 argument) can be summed to be expressed in terms of the
Gamma functions, the result may be very important from both theoretical
and applicable points of view. Here, the classical summation theorems for
the generalized hypergeometric series such as those of Gauss and Gauss sec-
ond, Kummer, and Bailey for the series 2F1; Watson’s, Dixon’s, Whipple’s
and Saalschütz’s summation theorems for the series 3F2 and others play
important roles in theory and application. During 1992-1996, in a series of
works, Lavoie et al. [24–26] have generalized the above mentioned classical
summation theorems for 3F2 of Watson, Dixon, and Whipple and presented
a large number of special and limiting cases of their results, which have
been further generalized and extended by Rakha and Rathie [31] and Kim
et al. [22]. Those results have also been obtained and verified with the help
of computer programs (for example, Mathematica).

The vast popularity and immense usefulness of the hypergeometric func-
tion and the generalized hypergeometric functions of one variable have in-
spired and stimulated a large number of researchers to introduce and inves-
tigate hypergeometric functions of two or more variables. A serious, signifi-
cant and systematic study of the hypergeometric functions of two variables
was initiated by Appell [1] who presented the so-called Appell functions
F1, F2, F3 and F4 which are generalizations of the Gauss’ hypergeomet-
ric function. The confluent forms of the Appell functions were studied by
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Humbert [17]. A complete list of these functions can be seen in the stan-
dard literature, see, e.g., [14]. Later, the four Appell functions and their
confluent forms were further generalized by Kampé de Fériet [19] who intro-
duced more general hypergeometric functions of two variables. The notation
defined and introduced by Kampé de Fériet for his double hypergeometric
functions of superior order was subsequently abbreviated by Burchnall and
Chaudndy [4, 5]. We recall here the definition of a more general double hy-
pergeometric function (than one defined by Kampé de Fériet) in a slightly
modified notation given by Srivastava and Panda [44, p. 423, Eq. (26)].
The convenient generalization of the Kampé de Fériet function is defined as
follows:

(1.4)

FH:A;B
G:C;D

[
(hH) : (aA) ; (bB) ;
(gG) : (cC) ; (dD) ;

x, y

]
=
∞∑
m=0

∞∑
n=0

((hH))m+n ((aA))m ((bB))n
((gG))m+n ((cC))m ((dD))n

xm

m!

yn

n!
,

where (hH) denotes the sequence of parameters (h1, h2, . . . , hH) and ((hH))n
is defined by the following product of Pochhammer symbols

((hH))n := (h1)n (h2)n · · · (hH)n (n ∈ N0) ,

where, when n = 0, the product is to be interpreted as unity. For more
details about the function (1.4) including its convergence, we refer, for ex-
ample, to [42].

When some extensively generalized special functions like (1.4) were ap-
peared, it has been an interesting and natural research subject to consider
certain reducibilities of the functions. In this regard, the Kampé de Fériet
function has attracted many mathematicians to investigate its reducibility
and transformation formulas. In fact, there are numerous reduction for-
mulas and transformation formulas of the Kampé de Fériet function in the
literature, see, e.g., [6–13,18,20,21,23,28,30,32–37,39,41,45,46,48]. In the
above-cited references, most of the reduction formulas were related to the
cases H + A = 3 and G + C = 2. In 2010, by using Euler’s transformation
formula for 2F1, Cvijovic̀ and Miller [13] established a reduction formula for
the case H +A = 2 and G+C = 1. Motivated essentially by the work [13],
recently, Liu and Wang [27] used Euler’s first and second transformation
formulas for 2F1 and the above-mentioned classical summation theorems for

pFq to present a number of very interesting reduction formulas and then de-
duced summation formulas for the Kampé de Fériet function. Indeed, only
a few summation formulas for the Kampé de Fériet function are available in
the literature.

In this sequel, we aim to demonstrate how easily one can obtain as many
as 176 new and interesting summation formulas for the Kampé de Fériet
function, which contain 16 known formulas, in the forms of 16 general sum-
mation formulas based on the summation formulas obtained by Liu and
Wang [27]. The results are established with the help of generalizations of
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Kummer summation theorem, Gauss second summation theorem and Bailey
summation theorem due to Lavoie et al. [26].

2. Results required

In order to make this paper self-contained, we recall the deduction for-
mulas for the Kampé de Fériet function established by Liu and Wang [27].

(2.1)
F 1:1;2

1:0;1

[
α : ε ; β − ε, γ ;
β : ; γ + β ;

x, x

]
= (1− x)β−ε−α 2F1 [β − ε, γ + β − α ; γ + β ; x] ;

(2.2)

F 1:1;2
1:0;1

[
α : ε ; β − ε, 1 + 1

2α ;
β : ; 1

2α ;
x, x

]
= (1− x)β−ε−α 2F1

[
β − ε, 1 +

1

2
β ;

1

2
β ; x

]
;

(2.3)

F 1:1;3
1:0;2

[
α : ε ; β − ε, 1 + 1

2α,
α−β

2 ;

β : ; 1
2α, 1 + α+β

2 ;
x, x

]
= (1− x)β−ε−α 2F1

[
β − ε, β − α

2
; 1 +

α+ β

2
; x

]
;

(2.4)

F 0:2;2
1:0;0

[
: α, ε ; β − ε, γ ;

β : ; ;
x,

x

x− 1

]
= F3

(
α, β − ε : ε, γ ; β ; x,

x

x− 1

)
= (1− x)−α 2F1

[
β − ε, α+ γ ; β ;

x

x− 1

]
;

(2.5)

F 2:0;1
1:0;1

[
α, γ : ; ε ;
β : ; β + ε ;

x, −x
]

= (1− x)−α 2F1

[
β − ε, α+ γ ; β ;

x

x− 1

]
;

(2.6)

F 2:0;1
1:0;1

[
α, γ : ; 1 + 1

2γ ;
β : ; 1

2γ ;
x, −x

]
= (1− x)−α 2F1

[
α, 1 +

1

2
β ;

1

2
β ;

x

x− 1

]
;

(2.7)

F 2:0;2
1:0;2

[
α, γ : ; 1 + 1

2γ,
γ−β

2 ;

β : ; 1
2γ, 1 + γ+β

2 ;
x, −x

]
= (1− x)−α 2F1

[
α,

β − γ
2

; 1 +
γ + β

2
;

x

x− 1

]
.
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In addition, we also need the following generalizations of Kummer sum-
mation theorem, Gauss second summation theorem, and Bailey’s summation
theorem due to Lavoie et al. [24–26]. Here and in the following, [x] is the
greatest integer less than or equal to x and |x| is the absolute value (modu-
lus) of x.

Generalization of Kummer’s summation theorem is given as follows:

(2.8)

2F1

[
a, b ;

1 + a− b+ i ;
− 1

]
=

2−a Γ
(

1
2

)
Γ (1 + a− b+ i) Γ (1− b)

Γ
(
1− b+ 1

2 i+ 1
2 |i|
)

×

{
Ai

Γ
(

1
2a− b+ 1

2 i+ 1
)

Γ
(

1
2a+ 1

2 + 1
2 i−

[
i+1

2

])
+

Bi
Γ
(

1
2a− b+ 1

2 i+ 1
2

)
Γ
(

1
2a+ 1

2 i−
[
i
2

])},
for i = 0, ±1, ±2, ±3, ±4, ±5. The coefficients Ai and Bi are given in the
Table 1.

Generalization of Gauss’ second summation theorem is given as follows:
(2.9)

2F1

 a, b ;

1

2
(a+ b+ i+ 1) ;

1

2

 =
Γ
(

1
2

)
Γ
(

1
2a+ 1

2b+ 1
2 i+ 1

2

)
Γ
(

1
2a−

1
2b−

1
2 i+ 1

2

)
Γ
(

1
2a−

1
2b+ 1

2 + 1
2 |i|
)

×

{
Ci

Γ
(

1
2a+ 1

2

)
Γ
(

1
2b+ 1

2 i+ 1
2 −

[
i+1

2

]) +
Di

Γ
(

1
2a
)

Γ
(

1
2b+ 1

2 i−
[
i
2

])},
for i = 0, ±1, ±2, ±3, ±4, ±5. The coefficients Ci and Di are given in the
Table 2.

Generalization of Bailey’s summation theorem is given as follows:

(2.10)

2F1

[
a, 1− a+ i ;

b ;

1

2

]
= 21+i−bΓ

(
1
2

)
Γ (b) Γ (1− a)

Γ
(
1− a+ 1

2 i+ 1
2 |i|
)

×

{
Ei

Γ
(

1
2b−

1
2a+ 1

2

)
Γ
(

1
2b+ 1

2a−
[
i+1

2

])
+

Fi
Γ
(

1
2b−

1
2a
)

Γ
(

1
2b+ 1

2a−
1
2 −

[
i
2

])},
for i = 0, ±1, ±2, ±3, ±4, ±5. The coefficients Ei and Fi are given in the
Table 3.

3. General summation formulas for the Kampé de Fériet function

Here, we establish many summation formulas for the Kampé de Fériet
function in the following theorems, each of which contains 11 results (except
in Theorems 3.5, 3.8 and 3.26) in a single form.
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Theorem 3.1. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then

(3.1)

F 1:1;2
1:0;1

[
α : ε ; β − ε, 1− α− ε+ i ;
β : ; 1− α− ε+ β + i ;

1

2
,

1

2

]
= 2ε+α−β

Γ
(

1
2

)
Γ (1− ε− α+ β + i) Γ (α− i)

Γ
(
α− 1

2 i+ 1
2 |i|
)

×

{
C′i

Γ
(

1
2β −

1
2ε+ 1

2

)
Γ
(
1− α− 1

2ε+ 1
2β + i−

[
i+1

2

])
+

D′i
Γ
(

1
2β −

1
2ε
)

Γ
(

1
2 − α−

1
2ε+ 1

2β + i−
[
i
2

])},
where the coefficients C′i and D′i are obtained from the Table 2 by replacing
a by β − ε and b by 1− 2α− ε+ β + i in Ci and Di, respectively.

Proof. Setting x = 1
2 and γ = 1− α− ε+ i (i = 0, ±1, ±2, ±3, ±4, ±5) in

(2.1), we get

(3.2)

F 1:1;2
1:0;1

[
α : ε ; β − ε, 1− α− ε+ i ;
β : ; 1− α− ε+ β + i ;

1

2
,

1

2

]
= 2ε+α−β 2F1

[
β − ε, 1− 2α− ε+ β + i ;

1− α− ε+ β + i ;

1

2

]
.

Now, the 2F1 in the right side of (3.2) can be evaluated with the help of the
result (2.9) by taking a = β − ε and b = 1 − 2α − ε + β + i. After some
simplification, we get the desired result.

�

The particular case i = 0 in Theorem 3.1 yields a known result due to
Lin and Wang [27, Corollary 5.1 (2)], which is recorded in the following
corollary.

Corollary 3.2. The following summation formula holds.

(3.3)

F 1:1;2
1:0;1

[
α : ε ; β − ε, 1− α+ ε ;
β : ; 1− α− ε+ β ;

1

2
,

1

2

]
= 2α+ε−β Γ

(
1
2

)
Γ (1 + β − α− ε)

Γ
(

1
2 + 1

2β −
1
2ε
)

Γ
(
1− α− 1

2ε+ 1
2β
) .

It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.1) yields 10 new
results.
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Theorem 3.3. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then

(3.4)

F 1:1;2
1:0;1

[
α : ε ; β − ε, 1 + α− 2β + ε+ i ;
β : ; 1 + α− β + ε+ i ;

1

2
,

1

2

]
=

Γ
(

1
2

)
Γ (1 + α− β + ε+ i)

Γ
(
1− β + ε+ 1

2 i+ 1
2 |i|
)

×

{
E ′i

Γ
(
1 + 1

2α− β + ε+ i
)

Γ
(

1
2 + 1

2α+ 1
2 i−

[
i+1

2

])
+

F ′i
Γ
(

1
2 + 1

2α− β + ε+ 1
2 i
)

Γ
(

1
2α+ 1

2 i−
[
i
2

])},
where the coefficients E ′i and F ′i are obtained from the Table 3 by replacing
a by β − ε and b by 1 + α− β + ε− i in Ei and Fi, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = 1

2 and γ = 1 + α− 2β + ε+ i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.1) with
the help of the result (2.10). We omit the details.

�

The particular case i = 0 in Theorem 3.3 yields a known result due to
Lin and Wang [27, Corollary 5.1 (3)], which is recorded in the following
corollary.

Corollary 3.4. The following summation formula holds.

(3.5)

F 1:1;2
1:0;1

[
α : ε ; β − ε, 1 + α− 2β + ε ;
β : ; 1 + α− β + ε ;

1

2
,

1

2

]
= 2α+ε−β Γ

(
1
2 + 1

2α−
1
2β + 1

2ε
)

Γ
(
1 + 1

2α−
1
2β + 1

2ε
)

Γ
(

1
2 + 1

2α
)

Γ
(
1 + 1

2α− β + ε
) .

It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.4) yields 10 new
results.

Theorem 3.5. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then

(3.6)

F 1:1;2
1:0;1

[
α : β − 2 + i ; 2 + i, 1

2α+ 1 ;
β : ; 1

2α ;
− 1, −1

]
= 21−α− 1

2
β+i Γ

(
1
2

)
Γ
(

1
2β
)

Γ (−1− i)
Γ
(
−1− 1

2 i+ 1
2 |i|
)

×

{
A′i

Γ
(

1
4β −

1
2 −

1
2 i
)

Γ
(

1
4β + 1 + 1

2 i−
[
i+1

2

])
+

B′i
Γ
(

1
4β − 1− 1

2 i
)

Γ
(

1
4β + 1

2 + 1
2 i−

[
i
2

])},
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where the coefficients A′i and B′i are obtained from the Table 1 by replacing
a by 1 + 1

2β and b by 2− i in Ai and Bi, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = −1 and ε = β−2+ i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.2) with the help
of the result (2.8). We omit the details.

�

Remark 3.6. By using Γ(z + 1) = zΓ(z), the expression
Γ (−1− i) /Γ

(
−1− 1

2 i+ 1
2 |i|
)

in Theorems 3.5, 3.8 and 3.26 should be eval-
uated as follows:

(3.7)
Γ (−1− i)

Γ
(
−1− 1

2 i+ 1
2 |i|
) =

(−1)i

(1 + i)!
(i ∈ N) .

The particular case i = 0 in Theorem 3.5 yields a known result due to
Lin and Wang [27, Corollary 5.2 (1)], which is recorded in the following
corollary.

Corollary 3.7. The following summation formula holds.

(3.8) F 1:1;2
1:0;1

[
α : β − 2 ; 2, 1

2α+ 1 ;
β : ; 1

2α ;
− 1, −1

]
=

2−α (β − 2)

β
.

It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.6) yields 10 new
results.

Theorem 3.8. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then

(3.9)

F 1:1;2
1:0;1

[
α : 1

2β + 2 + i ; 1
2β − 2− i, 1 + 1

2α ;
β : ; 1

2α ;

1

2
,

1

2

]
= 2α−

1
2
β+2+i Γ

(
1
2

)
Γ
(

1
2β
)

Γ (−1− i)
Γ
(
−1− 1

2 i+ 1
2 |i|
)

×

{
C(2)
i

Γ
(

1
4β −

1
2 −

1
2 i
)

Γ
(

1
4β + 1 + 1

2 i−
[
i+1

2

])
+

D(2)
i

Γ
(

1
4β − 1− 1

2 i
)

Γ
(

1
4β + 1

2 + 1
2 i−

[
i
2

])},
where the coefficients C(2)

i and D(2)
i are obtained from the Table 2 by replacing

a by 1
2β − 2− i and b by 1 + 1

2β in Ci and Di, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = 1

2 and ε = 1
2β+ 2 + i (i = 0, −1, −2, −3, −4, −5) in (2.2) with the help

of the result (2.9). We omit the details. �
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The particular case i = 0 in Theorem 3.8 yields a known result due to
Lin and Wang [27, Corollary 5.2 (2)], which is recorded in the following
corollary.

Corollary 3.9. The following summation formula holds.

(3.10)

F 1:1;2
1:0;1

[
α : 1

2β + 2 ; 1
2β − 2, 1 + 1

2α ;
β : ; 1

2α ;

1

2
,

1

2

]
= 2α−

1
2
β+2 Γ

(
1
2

)
Γ
(

1
2β
)

Γ
(

1
4β −

1
2

)
Γ
(

1
4β + 1

) .
It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.9) yields 10 new

results.

Theorem 3.10. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then

(3.11)

F 1:1;3
1:0;2

[
α : α+ β − i ; i− α, 1 + 1

2α,
α−β

2 ;

β : ; 1
2α, 1 + α+β

2 ;
− 1, −1

]
= 2−

1
2
β− 3

2
α−i Γ

(
1
2

)
Γ
(
1 + 1

2α+ 1
2β
)

Γ (1 + α− i)
Γ
(
1 + α− 1

2 i+ 1
2 |i|
)

×

{
A(2)
i

Γ
(

1
4β + 3

4α−
1
2 i+ 1

)
Γ
(

1
4β −

1
4α+ 1

2 + 1
2 i−

[
i+1

2

])
+

B(2)
i

Γ
(

1
4β + 3

4α−
1
2 i+ 1

2

)
Γ
(

1
4β −

1
4α+ 1

2 i−
[
i
2

])},
where the coefficients A(2)

i and B(2)
i are obtained from the Table 1 by replac-

ing a by 1
2β −

1
2α and b by i− α in Ai and Bi, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = −1 and ε = α + β − i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.3) with the
help of the result (2.8). We omit the details.

�

The particular case i = 0 in Theorem 3.10 yields a known result due to
Lin and Wang [27, Corollary 5.3 (a)], which is recorded in the following
corollary.

Corollary 3.11. The following summation formula holds.

(3.12)

F 1:1;3
1:0;2

[
α : α+ β ; −α, 1 + 1

2α,
α−β

2 ;

β : ; 1
2α, 1 + α+β

2 ;
− 1, −1

]
= 2−2α Γ

(
1 + 1

2α+ 1
2β
)

Γ
(
1 + 1

4β −
1
4α
)

Γ
(
1 + 1

2β −
1
2α
)

Γ
(
1 + 1

4β + 3
4α
) .
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It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.11) yields 10 new
results.

Theorem 3.12. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then
(3.13)

F 1:1;3
1:0;2

[
α : 1

2β −
3
2α− 1 + i ; 1

2β + 3
2α+ 1− i, 1 + 1

2α,
α−β

2 ;

β : ; 1
2α, 1 + α+β

2 ;

1

2
,

1

2

]
= 2−

1
2
α− 1

2
β−1 Γ

(
1
2

)
Γ
(
1 + 1

2α+ 1
2β
)

Γ (1 + α− i)
Γ
(
1 + α− 1

2 i+ 1
2 |i|
)

×

{
C(3)
i

Γ
(

1
4β + 3

4α−
1
2 i+ 1

)
Γ
(

1
4β −

1
4α+ 1

2 + 1
2 i−

[
i+1

2

])
+

D(3)
i

Γ
(

1
4β + 3

4α−
1
2 i+ 1

2

)
Γ
(

1
4β −

1
4α+ 1

2 i−
[
i
2

])},

where the coefficients C(3)
i and D(3)

i are obtained from the Table 2 by replacing

a by 1
2β + 3

2α+ 1− i and b by 1
2β −

1
2α in Ci and Di, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = 1

2 and ε = 1
2β −

3
2α − 1 + i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.3) with

the help of the result (2.9). We omit the details.
�

The particular case i = 0 in Theorem 3.12 yields a known result due to
Lin and Wang [27, Corollary 5.3 (b)], which is recorded in the following
corollary.

Corollary 3.13. The following summation formula holds.

(3.14)

F 1:1;3
1:0;2

[
α : 1

2β −
3
2α− 1 ; 1

2β + 3
2α+ 1, 1 + 1

2α,
α−β

2 ;

β : ; 1
2α, 1 + α+β

2 ;

1

2
,

1

2

]

= 2−
1
2
α− 1

2
β−1

Γ
(

1
2

)
Γ
(

1 + α+β
2

)
Γ
(
1 + 1

4β + 3
4α
)

Γ
(

1
2 + 1

4β −
1
4α
) .

It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.13) yields 10 new
results.
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Theorem 3.14. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then
(3.15)

F 1:1;3
1:0;2

[
α : 3

2β −
1
2α− 1− i ; 1

2α−
1
2β + 1 + i, 1 + 1

2α,
α−β

2 ;

β : ; 1
2α, 1 + α+β

2 ;

1

2
,

1

2

]
=

Γ
(

3
2

)
Γ
(
1 + 1

2α+ 1
2β
)

Γ
(

1
2β −

1
2α− i

)
Γ
(

1
2β −

1
2α−

1
2 i+ 1

2 |i|
)

×

{
E(2)
i

Γ
(
1 + 1

2α
)

Γ
(

1
2 + 1

2β −
[
i+1

2

]) +
F (2)
i

Γ
(

1
2 + 1

2α
)

Γ
(

1
2β −

[
i
2

])},
where the coefficients E(2)

i and F (2)
i are obtained from the Table 3 by replac-

ing a by 1
2β −

1
2α and b by 1 + α+β

2 in Ei and Fi, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = 1

2 and ε = 3
2β −

1
2α − 1 − i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.3) with

the help of the result (2.10). We omit the details. �

The particular case i = 0 in Theorem 3.14 yields a known result due
to Lin and Wang [27, Corollary 5.3 (c)], which is recorded in the following
corollary.

Corollary 3.15. The following summation formula holds.

(3.16)

F 1:1;3
1:0;2

[
α : 3

2β −
1
2α− 1 ; 1

2α−
1
2β + 1, 1 + 1

2α,
α−β

2 ;

β : ; 1
2α, 1 + α+β

2 ;

1

2
,

1

2

]

=
Γ
(

3
2

)
Γ
(

1 + α+β
2

)
Γ
(
1 + 1

2α
)

Γ
(

1
2 + 1

2β
) .

It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.15) yields 10 new
results.

Theorem 3.16. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then

(3.17)

F 0:2;2
1:0;0

[
: α, ε ; β − ε, 1− α− ε+ i ;

β : ; ;

1

2
, −1

]
= F3

(
α, β − ε : ε, 1− α− ε+ i ; β ;

1

2
, −1

)
= 2α−β+ε Γ

(
1
2

)
Γ (β) Γ (ε− i)

Γ
(
ε− 1

2 i+ 1
2 |i|
)

×

{
A(3)
i

Γ
(

1
2β + 1

2ε−
1
2 i
)

Γ
(

1
2β −

1
2ε+ 1

2 + 1
2 i−

[
i+1

2

])
+

B(3)
i

Γ
(

1
2β + 1

2ε−
i
2 −

1
2

)
Γ
(

1
2β −

1
2ε+ i

2 −
[
i
2

])},
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where the coefficients A(3)
i and B(3)

i are obtained from the Table 1 by replac-
ing a by β − ε and b by 1− ε+ i in Ai and Bi, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = 1

2 and γ = 1− α − ε + i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.4) with the
help of the result (2.9). We omit the details.

�

The particular case i = 0 in Theorem 3.16 yields a known result due to
Lin and Wang [27, Corollary 5.4 (a)], which is recorded in the following
corollary.

Corollary 3.17. The following summation formula holds.

(3.18)

F 0:2;2
1:0;0

[
: α, ε ; β − ε, 1− α− ε ;

β : ; ;

1

2
, −1

]
= F3

(
α, β − ε : ε, 1− α− ε ; β ;

1

2
, −1

)
= 2α

Γ (β) Γ
(
1 + 1

2β −
1
2ε
)

Γ (1 + β − ε) Γ
(

1
2β + 1

2ε
) .

in (3.17) yields 10 new results.

Theorem 3.18. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then

(3.19)

F 0:2;2
1:0;0

[
: α, ε ; β − ε, β + ε− α− i− 1 ;

β : ; ;
− 1,

1

2

]
= F3

(
α, β − ε : ε, β + ε− α− i− 1 ; β ; −1,

1

2

)
= 2−α

Γ
(

1
2

)
Γ (β) Γ (1− ε)

Γ
(
1− ε+ 1

2 i+ 1
2 |i|
)

×

{
C(4)
i

Γ
(

1
2β −

1
2ε+ 1

2

)
Γ
(

1
2β + 1

2ε−
[
i+1

2

])
+

D(4)
i

Γ
(

1
2β −

1
2ε+ 1

2

)
Γ
(

1
2β + 1

2ε−
1
2 −

i
2 −

[
i
2

])},
where the coefficients C(4)

i and D(4)
i are obtained from the Table 2 by replacing

a by β − ε and b by β + ε− i− 1 in Ci and Di, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = −1 and γ = β+ ε−α− i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.4) with the
help of the result (2.9). We omit the details.

�

The particular case i = 0 in Theorem 3.18 yields a known result due to
Lin and Wang [27, Corollary 5.4 (b)], which is recorded in the following
corollary.



GENERAL SUMMATION FORMULAS FOR THE KAMPÉ DE FÉRIET FUNCTION119

Corollary 3.19. The following summation formula holds.

(3.20)

F 0:2;2
1:0;0

[
: α, ε ; β − ε, β + ε− α− 1 ;

β : ; ;
− 1,

1

2

]
= F3

(
α, β − ε : ε, β + ε− α− 1 ; β ; −1,

1

2

)
= 2−α

Γ
(

1
2

)
Γ (β)

Γ
(

1
2 + 1

2β −
1
2ε
)

Γ
(

1
2β + 1

2ε
) .

It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.19) yields 10 new
results.

Theorem 3.20. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then
(3.21)

F 0:2;2
1:0;0

[
: α, ε ; β − ε, 1− α− β + ε+ i ;

β : ; ;
− 1,

1

2

]
= F3

(
α, β − ε : ε, 1− α− β + ε+ i ; β ; −1,

1

2

)
= 21−α−β+i Γ

(
1
2

)
Γ (β) Γ (1− β + ε)

Γ
(
1− β + ε+ 1

2 i+ 1
2 |i|
)

×

{
E(3)
i

Γ
(

1
2ε+ 1

2

)
Γ
(
β − 1

2ε−
[

1+i
2

]) +
F (3)
i

Γ
(

1
2ε
)

Γ
(
β − 1

2ε−
1
2 −

[
i
2

])},
where the coefficients E(3)

i and F (3)
i are obtained from the Table 3 by replac-

ing a by β − ε and b by β in Ei and Fi, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = −1 and γ = 1−α− β + ε+ i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.4) with
the help of the result (2.8). We omit the details.

�

The particular case i = 0 in Theorem 3.20 yields a known result due
to Lin and Wang [27, Corollary 5.4 (c)], which is recorded in the following
corollary.

Corollary 3.21. The following summation formula holds.

(3.22)

F 0:2;2
1:0;0

[
: α, ε ; β − ε, 1− α− β + ε ;

β : ; ;
− 1,

1

2

]
= F3

(
α, β − ε : ε, 1− α− β + ε ; β ; −1,

1

2

)
= 2−α

Γ
(

1
2β
)

Γ
(

1
2β + 1

2

)
Γ
(
β − 1

2ε
)

Γ
(

1
2ε+ 1

2

) .
It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.21) yields 10 new

results.
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Theorem 3.22. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then

(3.23)

F 2:0;1
1:0;1

[
α, γ : ; α− β − γ + 1 + i ;
β : ; α− γ + 1 + i ;

− 1, 1

]
= 2−α

Γ
(

1
2

)
Γ (1 + α− γ + i) Γ (γ − i)

Γ
(
γ − 1

2 i+ 1
2 |i|
)

×

{
C(5)
i

Γ
(

1
2α+ 1

2

)
Γ
(

1
2α− γ + 1 + i−

[
1+i

2

])
+

D(5)
i

Γ
(

1
2α
)

Γ
(

1
2α− γ + i+ 1

2 −
[
i
2

])},
where the coefficients C(5)

i and D(5)
i are obtained from the Table 2 by replacing

a by α and b by 1 + α− 2γ + i in Ci and Di, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = −1 and ε = α− β − γ + 1 + i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.5) with
the help of the result (2.8). We omit the details.

�

The particular case i = 0 in Theorem 3.22 yields a known result due to
Lin and Wang [27, Corollary 5.7 (b)], which is recorded in the following
corollary.

Corollary 3.23. The following summation formula holds.
(3.24)

F 2:0;1
1:0;1

[
α, γ : ; α− β − γ + 1 ;
β : ; α− γ + 1 ;

− 1, 1

]
= 2−α

Γ
(

1
2

)
Γ (1 + α− γ)

Γ
(

1
2α+ 1

2

)
Γ
(
1 + 1

2α− γ
) .

It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.23) yields 10 new
results.

Theorem 3.24. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then

(3.25)

F 2:0;1
1:0;1

[
α, γ : ; 1− α− β + γ + i ;
β : ; 1− α+ γ + i ;

− 1, 1

]
= 2−γ

Γ
(

1
2

)
Γ (1− α+ γ + i) Γ (1− α)

Γ
(
1− α+ 1

2 i+ 1
2 |i|
)

×

{
E(4)
i

Γ
(
1− α+ 1

2γ + 1
2 i
)

Γ
(

1
2 + 1

2γ + 1
2 i−

[
1+i

2

])
+

F (4)
i

Γ
(

1
2 − α+ 1

2γ + 1
2 i
)

Γ
(

1
2γ + 1

2 i−
[
i
2

])},
where the coefficients E(4)

i and F (4)
i are obtained from the Table 3 by replac-

ing a by α and b by 1− α+ γ + i in Ei and Fi, respectively.
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Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = −1 and ε = 1−α− β + γ + i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.5) with
the help of the result (2.10). We omit the details.

�

The particular case i = 0 in Theorem 3.24 yields a known result due
to Lin and Wang [27, Corollary 5.7 (c)], which is recorded in the following
corollary.

Corollary 3.25. The following summation formula holds.

(3.26)

F 2:0;1
1:0;1

[
α, γ : ; 1− α− β + γ ;
β : ; 1− α+ γ ;

− 1, 1

]
= 2−α

Γ
(

1
2 −

1
2α+ 1

2γ
)

Γ
(
1− 1

2α+ 1
2γ
)

Γ
(

1
2γ + 1

2

)
Γ
(
1− α+ 1

2γ
) .

It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.25) yields 10 new
results.

Theorem 3.26. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then
(3.27)

F 2:0;1
1:0;1

[
α, γ : ; 1 + 1

2γ ;
2α+ 4 + 2i : ; 1

2γ ;
− 1, 1

]
= 2−α

Γ
(

1
2

)
Γ (α+ 2 + i) Γ (−1− i)
Γ
(
−1− 1

2 i+ 1
2 |i|
)

×

{
C(6)
i

Γ
(

1
2α+ 1

2

)
Γ
(

1
2α+ 2 + i−

[
1+i

2

]) +
D(6)
i

Γ
(

1
2α
)

Γ
(

1
2α+ 3

2 + i−
[
i
2

])},
where the coefficients C(6)

i and D(6)
i are obtained from the Table 2 by replacing

a by α and b by α+ 3 + i in Ci and Di, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = −1 and β = 2α + 4 + 2i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.6) with the
help of the result (2.9). We omit the details.

�

The particular case i = 0 in Theorem 3.26 yields a known result due to Lin
and Wang [27, Corollary 5.8], which is recorded in the following corollary.

Corollary 3.27. The following summation formula holds.

(3.28) F 2:0;1
1:0;1

[
α, γ : ; 1

2γ + 1 ;
2α+ 4 : ; 1

2γ ;
− 1, 1

]
=

2(α+ 1)

α+ 2
.

It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.27) yields 10 new
results. It is also interesting that the right side of the summation formula
(3.27) is independent of the parameter γ.
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Theorem 3.28. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then

(3.29)

F 2:0;2
1:0;2

[
α, −α+ i : ; 1− 1

2α+ 1
2 i,

i−α−β
2 ;

β : ; −1
2α+ 1

2 i, 1 + i−α+β
2 ;

1

2
, −1

2

]
= 2

1
2

(α−β+i) Γ
(

1
2

)
Γ
(
1 + 1

2β −
1
2α+ 1

2 i
)

Γ (1− α)

Γ
(
1− α+ 1

2 i+ 1
2 |i|
)

×

{
A(4)
i

Γ
(

1
4β −

3
4α+ 1

4 i+ 1
)

Γ
(

1
4α+ 1

4β + 1
4 i+ 1

2 −
[

1+i
2

])
+

B(4)
i

Γ
(

1
4β −

3
4α+ 1

4 i+ 1
2

)
Γ
(

1
4α+ 1

4β + 1
4 i−

[
i
2

])},
where the coefficients A(4)

i and B(4)
i are obtained from the Table 1 by replac-

ing a by 1
2α+ 1

2β −
1
2 i and b by α in Ai and Bi, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = 1

2 and γ = −α + i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.7) with the help
of the result (2.8). We omit the details.

�

The particular case i = 0 in Theorem 3.28 yields a known result due to
Lin and Wang [27, Corollary 5.9 (a)], which is recorded in the following
corollary.

Corollary 3.29. The following summation formula holds.

(3.30)

F 2:0;2
1:0;2

[
α, −α : ; 1− 1

2α, −
α+β

2 ;

β : ; −1
2α, 1 + β−α

2 ;

1

2
, −1

2

]
= 2α

Γ
(
1 + 1

4α+ 1
4β
)

Γ
(
1 + 1

2β −
1
2α
)

Γ
(
1 + 1

2α+ 1
2β
)

Γ
(
1 + 1

4β −
3
4α
) .

It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.29) yields 10 new
results.

Theorem 3.30. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then

(3.31)

F 2:0;2
1:0;2

[
1
2β + 3

2γ + 1− i, γ : ; 1 + 1
2γ,

γ−β
2 ;

β : ; 1
2γ, 1 + γ+β

2 ;
− 1, 1

]
= 2−α

Γ
(

1
2

)
Γ
(
1 + 1

2γ + 1
2β
)

Γ (γ + 1− i)
Γ
(
γ + 1− 1

2 i+ 1
2 |i|
)

×

{
C(7)
i

Γ
(

1
4β + 3

4γ + 1− 1
2 i
)

Γ
(

1
4β −

1
4γ + 1

2 i+ 1
2 −

[
1+i

2

])
+

D(7)
i

Γ
(

1
4β + 3

4γ + 1
2 −

1
2 i
)

Γ
(

1
4β −

1
4γ + 1

2 i−
[
i
2

])},
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where the coefficients C(7)
i and D(7)

i are obtained from the Table 2 by replacing

a by 1
2β + 3

2γ + 1− i and b by 1
2β −

1
2γ in Ci and Di, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = −1 and α = 1

2β + 3
2γ + 1− i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.7) with

the help of the result (2.9). We omit the details.
�

The particular case i = 0 in Theorem 3.30 yields a known result due to
Lin and Wang [27, Corollary 5.9 (b)], which is recorded in the following
corollary.

Corollary 3.31. The following summation formula holds.

(3.32)

F 2:0;2
1:0;2

[
1
2β + 3

2γ + 1, γ : ; 1 + 1
2γ,

γ−β
2 ;

β : ; 1
2γ, 1 + γ+β

2 ;
− 1, 1

]
= 2−α

Γ
(

1
2

)
Γ
(
1 + 1

2β + 1
2γ
)

Γ
(

1
4β + 3

4γ + 1
)

Γ
(

1
4β −

1
4γ + 1

2

) .
It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.31) yields 10 new

results.

Theorem 3.32. Let i = 0, ±1, ±2, ±3, ±4, ±5. Then
(3.33)

F 2:0;2
1:0;2

[
1− 1

2β + 1
2γ + i, γ : ; 1 + 1

2γ,
γ−β

2 ;

β : ; 1
2γ, 1 + γ+β

2 ;
− 1, 1

]
= 2i−α−

1
2
β− 1

2
γ Γ
(

1
2

)
Γ
(
1 + 1

2β + 1
2γ
)

Γ
(
1− 1

2β + 1
2γ
)

Γ
(
1− 1

2β + 1
2γ + 1

2 i+ 1
2 |i|
)

×

{
E(5)
i

Γ
(
1 + 1

2γ
)

Γ
(

1
2β + 1

2 −
[

1+i
2

]) +
F (5)
i

Γ
(

1
2γ + 1

2

)
Γ
(

1
2β −

[
i
2

])},
where the coefficients E(5)

i and F (5)
i are obtained from the Table 3 by replac-

ing a by 1
2β −

1
2γ and b by 1

2β + 1
2γ + 1 in Ei and Fi, respectively.

Proof. The proof would run parallel to that of Theorem 3.1, here, by setting
x = −1 and α = 1− 1

2β + 1
2γ + i (i = 0, ±1, ±2, ±3, ±4, ±5) in (2.7) with

the help of the result (2.10). We omit the details.
�

The particular case i = 0 in Theorem 3.32 yields a known result due
to Lin and Wang [27, Corollary 5.9 (c)], which is recorded in the following
corollary.
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Corollary 3.33. The following summation formula holds.

(3.34)

F 2:0;2
1:0;2

[
1− 1

2β + 1
2γ, γ : ; 1 + 1

2γ,
γ−β

2 ;

β : ; 1
2γ, 1 + γ+β

2 ;
− 1, 1

]
= 2−α−

1
2
β− 1

2
γ Γ
(

1
2

)
Γ
(
1 + 1

2β + 1
2γ
)

Γ
(
1 + 1

2γ
)

Γ
(

1
2β + 1

2

) .
It is noted that setting i = ±1, ±2, ±3, ±4, ±5 in (3.33) yields 10 new

results.
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Table 1. Table for Ai and Bi

i Ai Bi
−5 4(a− b− 4)2 − 2b(a− b− 4)− b2 4(a− b− 4)2 + 2b(a− b− 4)− b2

−8(a− b− 4)− 7b +16(a− b− 4)− b+ 12
−4 2(a− b− 3)(a− b− 1)− b(b+ 3) 4(a− b− 2)
−3 2a− 3b− 4 2a− b− 2
−2 a− b− 1 2
−1 1 1

0 1 0
1 −1 1
2 1 + a− b −2
3 3b− 2a− 5 2a− b+ 1
4 2(a− b+ 3)(1 + a− b)− (b− 1)(b− 4) −4(a− b+ 2)
5 −4(6 + a− b)2 + 2b(6 + a− b) + b2 4(6 + a− b)2 + 2b(6 + a− b)− b2

+22(6 + a− b)− 13b− 22 −34(6 + a− b)− b+ 62



GENERAL SUMMATION FORMULAS FOR THE KAMPÉ DE FÉRIET FUNCTION125

Table 2. Table for Ci and Di

i Ci Di
−5 (b+ a− 4)2 − 1

4(b− a− 4)2 (b+ a− 4)2 − 1
4(b− a− 4)2

−1
2(b+ a− 4)(b− a− 4) +1

2(b+ a− 4)(b− a− 4)
+4(b+ a− 4)− 7

2(b− a− 4) +8(b+ a− 4)− 1
2(b− a− 4) + 12

−4 1
2(b+ a− 3)(b+ a+ 1) 2(b+ a− 1)
−1

4(b− a− 3)(b− a+ 3)

−3 1
2(3a+ b− 2) 1

2(3b+ a− 2)

−2 1
2(b+ a− 1) 2

−1 1 1
0 1 0
1 −1 1

2 1
2(b+ a− 1) −2

3 −1
2(3a+ b− 2) 1

2(a+ 3b− 2)

4 1
2(b+ a− 3)(b+ a+ 1) 2(b+ a− 1)
−1

4(b− a+ 3)(b− a− 3)

5 −(b+ a+ 6)2 + 1
4(b− a+ 6)2 (b+ a+ 6)2 − 1

4(b− a+ 6)2

+1
2(b− a+ 6)(b+ a+ 6) +1

2(b+ a+ 6)(b− a+ 6)
+11(b+ a+ 6)− 13

2 (b− a+ 6)− 20 −17(b+ a+ 6)− 1
2(b− a+ 6) + 62

Table 3. Table for Ei and Fi

i Ei Fi
−5 4b2 − 2ab− a2 + 8b− 7a 4b2 + 2ab− a2 + 16b− a+ 12
−4 2b2 − a2 + 4b− 6a 4(b+ 1)
−3 2b− a a+ 2b+ 2
−2 b 2
−1 1 1

0 1 0
1 −1 1
2 b− 2 −2
3 a− 2b− 3 a+ 2b− 7
4 2b2 − a2 − 12b+ 5a+ 12 −4b+ 12
5 −4b2 + 2ab+ a2 + 22b− 13a− 20 4b2 + 2ab− a2 − 34b− a+ 62
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[14] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Func-
tions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953.

[15] H. Exton, Multiple Hypergeometric Functions, Halsted Press, New York, 1976.
[16] H. Exton, On the reducibility of the Kampé de Fériet function, J. Comput. Appl.
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function, Math. Methods Appl. Sci. 38, 2600-2605, 2015.

[31] M.A. Rakha, A.K. Rathie, Generalizations of classical summation theorems for the
series 2F1 and 3F2 with applications, Integral Transforms Spec. Funct. 22 (11), 823-
840, 2011.

[32] K.S. Rao, Vonder Jeugt, Stretched g − j coefficeients and summation theorems, J.
Phys. A: Math. Gen. 27, 3083-3090, 1994.

[33] S. Saran, Reducibility of generalized Kampé de Fériet function, Ganita 31, 89-98,
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