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Abstract:  In this paper, we will show how to calculate volumes of certain solids of revolution without using direct 
integration.  The traditional method of such volume computation uses definite integrals as given by Disk Method or 
Shell Method in a calculus course.  However, instead of direct integration, we will calculate these volumes as a limit of 
a summation.  Even though somewhat longer then the traditional method in general, this method emphasizes the 
fundamental idea behind a definite integral, i.e. the definite integral as the limit of a sum.  We will also use the 
computer algebra system Mathematica to facilitate and verify our calculations. 
 
 

1. Introduction 
 
       In this section, we will briefly review the Disk Method and the Shell Method of finding the 
volume of a solid of revolution (see [3]). 
         Consider a nonnegative continuous function )(xfy =  defined on a closed interval ],[ ba  
where a and b are real numbers with ba < .  Let ℜ  be the region bounded by the graphs of 

,,0),( axyxfy === and bx = .  Let  V  be the volume of the solid obtained by rotating the 
region ℜ  around the x-axis.  See the following figure:   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 The region ℜ  under the graph of )(xfy = , and the solid obtained by revolving this 
region around the x-axis 
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According to the Disk Method, the volume V is given by the following definite integral (see [3]): 
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dxxfV 2)]([π  (1.1) 

  
The above formula (1.1) is based on the volume of a cylinder, which is given by 

)()( 2 heightradiusπ .  For example, suppose we divide the interval ],[ ba  into n equal pieces, where 
n is a natural number, using the partition bxxxxxa n =<<<<<<= − ...... 11110 . Let x∆  be the 
length of any subinterval ],[ 1 ii xx − , .,....,2,1 ni =  Then we have the following formulas: 
 
  nabx /)( −=∆  (1.2) 
 
 nabiaxi /)( −+=  (1.3) 
 
We can cut the solid into slices perpendicular to the x-axis, at the numbers ix  where ni ...,,2,1= . 
Each slice is approximately a thin cylinder with height x∆ and radius )( ixf , so its volume iV∆  is 
approximately given by xxf i ∆2)]([π .  Therefore, an approximation for the volume V of the solid is 
obtained by adding all the smaller volumes iV∆ , as given below: 
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The actual volume V of the solid is given by taking the limit of the above summation as ∞→n : 
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In the next section, we will illustrate how to compute certain volumes using the above formula 
(1.5), without directly evaluating the integral given by (1.1). 
 
      Now to illustrate the Shell Method, let W be the volume of the solid obtained by rotating the 
above described region ℜ  around the y-axis.  According to the Shell Method formula W is given by 
the following integral (see [3]): 
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The above integral is based on the volume of a shell, i.e. the space between two cylinders, which is 
given by ))()((2 shelltheofthicknessshelltheofheightshelltheofradiusπ (see [3]).  Corresponding 
to equation (1.5), the summation version of the integral (1.6) is given by the following equation: 
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In the next sections we will illustrate how to use formulas (1.5) and (1.7) to calculate volumes 
corresponding to several types of functions )(xf , instead of using direct integration. 
 
 
2.  The Volume of a Solid Generated by Revolving the Region Under a Square 
Root Function Around the x-Axis 
 
      Consider the function xkxf =)(  over the closed interval ],0[ b , where k and b are real 
positive constants.  Let ℜ  be the region bounded by the graphs of ,0,0),( === xyxfy and 

bx = .  In this section, we will compute the volume V of the solid obtained by rotating the region 
ℜ  around the x-axis, using equation (1.5).  See the following figure: 
 
 
 
 
   
 
 
 
 
 
 
 
 

Figure 2.1  The region ℜ  under the graph of xkxf =)( , and the solid obtained by revolving this 
region around the x-axis 

 
By employing the same notation as given in section 1, we can see that nbx /=∆ , and 

nibnabiaxi //)( =−+= , for ni ...,,2,1= .  Then using equation (1.5), one can obtain the 
following: 
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The summation involved in equation (2.1) is a well-known quantity in mathematics, and is given by 
the following (see [1] and [3]): 
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By using (2.2) in equation (2.1), we are able to calculate the required volume V : 
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One can of course, verify the above result by direct integration: Using the Disk Method formula 

give by equation (1.1), ∫ ===
b

b bkxkdxxkV
0

22
0

222 2/]2/[)( πππ , which agrees with the result 

just obtained. 
 
In the next section, we will consider a slightly more challenging problem arising from a quadratic 
function.  Obviously, as the function )(xf  becomes more complicated, the corresponding 
summation and limit calculations become tedious.  However, in the course of the paper, the reader 
will be surprised to observe that one can still use the summation method to find the volumes 
corresponding to a wider class of functions, including polynomials, exponential functions, 
logarithm functions, and also sine and cosine functions.  
 
   

3.  The Volume of a Solid Generated by Revolving the Region Under a 
Quadratic Function Around the x-Axis  
 
     Consider the function 2)( xkxf =  over the closed interval ],0[ b , where k and b are real positive 
constants.  Let ℜ  be the region bounded by the graphs of ,0,0),( === xyxfy and bx = .  In this 
section, we will compute the volume V of the solid obtained by rotating the region ℜ  around the x-
axis, using equation (1.5).  Using the same notation as in section 1, we can express the volume V as 
the limit of a summation: 
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The summation ∑
=

n

i
i

1

4 arising in equation (3.1) refers to the sum of the fourth powers of the first n 

positive integers, for which an expression can be found in most standard mathematical handbooks 
(see [1]).  Alternatively, one can use a computer algebra system (CAS) such as Mathematica to 
evaluate this summation (see [2] and [5]).  The Mathematica built in function “Sum” can calculate 
reasonable finite or infinite sums.   Specifically, the input line Sum [i ^ 4, {i, 1, n}] calculates the 
required sum.  Each Mathematica command can be executed by pressing “Shift-Enter” at the end 
of the command line.  Thus, we can obtain the following result: 
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Using equation (3.2) in (3.1), we are in a position to finish the computation for V : 
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One can of course, verify the above result directly using the Disk Method formula (1.1).  The 
method outlined in this section can be used to find the volumes of solids corresponding to any 
polynomial function )(xf , not just a quadratic function.  However, as the degree of the polynomial 
gets higher, the hand calculations become more tedious, and therefore, one can use a CAS for 
advantage.  The following Mathematica program automates the procedure for finding the volume 
by summation method (see [2] and [5]): 
 
Program 3.1  
 
Clear[f,a,b,deltax,v] 
f[x_]:=  3x^3 + 2x^2 + x + 2 
a =1; 
b =3; 
deltax = (b-a)/n; 
x [i_]:= a + i(b-a)/n; 
v[i_]:= Pi * f[x[i]]^2*deltax 
vapprox = Simplify[Sum[v[i], {i, 1, n}] ]; 
v = Limit[ vapprox, n->Infinity] 
 
In this program, the user can enter his or her own inputs for f[x_], a and b, and the program 
calculates the volume of the solid generated when the corresponding region is rotated about the x- 
axis.  In the above, as an example, we have chosen 1,223)( 23 =+++= axxxxf , and 3=b . The 
program can be executed by pressing “Shift-Enter” at anywhere in the command lines.  As the 
output, we obtain the volume as 7/36208π .  One can also verify this answer directly using the 
“Integrate” command of Mathematica, and the Disk Method formula (1.1), as shown below: 
 
Input: Integrate[Pi(3x^3+2x^2+x+2)^2,{x,1,3}] 
 
Press “Shift-Enter” at the end of the command line to obtain the output as 7/36208π , confirming 
the previous answer.  
   ■ 
 
 
4.  The Volume of a Solid Generated by Revolving the Region Under an 
Exponential  Function Around the x-Axis  
 
      In this section, we would like to challenge ourselves by considering an exponential function for 

)(xf .  Consider the function xmekxf =)(  over the closed interval ],0[ b , where k, m, and b are 
real constants with k, b positive, and m nonzero.  Let ℜ  be the region bounded by the graphs of 

,0,0),( === xyxfy and bx = .  We would like to compute the volume V of the solid obtained by 



rotating the region ℜ  around the x-axis, using the summation method.  The equation (1.5) again 
implies the following:   
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Observe that ∑
=

n

i

n
mbi

e
1

2

is a geometric series with the initial term, and the common ratio each equal to 

nmbe /2 .  Using the fact that the sum of the first n terms of a geometric series with initial term a and 
the common ratio r is given by )1/()1( rra n −−  where 1≠r , we obtain the following (see [3]):   
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Substituting equation (4.2) into (4.1), we are able to compute the volume V, by making use of 
L’Hopital’s Rule (see [3]): 
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One can check the accuracy of the above calculation, using Program 3.1.  By choosing, 

,0,)( == aekxf mx bb = , the resulting output is the same as volume V obtained above.  Another 
way to verify the result directly is, by using the Disk Method formula (1.5), and the Mathematica 
“Integrate” command, as shown below: 
 
Input: Integrate[Pi* (k*Exp[m*x])^2, {x,0,b}]   
 
Press “Shift-Enter” anywhere in the command line to obtain the same answer above, verifying our 
calculations.                                                                                                                                         ■ 
 
 
 

5.  The Volume of a Solid Generated by Revolving the Region Under a 
Logarithm Function Around the x-Axis  
 
      Consider the function xkxf ln)( =  over the closed interval ],1[ b , where k, b are real constants 
with k positive, and 1>b .  Let ℜ  be the region bounded by the graphs of 

,1,0),( === xyxfy and bx = .  We would like to compute the volume V of the solid obtained 
by rotating the region ℜ  around the x-axis, using the summation method.  Using the same notation 



as in section 1, we see that nbx /)1( −=∆ , and nbixi /)1(1 −+= .  Once the equation (1.5) is used 
to compute the volume V, the difficulty is immediately clear, since we are now faced with 

calculating  ∑
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2]/)1(1ln([ .  It is very difficult to simplify this summation even with the 

help of a CAS, so we will approach the problem in an indirect way. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1  The regions ℜ  and ℑ  associated with the graph of xkxf ln)( =    
 
      As given in the above figure, let ),( cbP  be the point on the graph of xkxf ln)( =  
corresponding to .bx =  This means that bkc ln= , or equivalently kceb /= ,  We now consider the 
region ℑ  bounded by the graphs of ,0,),( === ycyxfy  and 0=x .  Let 1V  be the volume of 
the solid generated when the region ℑ  is rotated around the x-axis, and let 2V  be the volume of the 
cylinder generated when the region bounded by the graphs of ,0,0, === xycy  and bx =  is 
rotated around the x-axis.  Clearly, 222

2 )(lnbbkbcV ππ == , and the required volume V is just 
equal to 12 VV − .  See the following figure: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.2  The solid obtained by revolving region ℜ  around the x-axis, with volume V (on left), 

and the solid obtained by revolving the regionℑ  around the x-axis, with volume 1V  (on right)    
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In order to find the volume 1V , we will use the  summation version of the Shell Method formula 
given by equation (1.7), with x and y variables interchanged. Divide the interval ],0[ c  of the y-axis 
into n equal pieces using the partition cyyyyy n =<<<<<<= − ......0 11110 , where n is a natural 
number.  Let y∆  be the length of any subinterval ],[ 1 ii yy − , .,....,2,1 ni =  It follows that ncy /=∆  
and nciyi /= .  When using the Shell Method as described in section 1, note that the radius of each 
shell is equal to iy , while the height is equal to kyie / .  Thus, the volume element of a typical shell 
is approximately equal to yey ky

i
i ∆/2π .  By adding all these volumes, and taking the limits as 

∞→n , we can calculate 1V  as follows: 
 

 






















=














=∆= ∑∑∑

=
∞→

=
∞→

=
∞→

n

i

nk
ic

n

n

i

nk
ic

n

n

i

k
y

in
ei

n
c

n
ce

n
ciyeyV

i

1
2

2

11
1

2lim2lim2lim πππ  (5.1) 

 

A series such as ∑
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nkicei
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)(/  in above formula (5.1) is called an arithmetico-geoemtric series, 

because it is a hybrid of an arithmetic series and a geometric series, and can be computed by hand 
without much difficulty.  However, we opt to use the “Sum” command of Mathematica to compute 
its sum, where the result is given below:     
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By substituting equation (5.2) into (5.1), we can proceed with the calculation for 1V .  In the 
following, we used the L’Hopital’s Rule to obtain cken nkc

n
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calculation of equation (4.3), and the fact that bkc ln= . 
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We are finally in a position to calculate the required volume V as the difference of the volumes 2V  
and 1V , as remarked earlier. 
 
  ])1(2ln2)(ln[)ln1(2)(ln 22222

12 −+−=+−−=−= bbbbbkbbbkbbkVVV πππ  
 
As done in the previous sections, one can of course use the “Integrate” command of Mathematica 
to verify the accuracy of the above answer. 
  ■ 



6.  The Volume of a Solid Generated by Revolving the Region Under a Sine or 
Cosine Function Around the x-Axis  
 
             As a final illustration, let us consider some trigonometric functions.  Consider the function 

Sinxkxf =)(  over the closed interval ],0[ π , where k is a positive real constant.  Let ℜ  be the 
region bounded by the graphs of ,0,0),( === xyxfy and π=x .  Let us compute the volume V 
of the solid obtained by rotating the region ℜ  around the x-axis, using the summation method.  
Using the same notation as in section 1, we find that nx /π=∆  and nixi /π=  for ni ,....,2,1=  
where n is a natural number.  Then equation (1.5) yields the following expression for the volume V: 
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Note that ∑
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niCos

1
)/2( π  refers to a sum of the cosines of a sequence of angles in arithmetic 

progression, which can be computed by the following well-known formula, where α  and β  are 
real numbers with 0)2/( ≠βSin (see [1] and [4]): 
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Using the above equation with n/2πβα == , we can easily see that the required sum 
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)/2( π  is equal to zero. Thus, the equation (6.1) yields the desired volume V: 
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The “Integrate” command of Mathematica readily verifies the above result for the volume V. 
  ■ 
 
Even though not included here, one can use the same method to find the volume of the solid of 
revolution corresponding to a cosine function.  
 
 
 
 
 



Conclusion  
  
      In this paper, we showed how to calculate the volumes of certain solids of revolution using a 
summation method.  The traditional method directly calculates these volumes via certain definite 
integrals based on either Disk Method or Shell Method, and is generally faster than the proposed 
method.  However, the advantage of our method is that it emphasizes one of the most fundamental 
aspects of definite integral, i.e. the definite integral as the limit of a summation.  Another important 
aspect of our method is that it gives students an excellent opportunity to deal with two other 
important aspects of calculus, namely summations and limits.  Also our method creates a new 
appreciation for the definite integral and the Fundamental Theorem of Calculus (FTC), as FTC 
provides an effective short-cut for the summation method.  The paper also emphasizes the usage of 
a CAS, without sacrificing the hand calculations altogether.  The student is encouraged to try the 
summation method described in this paper to calculate volumes of solids of revolutions arising 
from other types of functions.     
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