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23. 〈3〉 Prove that an = Ord(bn) is an equivalence re-
lation as defined on p. 15. If we now reinterpret
Ord(an) to denote the equivalence class of {an}, it
follows that the statement Ord(an) = Ord(bn) now
makes sense as an equality of sets. See [25, Sec-
tion 0.1]. Note : Using Condition (3), this equiva-
lence relation is defined on the set of all sequences.
Using (2) it must be restricted to sequences with
only finitely many zero values, so that an/bn is
eventually defined.

24. 〈2〉 Since we used < as the symbol for order
ranking, it better be true that order ranking be-
haves the way < should. Specifically, show that if
Ord(an) < Ord(bn) and Ord(bn) < Ord(cn) then
Ord(an) < Ord(cn). That is, prove that order
ranking is transitive.

25. 〈3〉 Is big Oh a transitive relation? Is it an equiv-
alence relation?

26. 〈3〉 Define sequence {an} to be asymptotic to
{bn}, written an ∼ bn, if

lim
n→∞

an

bn
= 1.

If {an} is not asymptotic to {bn}, we write an 6∼
bn.

a) Show that 3n − 1 ∼ 3n but 3n − 1 6∼ n.

b) If an ∼ bn, then an = Ord(bn). Why?

c) Show that ∼ is an equivalence relation.

d) Prove: If an ∼ bn and bn = o(cn), then
an = o(cn).

e) Prove: If an ∼ bn and bn = Ord(cn), then
an = Ord(cn).

27. 〈3〉

a) Prove that Ord(log n) = Ord(⌈log n⌉).

b) More generally, for any function f(n) show
that Ord(f(n)⌊log n⌋) = Ord(f(n) log n) =
Ord(f(n)⌈log n⌉). For instance, it follows
that Ord(nk log n) = Ord(nk⌈log n⌉) for every
power k.

This problem is relevant because algorithms must
take an integer number of steps. Thus, when we
say an algorithm takes 5n log n steps, we probably
mean something like 5n⌈log n⌉ steps. This prob-
lem suggests that we won’t get the Order wrong
by ignoring floors and ceilings.

28. 〈4〉 Ord, O, and o need not be restricted to se-
quences, or to limits at ∞. Consider the fol-
lowing version: Let f and g be functions defined
around 0, and write f(x) = Ord(g(x)) (as x → 0)
if there are positive constants L and U such that
L ≤ |f(x)/g(x)| ≤ U for all x sufficiently close
to 0. While this cognate definition is not very use-
ful for the analysis of algorithms, it can be quite
useful in continuous mathematics.

a) Show that, as x → 0, Ord(x+1) = Ord(x+2)
but that Ord(x+1) 6= Ord(x).

b) Come up with the associated definition for
Ord(f(x)) < Ord(g(x)).

c) Consider all functions of either the form f(x) =
xn, n > 0, or the form f(x) = ax, a > 0. De-
termine the order ranking (as x → 0) for all
these functions.

0.4 Summation and Product Notation

In Section 0.1 we wrote a polynomial Pn(x) as

Pn(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0. (1)

Perhaps you find reading this as tedious as we found typing it on our word processor.
In any case, some shorthand notation other than the use of ellipses for writing long
sums like this would clearly be useful and would save a lot of space, if nothing
else. Summation notation is such a shorthand. It is one of the most powerful
bits of mathematical notation there is, and we’ll use it often. Although summation
notation is simple in concept, students often have trouble using and understanding
it. Since it is so important and since its use involves considerable subtleties, we
devote an entire section to it and its close relative, product notation.
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Summation notation allows us, for example, to write the polynomial in Eq. (1)
as

Pn(x) =

n
∑

i=0

aix
i. (2)

Instead of writing a sequence of terms, we have written a single general term (aix
i)

using a new subscript, the letter i. We could just as easily have used j or k or
l or even n, if we weren’t already using it for another purpose in Eq. (2). The
letter i is called a dummy variable in that, were we to write out the entire
expression, this variable wouldn’t appear at all. (Section 1.4 discusses a related use
of this terminology in algorithms.) Using the dummy variable, we have, in effect,
captured the explicit essence of the pattern in Eq. (1), which is only implicit using
an ellipsis. If you substitute i = 0 into the pattern term, you get a0x

0 = a0, since
a nonzero number raised to the zero power is 1. If you substitute 1 for i, you get
a1x

1 = a1x, the linear term. And so on, until substituting n for i you get anxn.

It is probably already clear that the
∑

in front of the pattern term indicates
that you are to add all the terms you have gotten by substituting into the pattern.
(
∑

is the Greek capital letter Sigma, which corresponds to a Roman “S”; hence
Sigma for Sum.) The line below the

∑

gives the lowest value of the dummy variable,
whereas the line above indicates its highest value. (Sometimes, if we want to write
a summation in a paragraph rather than setting it off on a line by itself, we write
the upper and lower limits to the right of the

∑

, as in
∑8

i=1.) What we have called
so far the dummy variable is more commonly called the index of summation
(or just the index). The index takes on all integral values between the lowest and
highest values.

If you understand our explanation of Eq. (2), you’ll immediately see that it had
two advantages over use of ellipsis:

It is more compact.

Whereas the pattern in the use of an ellipsis may be obvious to the writer, it
will sometimes be less than obvious to the reader; summation notation gets
rid of any possible ambiguity.

Note also the power of using subscripts in Eq. (2) where ai stands for any of the
values a1, a2, . . . , an and xi stands for the associated power of x. Without such
use of subscripts, summation notation would not be possible, for how could you
possibly represent, say, a, b, . . . , z by a single symbol?

In general, suppose we wish to express

cj + cj+1 + · · ·+ ck−1 + ck

with summation notation. We do this as

k
∑

i=j

ci,

where each ci is called a term or summand of the summation. This general
example includes our polynomial example: just set j = 0, k = n, and ci = aix

i.
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Eq. (2) indicates that the index of summation can appear in the quantity being
summed as a subscript, an exponent, or indeed, in any way you wish. Or it need
not appear at all, as in

n
∑

i=1

1,

which represents the sum of n 1’s since, for each value of i, the quantity being
summed is the constant 1.

EXAMPLE 1 Evaluate:

a)
∑6

i=3 i2 b)
∑5

p=0(2p + 3) c)
∑4

i=1 i2i.

Solution For a) we get

32 + 42 + 52 + 62 = 9 + 16 + 25 + 36 = 86.

For b) we have

(0+3) + (2+3) + (4+3) + (6+3) + (8+3) + (10+3) = 3 + 5 + 7 + 9 + 11 + 13 = 48.

Note that the index of summation was p. Note also that, if we had left the index
of summation as p but had written 2i + 3 instead of 2p + 3, i.e.,

5
∑

p=0

(2i + 3),

then this sum would have called for the addition six times of 2i + 3 (with the result
12i + 18). Why? Because anything after (i.e., to the right of) the summation sign
which does not include the index is a constant with respect to the summation.

For c), where the index of summation appears more than once under the sum-
mation sign, we get

12 + 22·2 + 32·3 + 42·4 = 12 + 24 + 36 + 48

= 1 + 16 + 729 + 65,536

= 66,282.

The set of values taken on by the index of summation is called the index set.
There is no requirement that this set consist of a sequence of consecutive integral
values, although this is by far the most common case. For example, we may write

8
∑

i=2
i even

ai, (3)

which represents a2 + a4 + a6 + a8. Or we may write

11
∑

i=1
i not divisible

by 2 or 3

5i, (4)

which represents
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5 + 55 + 57 + 511 = 5 + 3125 + 78,125 + 48,828,125 = 48,909,380.

In full generality we may write
∑

R(i)

ai, (5)

where R(i) is a function, often called a predicate, whose domain is usually N and
which has the value true for each i included in the index set and the value false

for all other i in the domain. (Are you disturbed at all by a function whose values
are not numbers but rather true and false? No need to be. Remember that, like
the domain, the codomain of a function may be any set whatsoever. In Chapter 7,
when we discuss logic, we’ll be dealing almost entirely with functions whose values
are true or false.) For example, in part a) of Example 1, R(i) would be true when
i = 3, 4, 5, and 6 and false otherwise. In (3), R(i) would be true only when i = 2,
4, 6, and 8. In (4), R(i) would be true only when i = 1, 5, 7, and 11. Indeed, we
could have written all these summations using predicate notation. For example, we
could have written part a) of Example 1 as

∑

3≤i≤6

i2,

although we wouldn’t usually write it that way when the lower limit–upper limit
notation is natural. By the way, we write the predicates below the summation sign
merely because of convention.

We may, in fact, generalize (5) even further by not even requiring that the
predicate refer to an integer index. For example, we may write

∑

x∈T

f(x),

where T is a set and f is a function defined on elements of T . Or we may write
∑

S⊂T

f(S),

where T is a set and f is a function defined on subsets of T .

One implication of (5) is that, if R(i) is true for all nonnegative numbers,
then that summation contains an infinite number of terms. We’ll meet a few such
summations in later chapters. The usual notation when summing over all of N is
to put the infinity symbol ∞ over the Sigma, as in

∞
∑

i=0

ai.

Suppose R(i) is not true for any value of i, as in
∑

8≤i≤6

i3.

Then the sum is empty and, by convention, its value is zero. Or suppose we write
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6
∑

i=8

ai.

Since, again by convention, we always step up from the lower limit to the upper
one, this sum is also empty and has the value zero.

The compactness of summation notation allows us to manipulate it easily in a
variety of ways. For example, if c is a constant, then

∑

R(i)

cai = c
∑

R(i)

ai, (6)

because the constant c multiplies every term and may therefore be factored out
independently of R(i). More generally, if c and d are constants, then

∑

R(i)

(cai + dbi) = c
∑

R(i)

ai + d
∑

R(i)

bi. (7)

Rewriting summations. Throughout mathematics one must know how to re-
write expressions, that is, find alternative forms with the same value, for another
form is often just what is needed to make progress. We now give three important
examples of how to change the form of a summation.

First, we consider how to change the limits of the index of summation or, to
put it another way, how to change the index of summation from one variable to
another. A common case occurs when you have a sum of the form

n
∑

i=1

ai (8)

and you would like to change it so that the lower limit is 0. You do this by defining

j = i − 1 that is, i = j + 1. (9)

When i = 1, j = 0 and when i = n, j = n− 1. Using these limits and replacing the
subscript i by the equivalent j + 1, you may rewrite (8) as

n−1
∑

j=0

aj+1. (10)

If you write out (8) and (10), you will see that both have precisely the same terms,
namely,

a1 + a2 + · · ·+ an,

and thus they are equal. In actual practice, after we’ve made this change of variable,
we often then go back to the original index and write

n−1
∑

i=0

ai+1.

Remember that the index is a dummy variable and its “name”, therefore, makes no
difference.
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With a change of variable like that in Eq. (9) you’ll be able to change the limits
of summation in almost any way you wish. You must remember, though, to change
all places where the index of summation appears in the term under the summation
sign.

Our second example concerns the case where you wish to reverse the order of
summation. That is, when the summation is expanded, instead of having the terms
appear in the natural order from lower limit to upper limit,

a1 + a2 + · · ·+ an,

we wish to have them appear in the order

an + an−1 + · · ·+ a2 + a1.

We do this by making the change of variable

j = n − i,

which changes (8) to
n
∑

i=1

ai =

n−1
∑

j=0

an−j.

Our third example concerns a common occurrence where we have two separate
summations that we would like to combine into one, e.g.,

n
∑

i=0

ai +

n
∑

i=1

bi.

How can we combine these expressions, which have different limits, into a single
summation? Remove the first term of the first summation to obtain

a0 +

n
∑

i=1

ai +

n
∑

i=1

bi.

Now, since the limits on both summations are the same, we can write this as

a0 +

n
∑

i=1

(ai + bi).

Double Summation

Suppose we have a set of doubly subscripted quantities aij, where the range of
values of i is m, m+1, . . . , n−1, n and the range of j is p, p+1, . . . , q−1, q. Now
suppose we wish to add the aij’s for all possible pairs of values of i and j. We can
do this with a double summation, which we write as

n
∑

i=m

q
∑

j=p

aij (11)

and interpret as follows:
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For each value of the index in the outer (i.e., left-most) summa-
tion let the index in the inner summation range over all its values
and sum the terms generated; then increase the outer index by 1
and repeat, always adding the result to the previous sum until i
reaches n.

In effect, this means that (11) contains implied parentheses, as in

n
∑

i=m





q
∑

j=p

aij



 .

Thus (11) represents the sum

q
∑

j=p

amj +

q
∑

j=p

am+1,j + · · ·+

q
∑

j=p

anj = amp + am,p+1 + am,p+2 + · · ·

+ amq + am+1,p + · · ·+ am+1,q + · · ·+ anp + an,p+1 + · · ·+ anq,

(12)

which is what we wanted.

EXAMPLE 2 Evaluate:
3
∑

i=1

4
∑

j=2

ij.

Solution We obtain

(12 + 13 + 14) + (22 + 23 + 24) + (32 + 33 + 34)

= 1 + 1 + 1 + 4 + 8 + 16 + 9 + 27 + 81 = 148.

When the index values for the two sums are defined, again from left to right,
by two general predicates R(i) and S(j), the principle is the same: For each value
of i for which R(i) is true, evaluate all the terms for which S(j) is true and add
them.

When a double sum is particularly simple, it can be written using a single sum.
For instance,

n
∑

i,j=1

aij means the same as

n
∑

i=1

n
∑

j=1

aij.

Now suppose that the term under the summation sign in (11) is aibj, that is,
the product of two terms, one with subscript i and one with subscript j. Since
Eq. (12) indicates that the double summation includes all possible combinations of
the subscripts i and j, it follows that in this case we may write (11) as

n
∑

i=m

q
∑

j=p

aibj =

(

n
∑

i=m

ai

)





q
∑

j=p

bj



, (13)

since the product of the two sums includes all possible combinations of i and j.
Another way to see this is to note that on the left of Eq. (13) ai is a constant with
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respect to the summation with index j and therefore can be brought outside that
summation as a constant, as in Eq. (6). For example, with n = 2, q = 3, and
m = p = 1,

2
∑

i=1

3
∑

j=1

aibj =

3
∑

j=1

a1bj +

3
∑

j=1

a2bj

= a1

3
∑

j=1

bj + a2

3
∑

j=1

bj [Constant brought out]

= (a1 + a2)

3
∑

j=1

bj

=
(

2
∑

i=1

ai

)(

3
∑

j=1

bj

)

.

If you understand this example, you should be able to justify Eq. (13) in general [16].

So far, then, double summation hasn’t been much more difficult than single
summation. And you should be able to extend the preceding discussion without
any trouble to triple summation or to any number of sums in succession. However,
suppose we write

4
∑

i=1

5−i
∑

j=1

j2

(2i − 1)
. (14)

Here one of the limits for the inner sum is not a constant but contains a variable,
namely, the index of the outer sum. Still, it should be fairly clear that we should
evaluate (14) as follows:

i) Set i = 1.

ii) Set j = 1, 2, 3, 4 (since 5 − i = 4), evaluate j2/(2i − 1) = j2, and sum.

iii) Set i = 2 and j = 1, 2, 3 (since 5 − i = 3), evaluate, and add to the result
of (ii).

iv) Repeat for i = 3 and j = 1, 2.

v) Finally, repeat for i = 4; since here the upper and lower limits are the same,
i.e., 1, we have only j = 1.

The result is

1 + 4 + 9 + 16 +
1

3
+

4

3
+

9

3
+

1

5
+

4

5
+

1

7
= 35

17

21
.

We could give other, even trickier examples, but all we want to do here is
introduce you to summations with variable limits. From Eq. (12) it should be clear
that, when all the limits are constants, (11) represents the same sum regardless of
whether the i summation or the j summation comes first. Thus
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n
∑

i=m

q
∑

j=p

aij =

q
∑

j=p

n
∑

i=m

aij.

But what about summations like (14)? Clearly, we can’t just interchange the
order of summation, because then the outer summation would have a limit de-
pending on a summation to its right, which doesn’t make any sense because by
definition double sums are expanded from left to right. We won’t discuss just how
you go about interchanging the order of summation when one or more of the limits
is variable. But the need to do so does occur occasionally. Be on your guard if it
ever does occur, because care is required to handle such cases.

Mutliplying polynomials. We mentioned in Section 0.2, just before Example 3,
that we didn’t have a very good notation for expressing the product of two poly-
nomials. Now with double summation notation, we do. As in Section 0.2, let the
two polynomials be

Pn(x) =

n
∑

i=0

aix
i and Qm(x) =

m
∑

i=0

bix
i.

Our aim is to express the product of these polynomials in a simple, compact form.
Here it is:

Pn(x)Qm(x) =

m+n
∑

i=0

(

i
∑

j=0

ajbi−j

)

xi,

{

aj = 0, j > n

bj = 0, j > m.
(15)

For example,

(a1x + a0)(b2x
2 + b1x + b0) = a1b2x

3 + (a1b1 + a0b2)x
2 + (a1b0 + a0b1)x + a0b0.

(16)
Note that each term in parentheses on the right-hand side of (16) corresponds to
one term of the summation in parentheses in Eq. (15). For each i, the inner sum in
Eq. (15) consists of a sum of products of two coefficients of powers, one from Pn(x)
and one from Qm(x), where the sum of the powers is i. This sum of products is
then the coefficient of xi.

Product Notation

We have much less to say about product notation than summation notation for two
reasons:

Everything we’ve said about summation notation carries over pretty directly
to product notation.

Product notation isn’t nearly as common as summation notation.

Suppose we wish to compute the product of many terms, as in

a1a2 · · ·an.

The direct analogy with summation notation is to write this as
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n
∏

i=1

ai,

where we use
∏

because Pi in Greek corresponds to “P” (for product) in the Roman
alphabet. Thus, for example,

n
∏

k=1

k = 1 × 2 × 3 · · · (n − 1)n = n!,

7
∏

i=2

(i − 1)

i
=

(

1

2

)(

2

3

)

· · ·

(

6

7

)

=
1

7
,

4
∏

n=1

2n = 21222324 = 210.

If the product is empty, that is, if the predicate which defines the values of
the index is true for no value of the index, then by convention, the product is 1.
Why do you suppose we use this convention for products when the corresponding
convention for sums is to replace an empty sum by 0?

In [17–18] we consider how to extend the idea of summation and product no-
tation to other operators, such as set union and intersection.

Problems: Section 0.4

1. 〈1〉 Write the following using
∑

and
∏

notation.

a) 1 + 2 + 3 + · · · + 100

b) 1 · 2 · 3 · · · 100

c) 2 + 4 + 6 + 8 + · · · + 100

d) 1 · 3 · 5 · 7 · · · 99

2. 〈2〉 Write the following polynomials using
∑

no-

tation.

a) x + 2x2 + 3x3 + · · · + 10x10

b) 1 − x + x2 − x3 + · · · + x10

c) x + x2 + x3 + · · · + x14

d) 1 + 2x2 + 3x4 + 4x6 + · · · + 8x14

3. 〈1〉 Evaluate the following sums.

a)
∑4

i=2
(2i)−i

b)
∑5

i=3
(3i + 2p)

4. 〈2〉 Evaluate the following sums.

a)

8
∑

i=3
i even

1/i2 b)

20
∑

i=3
3|i or 5|i

(2i2 + 6)

5. 〈2〉 Evaluate each of the following sums for the

values of n indicated. If the answer is particularly
simple, see if you can explain why.

a)
∑n

j=1

(

1
j − 1

j+1

)

n = 4, 5.

b)
∑

S⊂[n]
(−1)|S| n = 2, 3 and

[n] = {1, 2, . . . , n}.

c)
∏n

j=1
j

j+1
n = 5, 6.

d)
∏n

j=2
j2−1

j2
n = 5, 6.

e)
∑

d|n

(

d−n
d

)

n = 6, 30.

f)
∑

S⊂[n]
2|S| n = 2, 3 and

[n] = {1, 2, . . . , n}.

6. 〈1〉

a) Express the following inequality in summation
notation:

(a2
1 + a2

2 + · · · + a2
n)(b21 + · · · + b2n)

≥ (a1b1 + a2b2 + · · · + anbn)2.

This is called the Cauchy-Schwarz Inequality,
and it is always true.
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b) Express the following inequality using sum and

product notation.

a1 + a2 + · · · + an

n
≥ (a1a2 · · · an)1/n.

This is called the arithmetic-geometric mean
inequality and is true for all nonnegative ai’s.

7. 〈2〉 Explain why
∑n

j=1
j2j =

∑n

k=0
k2k .

8. 〈2〉 Rewrite
∑10

k=1
2k so that k goes from 0 to 9

instead. Remember, a rewrite must have the same
value.

9. 〈2〉 Rewrite
∑n

i=0
(2i + 1), putting it in the form

∑?

i=?
(2i − 1). You have to figure out what the

question marks should be.

10. 〈2〉 Rewrite
∑n

k=0
3k +

∑n+1

j=1
4j so that it in-

volves just one
∑

sign. There may be some extra

terms outside the
∑

sign.

11. 〈2〉 Rewrite
∑9

i=1

i odd

i2 in the form
∑b

j=a
f(j),

where you have to figure out the constants a and
b and the function f .

12. 〈2〉 Evaluate the sums:

a)
∑3

i=1

∑3
j=1

ij even

⌊(i/j) + (j/i)⌋.

b)
∑9

i=1

∑⌊9/i⌋

j=1
ij2.

13. 〈2〉 Evaluate:

a)
∑n

j=1

∑n

i=j
1
i

n = 3, 4.

b)
∑n

k=1

∑n

j=1

(−1)k

j
n = 3, 4.

c)
∑n

j=1

∑n

i=1
cos
(

πi
2j

)

n = 3.

14. 〈3〉 If
∑100

i=0
xi is squared and rewritten as

∑n

i=0
aix

i, what is a50? What is n?

15. 〈3〉 If
(∑100

i=0
xi
) (∑25

i=0
xi
)

is multiplied out,

what is a50?

16. 〈2〉 Mimic the computations in the special case

displayed after Eq. (13) to prove the correctness

of Eq. (13) in general.

17. 〈3〉 For this problem we use the following inter-

val notation:

(a, b) = {x | a < x < b}

and

[a, b] = {x | a ≤ x ≤ b}.

Also,
⋃n

i=1
Si means S1 ∪ S2 ∪ · · ·Sn and

⋂n

i=1
Si

means S1 ∩ S2 ∩ · · · ∩ Sn. Evaluate the following
expressions.

a)
⋃10

i=1
(0, i) b)

⋃5

j=1
[2j − 2, 2j]

c)
⋃∞

i=1
(−i, i) d)

⋃10

k=1
[0, 1/k]

e)
⋂10

k=1
[0, 1/k] f)

⋂10

k=1
(0, 1/k)

g)
⋂∞

i=1
[0, 1/i] h)

⋂∞

i=1
(0, 1/i)

18. 〈2〉 Let Pk be the statement that the integer k is

a prime. Let ∨ stand for “or” and let

n
∨

i=1

Pi

mean P1 ∨ P2 ∨ · · · ∨ Pn. Similarly let “∧” stand
for “and” and let

n
∧

i=1

Pi

mean P1 ∧ P2 ∧ · · · ∧ Pn. What do the following
expressions assert and are they true?

a)
∨106

k=102
Pk b)

∧3

k=1
P2k+1

c)
∧4

k=1
P2k+1

0.5 Matrix Algebra

In this section we introduce you briefly to matrices and some related concepts
and notation. Matrices are very useful computational tools that organize a lot of
information compactly.


