Topic 1: Growth of Functions, Summations
(CLRS 3, Appendix A)

CPS 230, Fall 2001

1 Algorithms matter!

e Sort 10 million integers on

— 1 GHZ computer (1000 million instructions per second) using 2n? algorithm.

— 100 MHz personal computer (100 million instructions per second) using 50n logn algo-
rithm.

2:(107)? inst.
e Computer : 155 Z.r(m_ )pe:rfewn 2 = 200000 seconds ~ 55 hours.

. 50-107-log 107 inst. 50-107.7-3 _ _
e Personal computer : T0% inst. per second < ~ 105~ — 5-7-3 = 105 seconds.

2 Asymptotic Growth

e In the insertion-sort example we discussed that when analyzing algorithms we are

— interested in worst-case running time as function of input size n
— not interested in exact constants in bound

— not interested in lower order terms

e A good reason for not caring about constants and lower order terms is that the RAM model
is not completely realistic anyway (not all operations cost the same)

4

e We want to express rate of growth of standard functions:

— the leading term with respect to n

— ignoring constants in front of it

kin+ky=xn
kinlogn <nlogn
kin? + kon + k3 < n?

e We also want to formalize e.g. that a nlogn algorithms is better than a n? algorithm.
Y
e O-notation (Big-O)

— you have probably all seen it intuitively defined but we will now define it more carefully.



2.1 O-notation (Big-0)

O(g(n)) = {f(n) : 3 ¢,ng > 0 such that |f(n)| < c|g(n)| Yn > no}

e O(-) is used to asymptotically upper bound a function.

e O(-) is used to bound worst-case running time.

e Examples:
— 1/3n? — 3n € O(n?) because 1/3n? — 3n < cn? if ¢ > 1/3 — 3/n which holds for ¢ =1/3
and n > 1.

— kin? + kon + k3 € O(n?) because kin? + kon + k3 < (k1 + |k2| + |k3|)n? and for ¢ >
ki + |ko| + |k3| and n > 1, k1n? + kon + k3 < cn?.

— k1n? 4+ kon + k3 € O(n?) as kin? + kon + k3 < (k1 + k2 + k3)n® (Upper bound!).
o Note:
— When we say “the running time is O(n?)” we mean that the worst-case running time is

O(n?) — best case might be better.

— Use of O-notation often makes it much easier to analyze algorithms; we can easily prove
the O(n?) insertion-sort time bound by saying that both loops run in O(n) time.

— We often abuse the notation a little:

* We often write f(n) = O(g(n)) instead of f(n) € O(g(n)).

*+ We often use O(n) in equations: e.g. 2n? + 3n + 1 = 2n? + O(n) (meaning that
2n2 + 3n + 1 = 2n? + f(n) where f(n) is some function in O(n)).

* We use O(1) to denote constant time.

2.2 Q-notation (big-Omega)

Q(f(n)) = {f(n) : 3 ¢,np > 0 such that c|g(n)| < |f(n)| Vn >
g

e Q(-) is used to asymptotically lower bound a function.




e Examples:

— 1/3n? — 3n = Q(n?) because 1/3n2 — 3n > cen? if ¢ < 1/3 — 3/n which is true if ¢ = 1/6
and n > 18.
— k1n2 + kon + k3 = Q(’N,Z)
— k1n? + kon + k3 = Q(n) (lower bound!)
e Note:

— When we say “the running time is Q(n?)”, we mean that the best case running time is
Q(n?) — the worst case might be worse.

e Insertion-sort:

— Best case: Q(n)
— Worst case: O(n?)

— We can also say that the worst case running time is 2(n?) = worst case running time
is “precisely” n?.

2.3 O-notation (Big-Theta)

@(}?(n)) = {f(n) : 3 c1,c2,n9 > 0 such that c1|g(n)| < |f(n)| < c2lg(n)| Vn >
g

e O(:) is used to asymptotically tight bound a function.




[ 7(n) = ©(g(n)) if and only if {(n) = O(g(n)) and f(n) = A(g(n)) |

e Examples:

— kin? + kon + k3 = ©(n?)
— worst case running time of insertion-sort is ©(n?)
— 6nlogn + y/nlog?n = O(nlogn):
* We need to find ng, c1, co such that cinlogn < 6nlogn + \/ﬁlog2 n < conlogn for

n > ng
cinlogn < 6nlogn + /nlog?n = ¢; < 6 + l%gfnﬂ Ok if we choose ¢; = 6 and
’I’L():l.

6nlogn + \/ﬁloggn < conlogn = 6 + %g—;n < ¢o. Is it ok to choose ¢y = 77 Yes,
logn <+/nifn> 2.
* Soc; =6, cog =7 and nyg = 2 works.

o Note:

— We often think of f(n) = O(g(n)) as corresponding to f(n) < g(n).
— Similarly, f(n) = ©(g(n)) corresponds to f(n) = g(n)
— Similarly, f(n) = Q(g(n)) corresponds to f(n) > g(n)
— One can also define o0 and w
* f(n) = o(g(n)) corresponds to f(n) < g(n)
* f(n) = w(g(n)) corresponds to f(n) > g(n)

2.4 Asymptotic equality

f(n) ~ g(n), as n — oo, iff nll)rgo% =1

e Strongest notion

e f(n)~g(n) = [f(n)=06(g(n)).



e L’Hospital’s Rule: If f(n) and g(n) are differentiable and either f(n) and g(n) — oo or f(n)

and g(n) — 0 as n — oo, then

limn M = lim ;
n—oo g n) n—00 g’(n)

e Example: As n — oo,
1\" 1
(l-l——) = expln( )
n n
1
= exp(nln( +E>>
n(1+1)
= e |

—(1/n?) /(1+ 2
— exp( / ( n) , by L’Hospital’s Rule

—1/n?
li !
= exp lim
n—00 (1 4 l)
n
= exp(l) =e.

2.5 Growth rate of standard functions

e Book introduces standard functions in section 2.2 (we will introduce them as we need them):

— Polynomial of degree d: p(n) = Y% ,a; - n' where a1,as,...,aq are constants (and

ag > 0). p(n) = O(n?)

e “Growth order”: loglogn,logn,/n,n,nlog log n, nlogn, nlog?n,n?,n3,2"

— Growth rate of polynomials versus exponentials: lim,, g—z = 0.

3 Summations

When analyzing insertion-sort we used an arithmetic series
n(n + 1)
2

n
Zk):1+2+3+...+n: :@(nQ)

k=1

How can we prove this?

e Asymptotic:
Often good estimates can be found by using the largest value to bound others:
Yho1k <Yioin=mn-YE,1=n’=0(n’
Another trick: Splitting the sum:
Sro k=S8 k4R E> S04 S k> (3)2 = 0(n?).
4
Yk-1k=0(n?



e The ezact answer can be gotten by method used by Gauss as a boy in grade school: Write
the sum forwards, and immediately below it write the sum backwards, and then sum the n

columns. Each of the n columns sums to n + 1. Therefore, double the summation is n(n + 1).
QED.

e Another way (proof by induction!):

— Basis: n=1= Y;_;=1

— Induction:
Assume it holds for n: >p_; k = @
Show it holds for n + 1: Y ptl g = (Hnt2) _ 152 4 3 4 g
Proof:

n+1 n

Yok = > k+(n+1)
k=1

1 1
= §n2+§n+n+1

1 3

In general we can prove that | S°7_, k% = Q(ndt!)

Another important sum (Geometric series):

zntl 1

n
Yoab=1+z+2°+--2" =
rz—1

k=0

= O0(z"), for z > 1

e Can be derived by trivial identity

n n
ka =1 +m(2:1:k) — g™t
k=0

k=0

e Proof by induction:

— Basis: n=1= Y  zf=1+z

ntlog g1 _ (al)(z=1)
T T e T - —r+1
— Induction:
. _ gntl g
Assume holds for n: Y p_gz% = £ —
Show it holds for n + 1: EZ;Lé zk = %
Proof:
n+1 n
ook = > gk 4ant!
"t —1

_ n+1
= .1 +z



1.17.4-1 S .Z‘n+1($ _ 1)

z—1
:L.n—|—1 -1 4 xn—|—2 _ l,n—|—1

z—1
$n+2—1

z—1

e Asymptotic (we don’t need to know result to do induction!):

Consider for example that we want to prove that Y-7_, 3% = O(3%), that is, that 37_, 3F < ¢3"
for some c.

— Basis: n=1= Y};_(3"=1+3=4
3t =c3
Ok ifc>4/3
— Induction:
Assume holds for n: 3-7_, 3% < ¢3"
Show holds for n + 1: Y3} 3F < c3nt!

Proof:
n+1 n
Z 3k5 — Z 3k + 3n+1
c3’n + 3n+1
= e3"(1/3+1/c)
< C3TL+1
If 1/3 4+ 1/c < 1 which holds if ¢ > 3/2
"1
k=1
. . 1 1 1 - .
Another important sum: . T T (Harmonic Series)
2 3 n
1
=1 — ———+...
MYt o T T T

where v~ 0.44742. . ..

e Upper bound (approximate by superior integral, as in handout for sum of squares)

"1 n 1
k=1 LT
= 1+Inn—Inl
= 1+Inn

e Lower bound (approximate by inferior integral)



= In(n+1)—Inl
= In(n+1)

= nn(i+1)
= lnn—i—ln(l—l—%)

mntto Loy
= lnn+-— —+...
n  2n?

4 Growth review
e O(-) used to asymptotically upper bound functions.
e ()(-) used to asymptotically lower bound functions.

e O(:) used to asymptotically tight bound functions.

5 Summation review
e We computed a number of sum’s using;:

— Manipulation
— Splitting and bounding terms ideas
— Induction (!)

— Approximation by an integral



