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Abel’s theorem

Summation by parts: For any numbers ak, bk,
n

∑
k=1

akbk = an(b1 + . . . + bn) +
n−1
∑
k=1
(ak − ak+1)(b1 + . . . + bk).

Proof : The formula clearly holds when n = 1 ∶ a1b1 = a1b1. As we increment n by 1,
the left-hand side increases by an+1bn+1 and the right-hand side increases by

(an+1 − an)(b1 + . . . + bn) + an+1bn+1 + (an − an+1)(b1 + . . . + bn) = an+1bn+1. ◻

Abel’s bound: If ak > 0 are decreasing and bk have bounded sums, ∣b1 + . . . + bk∣ ≤ B,

∣
n

∑
k=1

akbk∣ ≤ a1B.

Proof : Using summation by parts,

∣
n

∑
k=1

akbk∣ ≤ (an +
n−1
∑
k=1
(ak − ak+1))B = a1B. ◻

Abel’s test for uniform convergence: Suppose that ak(x) and bk(x) are two
sequences of functions on a set E satisfying the following three conditions:

● ak(x) is a monotone sequence for every x ∈ E,

● ak(x) are uniformly bounded: ∣ak(x)∣ ≤ A, k ∈ N, x ∈ E,

●
∞
∑
k=1

bk(x) converges uniformly on E.

Then the series
∞
∑
k=1

ak(x)bk(x) converges uniformly on E.

Proof : We may assume that ak(x) are decreasing. Indeed, for any x ∈ E such that
ak(x) is increasing, replace ak(x) and bk(x) with −ak(x) and −bk(x), respectively.
We may also assume that ak(x) ≥ 0 by considering ak(x) +A in place of ak(x).
Using Abel’s bound, we have

∣
j

∑
k=i

ak(x)bk(x)∣ ≤ ai(x) sup
m≥i
∣
m

∑
k=i

bk(x)∣ ≤ A sup
m≥i
∣
m

∑
k=i

bk(x)∣⇉ 0, i→∞. ◻

Theorem [Niels H. Abel, 1826]: If a power series
∞
∑
k=0

ckx
k converges at some x0 > 0,

it then converges uniformly on [0, x0]. In particular, the series is left-continuous at x0.

Proof : Apply Abel’s convergence test with ak(x) = (x/x0)k and bk(x) = ckxk
0. ◻


