
SOME SUMMATION IDENTITIES

MONISHWARAN MAHESWARAN

Abstract. Most of these identities found in the summer of 2017 while at-

tending the Harvard Summer school.

Acknowledgement: thanks to Oliver Knill for several discussions and assis-
tance in writing this down.

1. A sum which evaluates to an integer

Theorem 1. For any polynomial p with integer coefficients, the sum

f(p) =
∑
k=0

p(k)/2k

is an integer.

Proof. Summation by parts
n∑
k=0

fk[gk+1 − g(k)] = [fn+1gn+1 − f0g0]−
n∑
k=0

gk+1[fk+1 − fk]

for gk = 2−k and fk = p(k) gives in the limit n→∞ the formula

−
∞∑
k=0

p(k)/2k+1 = −p(0)−
∞∑
k=0

(p(k + 1)− p(k))/2k+1 .

Multiply by −2 to get
∞∑
k=0

p(k)/2k = 2p(0) +

∞∑
k=0

q(k)/2k ,

where q(k) = p(k + 1)− p(k) is a polynomial of degree n− 1. By induction on the
degree of the polynomial using that for degree polynomials p the result is 1 proves
the result. �

Remark. My own proof was more complicated and got simplified by Oliver
Knill using summation by parts. The sequence an = f((1 + x)n) is known as the
sequence A207047. The sequence bn = f(xn) is the sequence A002050. It counts
the number of simplices in a Barycentric subdivision of a n simplex.
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2. More sums which evaluate to an integer

Theorem 2. For every m and n, the sum

f(m,n) =
1

e

∞∑
x=0

(xn + 1)n

x!

is an integer

Proof. Define g(y) = (1/e)
∑∞
x=0(xm + y)n/x! and use induction, by differentiation

with respect to y. For example, f(0, n) = 2n and f(m, 0) = 1. �

3. A sum with a factorial

Theorem 3.
∞∑
x=1

1/(2xx!) = e1/2 − 1

Proof. Use Taylor ey =
∑∞
x=0 y

x/x!. �

4. A sum leading to a integer polynomial

Theorem 4. 1
e

∑∞
x=0(x+ y)k/x! is an integer polynomial in y.

Proof. Use induction with respect to k. A special interesting case is y = i. �

5. A sum of rational functions

Theorem 5.
∞∑
n=0

1

n2 + n+ k
= π

tan(
√

1− 4kπ/2)√
1− 4k

Not yet done.

Theorem 6.
∞∑
n=0

1

n(2n+ 1)(2n− 1)
= log(4)− 1

∞∑
n=0

(−1)n

n(2n+ 1)(2n− 1)
= log(2)− 1

Proof. Make a Taylor series

∞∑
n=0

xn

n(2n+ 1)(2n− 1)
= log(1− x) + (1 + x)arctanh(

√
x)/
√
x

The case x→ 1 is a limit. �
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6. A sum which evaluates to a logarithm

Theorem 7.
∞∑
k=1

n−nk

nk
= − log(1− n−n)/n

Proof. It follows from the more general identity
n∑
k=1

xnk

nk
= − log(1− xn)/n

from x = 1/n. The identity for a function is obtained by differentiation with respect
to x:

∞∑
k=1

xnk = xn−1/(1− xn)

which is a geometric sum. �

Remark. This example shows how it can be useful to generalize the problem.
It has become easier by solving a more general sum.

7. A series with a Binomial

Theorem 8.
∑n
k=1(−1)k sin(ak)

(
n
k

)
= (−2)n sin(a/2)n sin((an+ nπ)/2)

Proof. This follows from the geometric series
n∑
k=1

e−iak
(
n
k

)
= (1 + e−ia)n − 1

�

8. A curious ArcCot sum

Theorem 9. cot(
∑∞
k=1 arccot((1 + k)2/2) = 1/3

Remark. This is not yet proven. Originally, I wrote it as cot[
∑
n arccot((2/n2)

∑n
k=1 k

3)
but this simplifies to the above sum. One brutal way to attack the problem is to
write arccot as a Taylor series arccot(x) = π/4 + (x− 1)/2 + (x− 1)2/4... then sum
each term.

9. A Fibonacci sum

Theorem 10. If F (k) is the k’th Fibonacci number, then
∑∞
k=1 F (k)/2k = 2

Proof. The direct proof can be done using Binet’s formula F (k) = φk−(−1/φ)k)/
√

5,

where φ = (1 +
√

5)/2 is the golden ratio.
An other proof can be done by proving a more general formula

∞∑
k=1

F (k)xk = x/(x2 + x− 1)

and applying it for x = 1/2. The formula can be obtained by multiplying both
sides with x2 + x+ 1 and using the identity F (k + 1) = F (k) + F (k − 1). �

Added August 20:
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Theorem 11. If F (k) is the k’th Fibonacci number, then
∑∞
k=1

2k+F (k)
3k

= 21
20 .

Proof. Add
∞∑
k=1

F (k)xk = −x/(x2 + x− 1)

and
∞∑
k=1

2kxk = 2x/(x− 1)2

to get

x
(
x2 + 4x− 3

)
(x− 1)2 (x2 + x− 1)

.

Evaluated at 1/3 this gives 21/20. �

Remarks.
1) More generally, along the same lines, one has

∞∑
k=1

(nk + F (k))/pk = p

(
n

(p− 1)2
+

1

p2 − p− 1

)
2) Other identities are

∞∑
k=1

kF (k)/2k = 10

∞∑
k=1

F (k)2/3k = 3/2

Theorem 12. If F (k) is the k’th Fibonacci number and L(k) is the k’th Lucas

number, then
∑∞
k=1

F (k)L(k)
3k

= 3.

Proof. Since L(k)L(k) = F (2k), this is equivalent to

∞∑
k=1

F (2k)/3k = 3

which is solved similarly computing the generating function

f(x) =

∞∑
k=1

F (2k)xk

and setting x = 1/3. The function f(x) is − 2(5+3
√
5)x√

5(−2x+
√
5+3)((3+

√
5)x−2) . One can get

this by noticing that G(n) = F (2n) is A001906 which has the recursion G(n) =
3 ∗G(n− 1)−G(n− 2). �

10. Summation of a trigonometric function

Theorem 13. With p(x) = sin3(x) the following identity holds:

S(n) =

n∑
k=0

p(3k)

3k
=

sin(3)− sin(3n+1)

4 · 3n
.
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Proof. Start with the identity

sin(3a) = 3 sin(a)− 4 sin3(a)

to get
(3 sin(a)− sin(3a))/4 = sin3(a) .

Now use this with a = 3k:

S(n) =

n∑
k=0

sin3(k)/3k

=

n∑
k=0

[3 sin(3k)− sin(3k+1)/4]/3k

=
3

4
[

n∑
k=0

sin(3k)/3k −
n∑
k=0

sin(3k+1)/3k+1] .

This can be written as a telescopic sum:

3

4
([

sin(30)

30
− sin(32)

32
] + [

sin(31)

31
− sin(32)

32
] + · · ·+ [

sin(3n)

3n
− sin(3n+1)

3n+1
]) .

This reduces to (1/4)[sin(3)− sin(3n+1)]/3n. �

Remark. This looks first like a geometric series in disguise. But it is not. It is
interesting however that if we replace 3 with some other integer, it does not work.
The summation also does not work if sin is replaced by cos. Nor does it if we take
p(x) = exp(x) or exp(ix).

11. More trigonometric sums

[This was updated August 25, 2017].

Theorem 14.
∑n
x=1 sin(a+ bx) = csc

(
b
2

)
sin
(
bn
2

)
sin
(
1
2 (2a+ bn+ b)

)
.

Proof. Write sin(a+ bx) = Im(exp(i(a+ bx)) and use a geometric series. �

Theorem 15.
∑∞
x=1 sin(x)/x = (1 + π)/2.

Proof. (With the assistance of Oliver Knill). This is a Fourier series in disguise.
Replace first x by n to get

∑∞
n=1 sin(n)/n = (1 + π)/2. Then fill in more generally

a variable x in
∑∞
n=1 sin(nx)/n so that we have a Fourier series with coefficients

bn = 1/n. Now write sin(nx) = Im(einx) and use z = eix to get the imaginary
part of

∑∞
n=1 z

n/n = − log(1 − z). We can use this go get an explicit expression∑∞
n=1 sin(nx)/n = 1

2 i
(
log
(
1− eix

)
− log

(
1− e−ix

))
. To get the original sum, just

fill in x = 1. �

Theorem 16.
∑∞
x=1 sin(x)/x! = sin(sin(1))(sinh(cos(1)) + cosh(cos(1)).

Proof. This is similar as before, we deal with the Fourier series
∑∞
n=1 sin(nx)/n!.

And use
∑∞
n=1 z

n/n! = exp(z) with z = exp(ix). This gives the explicit formula∑∞
n=1 sin(nx)/n! = sin(sin(x))(sinh(cos(x)) + cosh(cos(x))). �
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12. Leibniz like sums

Theorem 17.
∑∞
k=0(−1)k/(3k + 1) = (

√
3π + log(8))/9.

Proof. (With the assistance of Oliver Knill): Similarly as the sum
∑∞
k=0(−1)k/(1+

2k) = π/4 follows from making the Fourier expansion of sign(x), one can take the
series

f(x) =

∞∑
k=0

sin(1 + 2k)/(1 + 3k)

and evaluate it at π/2. But the function does not appear to be elementary. Math-
ematica gives expressions using Hypergeometric functions. Evaluating it at π/2 is
however simple. �

13. Involving the zeta function

These were added September 1, 2017 ζ(n) is the Riemann zeta function.
Γk(x) is the k’th Poly gamma function, the k’th derivative of the Digamma
function Γ0(x) = Γ′(x)/Γ(x). γ = 0.5777216... is the Euler Gamma function.

Theorem 18.
∑∞
n=2 nζ(n+ 1)/2n = π2/6.

Proof.
∑∞
n=2 nζ(n+ 1)xn = xΓ1(1− x). Now plug in x = 1/2. �

Theorem 19.
∑∞
n=2 ζ(n)/2n = log(2).∑∞

n=2(−1)kζ(n)/2n = 1− log(2).∑∞
n=2(1 + (−1)n)ζ(n)/2n = 1

Proof.
∑∞
n=2 ζ(n)xn = −xγ − xΓ0(1 − x). Now plug in x = 1/2 or x = −1/2.

Addition gives the third. The third one is equivalent to
∞∑
n=1

ζ(2n)/4n = 1/2 .

�

Remark (by Oliver Knill): one can write this out as
∞∑
n=2

∞∑
m=1

1

mn2n
=

∞∑
n=2

∞∑
m=1

1

(2m)n
=

∞∑
n=2

[ζ(n)− λ(n)] ,

where λ is the Dirichlet λ-function, a special Dirichlet L-series. So, one has
∞∑
n=2

(ζ(n)− λ(n)) = log(2)

Generalizing gives
∞∑
n=2

(ζ(n)− λ(n))xn = (−x/2)(γ − Γ0(1− x/2))

14. Involving the Gamma function

Theorem 20.
∑∞
n=1(Γ′(n)/Γ(n))/2n = log(2)− γ.

Proof.
∑
n(Γ′(n)/Γ(n))xn = x

x−1 [γ + log(1− x)] �
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15. Double summation

This example was added September 8, 2017:

Theorem 21.
∑∞
n=1

∑n
m=1

1
(nm)2 = 7π4

360 = 7ζ(4)/4.

No justification yet. Related is
∑∞
n=1

∑n
m=1

1
((n+1)m)2 = π4

120 . There might be a

relation also with
∑∞
n=1

∑∞
m=1

1
nm)2 = (

∑∞
n=1

1
n2 )2 = ζ(2)2 = π4/36.

16. Polylog sums which evaluate to an integer

This example was added September 15, 2018:

Theorem 22. For any integer k the sum
∞∑
n=1

nk−1
(x− 1)k

xn

is an integer polynomial.

For example, for k = 15, x = 3, it evaluates to 696933753434112.

Proof. For k = 1, the result is 1 as it reduces to a geometric series. One can now
use induction. If k is increased by 1, and integrated with respect to x we get a
polynomial by induction �

Remark. With the polylog Poly(k, x) =
∑∞
n=1 x

n/nk one can write Poly(−k, 1/x) =∑∞
n=1 n

k/xn. Like the logarithm log(x) = Poly(1, 1− 1/x) also the Polylog has the
property Poly(−k, x) = −Poly(−k, 1/x). One has therefore the equality of polyno-
mials

Poly(−k, x)(1− x)k+1 = −Poly(−k, 1/x)(1− x)k+1 .

The statement is equivalent that Poly(−k, x)(1− x)k+1 is a polynomial.

17. Two summands

If [x] is the floor function, then [eπ]− [πe] = 1 and [eπ − πe] = 0.
E-mail address: mom359@g.harvard.edu
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