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ABSTRACT. Results which allow either the computatmn of symbolic solutions to first-order-linear differ- 
ence equauons or the determination that solutions of a certain form do not exist are presented. Starting 
with a field of constants, larger fields may be constructed by the formal adjunctlon of symbols whtch 
behave hke solutions to first-order-linear equations (with a few restrictions) It IS in these extension fields 
that the difference equations may be posed and m which the solutions are requested. The principal 
apphcatmn of these results is In finding formulas for a broad class of finite sums or In showing the 
nonexistence of such formulas. 
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1. Introduction 

1.1 BACKGROUND. This  p a p e r  is concerned  wi th  the  p r o b l e m  o f  f ind ing  fo rmulas  
for f inite sums. The  a p p r o a c h  t aken  here  is to pose  the p r o b l e m  in a lgebra ic  te rms 
and  then  to der ive  const ruct ive  condi t ions  for summabi l i ty .  W h i l e  the  mot iva t ion  for  
this  research  was to p roduce  the a lgor i thms impl ic i t  in the proofs ,  the  theory  i tself  is 
o f  i n d e p e n d e n t  m a t h e m a t i c a l  interest;  the emphas i s  o f  this p a p e r  is on  the  overa l l  
s t ructure  o f  the subject.  A n  a t t empt  has  been  m a d e  to avo id  bo th  theory  which  is 
i r re levant  to the  a lgor i thms  and  'a lgor i thmic detai ls  which  obscure  the  theory.  

Cons ide r  some "c losed  fo rm"  solut ion to a summat ion ,  

g(n) = ~ f ( i ) ,  h(n) = ~ f ( i ) .  
a . ~ < n  a < t _ < n  

F r o m  the classical  calculus  o f  f inite di f ferences  [l]  we know that  we m a y  a p p l y  the  
u p p e r  ( lower)  d i f ference  ope ra to r  A (V) and  ob ta in  

Ag(n )  ~= g(n + 1) - g(n) = f ( n ) ,  
Vh(n) ~ h(n) - h(n - 1) = f ( n ) .  

Thus,  A g  = f =  Vh. Fu r the rmore ,  for  any g or  h such tha t  A g  = f =  Vh, 

Y, f ( i )  = g(n) - g(a), Y, f ( i )  = h(n) - h(a). 
a _ < t < n  a < ~ n  

Hence,  g iven f ,  i f  we could  solve the equa t ion  A g  = f o r  Vh = f ,  we wou ld  have  a 
f o r mu la  for the finite sum. 

The  obvious  ana logy  be tween  this s i tua t ion  and  the f u n d a m e n t a l  theorems  o f  
calculus  has  not  gone unnot iced ,  and  there  is an  extensive theory,  " o p e r a t o r  m e t h o d s "  
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or "symbolic methods," which connects ordinary calculus with the calculus of finite 
differences [1, 17]. 

The problem of integrating in finite terms has been solved now for several years 
[14, 15]. Given the power and elegance of operator methods, one might think that 
the problem of summation in finite terms would also have been solved. However, the 
difficulty is that "finite terms" are not preserved under the transformations of 
operator methods, and there appears to be no simple way to adapt the integration 
work for summation formulas. More will be said about this issue in the conclusion. 

Up to this point, I have been discussing "the" problem of finite summation as if 
there were a widely accepted view as to what the problem is. This is not the case, as 
a brief review of the literature reveals. In the algebraic symbol manipulation 
literature, one of the first efforts is [9], which can be used to verify formulas for sums 
(essentially by applying A) but does not consider the problem of finding formulas. 
The problem of summing rational functions was considered in an earlier version of 
this paper [10], as well as in [ 13]. The problem of exponentials and rational functions 
was also treated in [10]. A decision procedure for a class of summands involving 
indefinite products of rational functions was obtained in [6, 7]. Mention should also 
be made of the lookup/transformation approach found in [2, 3]. 

This paper describes techniques which greatly broaden the scope of what is meant 
by "finite terms"; consequently, the class of sums which can be meaningfully 
simplified is considerably enlarged. Examples of sums for which formulas can be 
produced by methods of this paper (and earlier ones) include 

n n t e l  1 n i, 2 2', 2 i2T, i2+ 2i' 2 i.i!. 

Similarly, these methods will show that the following sums have no formula as a 
rational function of n: 

,-1 7' - i -~' . 7 '  ,-1 it. (1) 

A glimpse of the additional power of the techniques presented here may be seen in 
a small example. Consider the first sum of (1). This is known as the nth harmonic 
number Hn. This symbol may then occur in other sums, for example, 

n n n H t  

2 H,, z i g , ,  2 " 7  
z--1 ~--1 ~=1 l 

The algorithms presented below yield formulas, as a rational function of n and the 
symbol H,, for the first two of these sums; they also show that the third has no 
formula of that type. 

The techniques here do not cover such formulas as 
n l 

,~0 C 2"-"~. 

Although one can probably extend the techniques of this paper to deal with c 2', this 
has not yet been done. It should be noted that the techniques of this paper cannot be 
extended to deal with a summation problem in which one of the limits is also 
involved in the summand, for example, 

,too 

Such summations cannot be solved by inverting A g = f. 
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The algorithms implicit in the proofs of  this paper use features available in 
algebraic manipulation systems, principally factorization and greatest common di- 
visor calculations. Some of the techmques presented here have already been imple- 
mented [4, 19]. 

The reader of  this paper is expected to be acquainted with the concepts and 
notation of  modem algebra--a one-year undergraduate course in the subject, using 
[8, 12, 18] as texts, should easily supply the required background. Given a basic 
knowledge of  algebra, this paper is self-contained, with the exception of  the omission 
of  many proofs, particularly those not involving algorithms. These proofs may be 
supplied by the reader or found in [11]. 

1.2 DIFFERENCE FIELDS. 1 When one studies integration procedures, the algebraic 
object of  interest is the differential field, that is, a field together with a map which is 
linear over addition in the field, and obeys the familiar product rule for differentia- 
tion. In studying summation, it seems reasonable to begin by studying the operators 
A and V. These operators are clearly linear; the product rules, though simple, are not 
as widely known as those for differentiation: 

A( f .  g) = f .Ag + a f  . g + Af  .Ag, 
V(f .  g) = f .V g + V f  . g - V f  .V g. 

Hence, we might propose the following axioms for an upper (or lower) "difference 
field," in addition to the usual field axioms: Letting 6 = A, V and ± be +, - ,  
respectively, 

DIFF1 for all f ,  g, 8 ( f +  g) = 8 f +  8g; 
DIFF2 for all f ,  g, 8 ( f .  g) = f . d g  + 8f .  g _+ 8f .Sg.  

These two axioms are not quite enough; the last remaining axiom may be stated in 
a wide variety of  ways. 

PROPOSITION 1. Let F be any field, and let 8:F ~ F be any map satisfying DIFFI 
and DIFF2. The following conditions are equivalent (in their usual respective cases): 

DIFF3 

(a) 81 = O. 
(b) Ol # ~1. 
(c) 3 f #  ~ f f o r s o m e f  
(d) Bf # ~ f f o r  all f #  O. 
(e) Let p f  ~ f ± 8f. Then p is an endomorphism ofF. (We use o and ~ for the respective 

cases of p.) 

Definition 1. An upper (respectively, lower) differencefieM is a field F together 
with a map A (respectively, V) from F to F, satisfying DIFF 1, DIFF2,  and any of  the 
equivalent conditions of  DIFF3. 

The appearance of  the endomorphism p from the product rule for the abstract 
difference operators should not be viewed as mysterious. It is the algebraic vestige of  
the shift operator. In the concrete case 

of(x)  = f ( x  + 1), r f (x)  = f ( x -  1). (2) 

Note that in the concrete case, o and r are inverses of each other. This leads us to the 

' Throughout this paper all fields are assumed to have charactensttc O. 
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beautifully simple definition for a field which has properly related upper and lower 
difference operators. 

Definition 2. A difference field is a field F together with an automorphism o of F. 

This seems almost too trivial to be useful, but it is the algebraic object which we 
shall study throughout most of  the rest of this paper, and it leads to summation 
decision procedures. 

Example 1. The complex numbers, with their automorphism o(a + bx/'Z'T) = 
a - b q - 1 ,  form a difference field. One should not artificially exclude this as 
a difference field, since ~ is algebraically indistinguishable from the function of  
an integer n, I(n)  a__ (-I)%/Z-~; note that [I(n)] 2 = -1 .  Conjugation is then the shift 
operator applied to I(n),  as in (2): 

o(a + b . I (n) )  = a + b . I (n  + 1) = a - b . I (n) .  [] 

Conventions. In any difference field, we have 

r & o-1; 

of- f ,  vf  f -  C, 
g & ( f ~  F I o f = f }  (the constants o f F ) .  

I f  K = F, we have a constant difference field. 

Observe t h a t f E  F is a constant ~=~ Af  = 0 = Vf; also, the set of constants K is 
actually a subfield of  F, called the fixed field of o. 

Example 2. Continuing Example 1, if the complex numbers with conjugation are 
considered a difference field, the field of  constants is the field of real numbers. The 
complex numbers can also be a field of  constants for a (perhaps) larger difference 
field, by letting o be the identity on this field. [] 

The subject of  difference algebra is treated in [5], which has a number of  references 
to the mathematical literature. The problem of finding formulas has apparently not 
received much attention by pure mathematicians. 

1.3 OUTLINE OF THE PROBLEM AND SOLUTION. With the concept of a difference 
field understood, it is possible to describe somewhat more precisely what it means to 
find a sum in 'Tmite terms." G i v e n f  and a difference field F of  which f is an element, 
we look for solutions g of Ag = f ( o r  Vg = f )  only in F. Thus the choice of f ield F is 
the means by which "in finite terms" is given precise meaning. For example, in the 
context of  integration, "finite terms" usually means starting with the rational func- 
tions over some constant field and allowing algebraic, exponential, and logarithmic 
extensions, nested to arbitrary depth. This paper does not consider algebraic exten- 
sions. The extensions which it does consider are analogous to exponential and 
logarithmic extensions, but in fact are much more general than just these. A precise 
definition of  these extensions is postponed until Section 2. 

We now reconsider the equations Ag = f a n d  Vg = f .  In terms of o and r, we have 

o g - g = f ,  g - r g = f  

If  F, o is a difference field, so is F, r. Thus we lose no essential generality in 
considering only one of  these equations; we arbitrarily pick the former. 

Ideally, this paper would proceed as follows. We would first observe that 
og - g = f i s  easy to solve in a constant field (a solution exists ~=*.f = 0; if a solution 
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exists, any element of  K is a solution). Then we would prove that if there exists an 
algorithm for solving og - g = f in some field F, o, we could somehow use this 
procedure to help us obtain an algorithm to solve the same problem in E, o, where 
E, tr is some difference field extension of  F, o. 

Unfortunately, things are more complicated than this. The solvability of  the simple 
equation og - g = f seems to be an inconvenient property to lift through the 
extensions we are considering. In Section 3 we consider a more general problem, 
which at least has the virtue that its form is preserved in the process of  proof  by 
induction. 

1.4 CONVENTIONS AND NOTATION. Consider ~m_<,<~ f( i) .  If  m < n, this has an 
obvious meaning. If  m _> n, this is summation over the null set, which is customarily 
defined to be zero. We shall follow this convention when m = n, but when m > n, we 
shall say that 

Defimtion 3 

f ( i )  ~ -- ~ f( i) ,  where m > n .  
m . ~ t < n  n _ < t < m  

N.B. This abuse of  notation means that "m _< i < n,'" when written under a ~, 
does not imply that m < n. 

There is more to this than an attempt to ape the calculus convention; it is genuinely 
useful in several places. For starters, we observe 

PROPOSITION 2 

(a) Ag = f --~ ~m_~,<nf(i) = g(n) -- g(m), regardless of  the ordering of m, n. 
(b) ~l<,<nf(i) = ~l<,<mf(i) + ~m_<,<nf(i), regardless of the ordering ofl,  m, n. 

The same convention is used with the product symbol [I, with the understanding 
that reciprocation replaces negation in Definition 1. 

It is sometimes convenient to introduce several variables which are determined 
implicitly by some relationship. For example, given positive integers m and n, division 
with remainder determines q and r such that m = q.n + r, where 0 _< r < n. We 
would introduce these lmplicRly defined variables thus: 

defq ,  r: m = q - n + r ,  O_<r<n.  

We use the standard notation for the ring or field formed by adjoining an element 
t to a ring R or field F: R[t] or F(t). 

This paper is frequently concerned with transcendental field extensions, in which 
case R[t] is a ring of polynomials and F(t) is a field of  "rational functions." The 
numerators and denominators of  elements of  F(t) are defined thus: 

n u m ( f )  
d e f n u m ( f ) ,  den( f ) :  f -  d e n ( f ) '  

num( f ) ,  d e n ( f )  E F[t], their gcd is 1, and d e n ( f )  is monic. 

A factor f f o f f  ~ F(t) is a polynomial which divides n u m ( f )  or den( f ) .  The  power 
to which foccurs i n f i s  defmed to be the power to which it occurs in n u m ( f )  or the 
negative of  the power to which it occurs in den( f ) .  The unique factorization of  
polynomials extends to the unique factorization of  a n y f ~  F(t): 

f = u .  H f2 ' ,  
t 
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where 

(F1) f i  is monic irreducible, degree > 0, u E F; 
(F2) i~ # i~ ~ ~ # ~ ;  
(F3) n, ~ 0 (but may be positive or negative). 

A tuple may be abbreviated by a boldface version of  the same letter used for its 
components: f A- ( f i  . . . . .  fk); the length of  a tuple may be written I f I . Concatenation 
of  tuples is done thus: 

f^ g A ( f i  . . . .  ,fk, g~ . . . . .  D) .  

This notation may be abused when appending a single element: 

f ^ g  =a f ^ ( g )  -_ ( f i  . . . . .  fk, g). 

I f  the components of  f are drawn from a set S, we write 

f ~ S  '°. 

In other words, 

S '~ = (null-tuple} U S U S × S U . . . .  

A more standard notation for S ~ would be S*; but since S is often a field F, F* also 
brings to mind the multiplicative group of  F, which notation we in fact use. 

We occasionally work in a module R" where R is Z (the integers) or a field. We 
use the standard inner product when I fl = I g l :  

Ifl 
f .g  = ~ f t .  g,. (3) 

We also need the annihilator of  an element: 

Anna(f)  ~ {g I g E R'~, f. g = 0}. 

We let 0,  be a tuple consisting of  n zeros. For  stating and proving certain results it is 
convenient to allow the null tuple, denoted by 0o in certain examples, and to let 
00-0o = 0 (justified by 1001 = 0 and the summation convention). We use 0m, for an 
m by n matrix of  zeros. Again, for convenience, there are situations in which m is 
zero (the matrix has no rows) or n is zero (no columns). Certain obvious conventions 
apply, for example, Omo00 = Om and  Omo" Oon " =  Omn. 

2. Extensions 

2.1 DEFINING EXTENSIONS. 

l~t<n 

Suppose that one is faced with a complicated sum, 

• ,--,<, j ] .  (4) 

It seems unlikely that this will simplify to a rational function of  n (and indeed it will 
not). However, it is reasonable to ask if the sum can be expressed using the terms of  
the summand with " i"  replaced by "n,"  that is, to ask if  the sum can be expressed as 
a rational function of  the following: 

j - I  1 
n, ] ~  "T2;-., -<J< J- J ~ -:. (5) 1.~j<n J 

The answer is yes, but that is getting ahead of  the story. The purpose of  this section 
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is to completely formalize the question, both mathematically and computationally. 
Given a constant field, we characterize those extensions in which we are interested. 
These extensions include more than the adjunction of  just formal sums and products, 
but the extra generality comes at no extra expense-- the techniques used appear to be 
necessary to handle only sums and products. Extensions are to be "declared" one 
step at a time, and algorithms which verify that the extensions satisfy the mathemat- 
ical criteria are given. As an example of  what can happen, consider the summation 
in (4). One might naively try a three-level extension, successively including the three 
terms of  (5). But the algorithms will reveal that the last two terms are not independent 
and that only a two-level extension is required (each of  the sums of  (5) can be 
expressed in terms of  the other). In order to apply the algorithms of  this paper, the 
summand of  (4) must be rewritten so that this relationship is evident. 

2.2 TYPES OF EXTENSIONS. All of  the extensions considered in this paper have 
the following properties. 

Definition 4. Let F, o be a difference field and E, a an extension difference field. 
We call this extension affine 

E = F ( t ) ,  where oz, f l ~ F  with o t - - o z . t + f l .  

Given a difference field F with computable field operations (including a), there is 
a simple way to compute o for F(t), given a, fl, and some knowledge of  the 
representation of elements of  F(t). The representation and the extension of  the other 
operations from F to F(t) depend on whether t is transcendental over F. This paper 
concentrates on extension difference fields which are transcendental and have the 
following additional property. 

Definition 5. Let F(t), o be an extension difference field of  F, o. This extension 
is first-order-linear 

(a) the extension is affine; 
(b) t is transcendental over F; 
(c) K(E)  -- K ( F )  (i.e., the constant field is not extended). 

By condition (a), we may think of  t as a solution to the first-order-linear equation 
ot - oz. t = ft. Conditions (b) and (c) have to do with the necessity of  going to an 
extension field for a solution. They are considered in more detail later. 

Example 3. Let F = R ,  the real numbers, and let E -- ~ ( ( - 1 )  n x / ~ ) ,  the 
difference field version of  112, the c o m l ~  numbers. The extension is affine, because 
a(t) = o((-1)  ~ x/~l)  = ( -1 )  ~+~ x/-1 = - t .  But it is not first-order-linear, 
because t 2 = - l  ~ ~ ,  violating condition b. [] 

Example 4. Let F be an arbitrary field and o the identity on F, so that K -- F. 
Let E = K(x),  where x is transcendental over K, and ox A_ x + 1. We may view E as 
the field of  rational functions from the integers to F, in which case o is the classical 
shift operator. We later show that the constant field is not extended, so that the 
extension is indeed first-order-linear. [] 

Example 5. Let F = K(x )  as above and ~(x) ~ F be any nonzero element. We 
may extend F by the "factorial" of  oz(x), obtaining another function from the integers 
to F: 

t (x) .~ II ,~(i). 
O.~l~.x 
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Thus 

ot(X) ---- H a(i) = ct(x). H or(i) = a ( x ) . t ( x )  (i.e., fl = o). 
0~: t<x+l  O~t<x 

Note that t (x)  = x! = 1.2 . . .  x is of  this type, with a -- x + 1; similarly t = e x, 
c E K, is of  this type, with a = c. When doing algebraic symbol manipulation, it is 
convenient to think of  adjoining a symbol " t"  to F and, in imitation of  how H works, 
simply defining ot = a. t ,  where a ~ F (x )  is viewed not as a function, but as a 
symbolic expression. As long as conditions (b) and (c) can be shown to be true (we 
consider this problem later), we have an algebraic means of  manipulating formal 
products, namely, by first-order-linear extensions in which fl = 0. []  

Example 6. Let F = K(x)  and f l(x)  E F b e  an arbitrary element. We may extend 
F by the "indefinite sum" of  fl(x). Let 

t (x)  & ~ fl(i). 
O~:t<x 

Thus 

at(x) -- ~ B(i) -- B(x)  + ~ fl(i) -- t (x) + IS(x). 
O~t<x+ l  O~=z<x 

(Of course, Example 3 is a special case of  this, where x = ~ , < ~  1.) 
By analogy to the remarks made in Example 4, in the symbolic case we may think 

of  adjoining a symbol "t"  to F and defining ot = t + ft. Once conditions (b) and (c) 
are taken care of, we have an algebraic means of  handling formal sums. [] 

The following facts are simple to prove but are used over and over. 

LEMMA 1. Let F(t),  o be a first-order-linear extension ofF,  o. Then 

(a) o is an automorphism of  Fit].  
( b ) Let f ,  g E Fit].  Then o gcd ( f , g) = g cd ( o f , o g ) (with the understanding that g c d'  s 

are unique up to a factor from F).  

We have seen in Example 5 that the case in which fl = 0 is of  special importance. 
It would be natural to call such extensions "homogeneous" because t is the solution 
to the homogeneous equation ot - a. t = O. Our definition of  such extensions will 
certainly include affine extensions in which fl = 0, but we wish to define the term for 
all extensions, and in a manner which is intrinsic to the extension. 

Definition 6. Let E, o be a difference field extension of  F, o. We say that g E E 
is homogeneous over F ~=~ g ~ F but o g / g  E F. We say that the extension is 
homogeneous ~=~ there exists g ~ E which is homogeneous over F. 

Observe that homogeneous extensions include all those which extend the constant 
field. 

The following result gives various useful (both computationally and mathemati- 
cally) criteria for determining whether certain extensions are homogeneous. 

THEOREM 1. Let F(t), o be a difference field extension of  F, o m which ot = 
a . t  + ft. The following conditions are each equivalent to the extension's being homo- 
geneous: 

(a) There exists g E F[t], g ~ F, with og /  g E F. 
(b ) The following equation can be solved for  w E F: 
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Condition (b) is important both mathematically, because it is used in many later 
results, and computationally, because it reduces the question of  the homogeneity of  
an extension to a question for which Section 3 gives an algorithm. This condition 
also allows us to provide a "change of basis," so that extensions which are homoge- 
neous can be written with fl = 0: Given that at - a - t  = ow - ~ .w = fl, we let t '  = 
t - w; so ot' = o~. t'. Because of  this, we hereafter consider only the following type of  
homogeneous extension. 

Definition 7. We say that F(t),  o is a It-extension of  F, o 

(a) the extension is first-order-linear; 
(b) ot = a. t (i.e., fl = 0). 

We now turn to the question of  which homogeneous extensions are also first-order- 
linear. In other words, we would like to know when the constant field is not extended, 
and when t is transcendental over F. Our first step in solving this problem is to define 
a special subset of a difference field. 

Definition 8. Given any difference field F, a, we have the homogeneous group, 

H(F, o) ~ (og/glO ~ g E  F}. 

When the automorphism in question is understood, we simply write H (F ) ;  when the 
field also is understood, we write H. 

PROPOSITION 3. The elements of  H, together with multiplication from F, form a 
group (a subgroup of  F*, the multiplicative group of  F).  Under the assignment g 
og/g ,  H ~ F * / K *  (in particular H ( K )  = {l}). 

Using the homogeneous group, we are able to obtain a simple (though not yet 
computational) criterion for the two "technical" conditions required by first-order- 
linear homogeneous extensions. 

THEOREM 2. Let F(t), o be a difference field extension o fF ,  o, and let ot = a. t ,  
a E F. This extension is first-order-linear (i.e., does not extend the constant field and t 
is transcendental) ~ ot n ~ H ( F )  for  all n > O. 

It seems surprising that the properties of  extending the constant field or being 
algebraic are so closely tied, as the above result indicates; more surprising still is the 
fact that, roughly speaking, the two properties cannot be cleaved within the confines 
of difference field theory. To illustrate this point, let F = Q(2 x) so that 2 E H ( F ) ;  let 
t = (~r + e ) .2  x. Then F(t)  is surely a homogeneous extension of  F and either is 
algebraic over F (with degree 1 if  ~r + e E Q) or extends the constant field (~r + e 
Q). But it is currently an open question whether t is transcendental over F, that is, 
whether ~r + e is transcendental over Q. Clearly, such a problem is outside the 
domain of  difference field theory. 

In spite of  the fact that the above result is not quite as precise as one might hope 
for, it has great utility in proving the algebraic independence of  factorials, as will 
become apparent when we analyze the homogeneous group more closely. 

Before studying the homogeneous group, we consider inhomogeneous extensions. 
Here, the situation is much simpler. 

THEOREM 3. Let F(t), o be an inhomogeneous extenston of  F, o in which ot = 
a. t + ft. Then the extension is first-order-linear. 

This paper considers a slightly restricted class of  such extensions. 
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Definition 9. We say that F(t),  o is a I-extension of  F, e ~=~ 

(a) the extension is inhomogeneous; 
(b) for n # 0, ot n ~ H = *  o~ ~ H, where at = ot.t + ft. 

Note that I-extensions include all inhomogeneous extensions arising from the 
adjunction of  a sum, since in this case ot = t + fl, that is, o~ -- 1. As stated earlier, 
no essential complications are added by considering I-extensions as opposed to 
only those extensions in which a = 1, that is, extensions arising from the adjunc- 
tion of  a ~. 

In summary, this subsection has studied extensions presented in the form F(t) ,  
where at = o~. t + ft. We have discovered that certain extensions are homogeneous, 
that this property may be computed if  we can determine whether a certain first- 
order-linear difference equation has a solution in F, and that given this solution, we 
may rewrite the extension in a form in which fl -- 0. Whether or not such an extension 
is a [i-extension has been reduced to a question about the homogeneous group. We 
have also seen that if an extension of  the above type is inhomogeneous, then it is 
automatically first-order-linear. Whether or not it is a I-extension is again a question 
about the homogeneous group. We can finally make a precise statement character- 
izing the fields studied in this paper. 

Definition 10. An extension F(t),  o is called a ~I~-extension of  F, o ¢=~ it is a M- 
extension or a I-extension. Given a constant difference field K, o, we say that F, o 
is a II~-field over K ~=~ there is a tower of  fields, 

K = F o C . . . C F n = F ,  

in which F,, o is a l iE-extension of  F,-1, o, for i -- l, . . . ,  n. 

The basic result of  this paper is that if we know how to compute answers to 
questions about the homogeneous group and solutions o f  first-order-linear difference 
equations in a l iE-field F, then 

(1) given a, fl ~ F, it can algorithmically be determined whether F(t )  with ot = 
~. t + fl is a HE-extension of  F; 

(2) if F(t)  described in ( l)  is indeed a l iE-extension of  F, then the computations 
concerning the homogeneous group and difference equations may be lifted to 
F(t).  

The construction starts with a constant field, in which certain computations are 
possible, and is guided solely by the successive choices of  the pairs a, fl from ever 
larger fields. 

2.3 AN EQUIVALENCE RELATION. In this section we consider the equivalence 
relation of  a difference field extension. This object plays a central role throughout 
the rest of  this paper. 

Definition 11. Let E, o be a difference field extension of  F, o. For nonzero 
f i g  E E, we say t h a t f i s  equivalent to g, wr i t t en f  ~ g, ~=~ 

e~f  E F for some k ~ ~ .  
g 

The word "equivalent" is used throughout this paper for this purpose only. 

PROPOSITION 4. The relation ~ is an equivalence relation. 
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We are interested in computing whether two elements of  E are equivalent, and, if 
they are, we would like to know the possible values of k. The form of  the solution is 
described by the following definitions and result. 

Definition 12. The period of a n o n z e r o f ~  E, 

a J'0 if o ' f / f ~ F ,  all p > 0 ,  
pe r ( f )  = [ min {p > 01 oPf / fE  F} otherwise. 

Definition 13. If  f ~ g, a specification of  the equivalence is an integer k such that 

(a) o~f/g E F; 
(b) per ( f )  # 0 ~ 0 _< k < per(f) .  

We use the following convention, once we know the specification exists and is 
unique: 

the specification of the equivalence if f ~  g, 
spec(f, g) a 

= [ *  otherwise. 

The "*" is an arbitrary symbol meaning t h a t f  7 ~ g. 

PROPOSITION 5. I f  f ~ g, then there exists a unique specification o f  the equivalence. 

We next define certain functions which arise when dealing with iterated applica- 
tions of o. 

Definition 14. For k E Z .  f ~ F ,  

o~ ,<k  

O.~=t<k 

(the factorial function), 

We let the summation/product convention (introduced in subsection 1.4) determine 
the values for k < 0. If  o is clear from context, it is omitted. 

Definition 15. Observe that if ot = a.  t + fl, okt will be a polynomial in t of degree 
at most 1. Then 

def ak, fib: ak.t  + flk = o k t .  

We collect in one place various equations involving the above-defined objects. 

Identities. For k, l E Z (regardless of sign), 

(1) ( f .  g)(k) =J~k~.g(k~, (of)(k~ = o(Ak)); 
(2) f~k+t, = o%t, "Ak,; 
(3) Ak.t,o~ = (ft.o))(k,,,'~; 

1 
.. 

(4) ~-k)  - O-%k)' 

(6) o ~ -  a~k,. f = a~k,. 

(7) ak = aek), flk = aek)" 

Z o' [ o f -  a . f ] ,  a # 0; 
0_<t<k a(~+l) 

o'fl Z • 
O~_l<k lOgO+l) 
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We now start to work on the problem of computing spec in I~-fields. This is not 
easy, and the path to this result is necessarily indirect. 

Definition 16. We say that a difference field F, o is [i-regular ~ given f, g E F, 
wi thfnot  a root of unity (including f #  1), there exists at most one k such that 

.fib) = g. 

We say that the difference field is computably [I-regular if there exists an algorithm 
which, g ivenfand g, determines k or declares its nonexistence. 

Definitwn 17. A difference field F, o is I-regular *-~ given f, g ~ F , f #  O, and 
f = l o r f n o t  a root of unity, there is at most one k such that 

ftk~ = g. 

We say that F, o is computably I-regular ** F, o is I-regular and there is an algorithm 
which, given f, g ~ F, determines k or declares that no such k exists. 

Definition 18. Let F, o be a difference field. Then H(F)  is torsion-free *~ for all 
k # 0 a n d f C  H , f  k = 1 ~ f =  I. 

Using torsion-freeness and (computable) [I- and I-regularity, we have the follow- 
ing result, whose proof contains the algorithms for computing spec in 1]" or E- 
extensions. The result also yields some important facts regarding the periods of 
elements. 

THEOREM 4. Let F(t), o be an extension ofF,  o. 

(a) I f  the extension is a I]-extension, and if  F is It-regular, then the only elements of  
the extension with nonzero period are of  the form u . t n, n E Z (which have period 
1). I f  F is computably [I-regular, then spec is computable. 

(b) I f  the extension is a S-extension, if F is I-regular, and if H(F)  is torsion-free, then 
all the elements of  the extension have period O. I f  F is computably I-regular, then 
spec is computable. 

PROOF. Some of the nonalgorithmic aspects of this proof may be found in the 
corresponding theorem in [l l]; these parts are labeled "Note l," etc. 

The first step in this proof is to reduce the question to one of polynomials, 
regardless of the type of the extension. It can be shown [l 1, Note 1] that 

o ~  t~=~ o k num(f_____) ~ F a n d  o k den(f_____.) ~ F. 
g num(g) den(g) 

If the period and specification of polynomials can be determined, we have a simple 
means of determining period and specification in F(t), namely, 

fspec(num(f),  num(g)) if per(den(f)) = per(den(g)) = 1, 
spec(f, g) = / ~  pec(den(f) '  den(g)) if per(num(f)) = per(num(g)) = 1, 

(see below), 
b otherwise. 

The condition for the third choice above is 

and 

per(h) = 0 where h = num(f),  den(f),  num(g), den(g) 

k & spec(num(f), num(g)) = spec(den(f), den(g)). 
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We now consider the equivalence and period of polynomials in II-extensions. Let 
f ,  g ~ F [t], and write 

m n 

f =  ~ v,t', g =  Z wttt' Vm~O,  w n ~ O .  
t - 0  l ~ O  

Then 

u E F ~  ~ O%,(a(k)t) k = f U. w,t' (Identity 6) 
g t J 0  t~0  

~ m  n and okv, £ . .  = • (k) = U. W,, i = 0, . ,  m (matching coefficients). 

Thus the coefficients o f f  and g must be zero and nonzero in corresponding positions. 
If  only the leading coefficients are nonzero, then c lear lyf  ~ g, and the period of each 
is 1. Assume that there is some j < n with b, wj nonzero. Then, since Vm, wn are 
nonzero also, we conclude ([ 11, Note 2]) that 

• - = -  and v ~ vm 
v wj b 

k~ 

We would like to use M-regularity of  F, but to do so, we must show that a ~-J .  ov /v  
is not a root of  unity. This is done in [11, Note 3]. Thus we may indeed invoke the 
1H-regularity of  F (computationally, if we desire to compute k) and try to f'md l such 
that 

Wv 
Note that H-regularity leaves only one possible choice for l, thus proving that any 
polynomial with more than one nonzero coefficient of  t has period O. This concludes 
the proof of  part (a). 

We next consider the equivalence and period of  polynomials in I-extensions. 
Again, let f ,  g E F[t],  and expand them as above. It is immediately clear that if 
f ~ g, their degrees are equal; call this degree m. Define the following: 

~ P m - - 1  - - W i n - - 1  O P  - -  Ol • V ~ 
I~ A -  W ~  A Z A 

m • I~m m •Wm a 

It is shown in [11 ,  N o t e  4] t h a t  z ~ 0 and that 

° k f  ~ F ~ ~ k~ _ W -- 

We must show that a .  oz / z  obeys the necessary condition for I-regulari ty,  that is, 
that ( o z / z ) / a  is either equal to I or is not a root of  unity ([ 11, Note 5]). Thus we can 
use (computable) I-regulari ty of  F to try to find l such that 

O Z / Z  - -  W -  V 

t l  

If  no such l exists, then k cannot exist, s o f  ~ g. Otherwise 

otherwise. 
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As in part (a), there is at most one value of l, proving that every polynomial has 
period 0. [] 

To summarize this subsection, we have introduced an equivalence relation, whose 
importance will become clear later, and have characterized it (and shown how to 
compute it) in terms of torsion-freeness and (computable) rI- and I-regularity. The 
concepts of regularity, particularly I-regularity, seem abstruse compared to the 
innocent-looking equivalence relation, and it might seem that little progress has been 
made. Realize, however, that regularity is intrinsic to a difference field, whereas the 
equivalence relation was defined for an extension of difference fields. We shall see 
that torsion-freeness and (computable) regularity can be lifted through HE-exten- 
sions, so that they are properties of all liE-fields. 

2.4. [I-REGULARITY. This and the next subsection do most of the work in proving 
the eventual result that I~-f ields are rl- and I-regular. They are not easy, but 
because they yield the computability of spec (Theorem 4), and because spec is the 
key to computing answers to questions about the homogeneous group and to solving 
difference equations, these sections contain the backbone of the theory (and algo- 
rithms) of liE-fields. We start at the constant field, first by introducing a property 
required for computability. 

Definition 19. Let K be a field. We say that K has recognizable powers ¢* there is 
an algorithm which when given c, d E K either produces a k such that c k = d or 
declares that there is no such k. If c and d are roots of unity, the algorithm yields the 
smallest positive k, if one exists. 

LEMMA 2. A constant difference field is ~I-regular, and computably so, provided 
that it has recognizable powers. 

PROOF. In a constant field,~k) = f ~  (negative values too of course). Thus 

J~k~ = g and)~t~ = g ~=~fk = f t  =~fk-l = 1. 

If k # l, then f must be a root of unity, proving II-regularity. The fact that 
recognizable powers implies computable I]-regularity is just a tautology, in light of 
A k ) = f  k. [] 

To obtain the results of these two subsections, it is convenient to extend the notion 
of degree and leading coefficient from F[t] to F(t). 

Definition 20. Let f E F(t). 

deg(f)  & deg(num(f)). - deg(den(f)); deg(0) -- -oo; 
lc(f)  & lc(num(f)) (leading coefficient). 

There are the following trivial facts regarding these functions. 

Facts. For f, g # 0, 

(1) deg(f ,  g) -- deg(f)  + deg(g), 
(2) deg(o~r) -- deg(f),  
(3) deg(j%) = k .  deg(f),  
(4) lc(o~f) -~ ok(lc(f))a~g~ {r}, 
(5) deg(f )  ~ 0 ~ lc(.fik}) = lc(f){k), 
(6) deg(f )  -- deg(g) and lc( f )  + lc(g) # 0 ~ l c ( f  + g) = lc(f)  + lc(g), 
(7) deg( f  + g) _< max(deg(f), deg(g)). 
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THEOREM 5. Let F(t), o be a I~-extension ofF, o. Suppose that F is (eomputably) 
H-regular (and that polynomials over F can be factored). Then F(t), o is (computably) 
II-regular. 

PROOF. Suppose f ,  g # 0 , f i s  not a root o f  unity. We  desire to de te rmine  whether  
a k exists such that  

fik~ = g. 

I f  k exists, we wish to prove that  it is unique. We shall follow the convent ion  that  i f  
k does not exist, k = *. 

I f f  ~ F, then jSk) ~ F. I f  g q~ F, then clearly k = *; otherwise the solution is 
immedia te  by (computable)  l-I-regularity o f  F. Thus  we m a y  a s s u m e f ~  F. 

Let m ~ d e g ( f ) ,  n a= deg(g) .  Then  

k # * ~ k . m - - n .  

Case 1. m ~ 0. Let  

n 
l a = - - .  

m 

I f  k exists, then k = l. In other  words, 

k = J ' l  if  l E T  and f ~ , = g ,  

l* otherwise. 

Case 2. m = 0 a n d n ~ 0 .  Then  k . m cannot  equal  n, so 

Case 3. m = 0 and  n = 0. Suppose the extension is homogeneous ,  and  let r, s be 
the powers  to which t occurs in f ,  g, respectively. T h e n  k .  r is clearly the power  to 
which t occurs in ,k ) ,  so 

k . r = s .  

Case 3.1. r ~ 0. As in Case 1, let 

s 
l b _ - .  

r 

Then  k m a y  be def ined f rom I as before. 

Case 3.2. r = 0 and  s ~ 0. Then  k .  r cannot  equal  s, so 

k = . .  

Case 3.3. f has no factors with per iod 1. Let ff be an irreducible factor o f f .  
(Under  computab i l i ty  hypotheses,  an f f  m a y  be calculated.)  In the following defini t ion 
we use the convent ion  that  m m  ~ -~ +oo and max  ~ = -oo.  

~(h) ~ min{spec(~,  ~ ) l i f e  ~ and ~ is an irreducible factor  o f  h}, 
tt(h) & max( spec ( f i  ,~) I f f -  ~ and ~ is an irreducible factor  o f  h}, 

p A 6 ( f ) ,  q a__ # ( f ) ,  r ~ X(g), s a__ #(g).  

(Under  computab i l i ty  hypotheses,  spec is compu tab le  by T h e o r e m  4, so that  h and  
/t are computable . )  Note  t h a t p  _< 0 _< q and  that  r = +oo ¢~ s = -c¢;  in this s i tuat ion 
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we clearly cannot havej~k) = g for any k. Otherwise, both r, s E Z and r _< s. It is 
shown in [1 l] that the only admissible value for k is 

I! 
- q +  1 if r = p  and s_>q, 

l&  p if  s = q -  1 and r < p ,  
otherwise. 

(Because of  the ordering relations on p and q and on r and s, the first two conditions 
are mutually exclusive.) We obtain k from this I as before. This completes the proof  
of  It-regularity, since there has never been more than one allowable value for k. We 
have also seen that under computability hypotheses of  the theorem, F(t), o is 
computably ~I-regular. [ ]  

2.5. E-REGULARITY. As with [I-regularity, we start with the constant field. 

LEMMA 3. A constant difference field is I-regular, and computably so, provided 
that K has recognizable powers and that Z is a computable subset o f  K. 

PROOF. The fact that recognizable powers implies (computable) I-regulari ty for 
f #  1 follows from 

i f -  l _ g ~  f k =  g ( f  _ 1)+ 1. 
f t k ~ = g ~ f _  1 

If  more than one value of  k satisfies this equation, then clearly f is a kth root of  
unity. I f f  = 1, ftk~ = k and computability comes from being able to ask whether 
g ~ Z ,  allowed by the assumption that integers are a computable subset of  K. []  

The next result is the crucial part of  the induction proof; it shows that if F, o is a 
I t  ~-field, then so is F, o k for k # 0. This fact is used in the lifting of  I-regularity.  

LEMMA 4. Let F, o be [I" and I-regular, and suppose H(F) is torsion-free. I f  F(t), 
o is a H-extension (respectively, I-extension) of  F, o, then for  k # O, F(t), o k is a I~" 
extension (respectively, I-extension) ofF,  o k. 

THEOREM 6. Let F(t), o be a II S-extension of  F, o. Suppose that for  all i # O, 

(a) F, o' is (computably) I-regular; 
(b) H(F, o') is torsion-free; 
(c) (polynomials can be factored over F). 

Then F(t), o is (computably) I-regular. 

PROOF. The proof  of  this theorem is long, so some guideposts to its overall 
structure are given. We are concerned with the equation 

c,.A,=g, 
0_~Kk 

where c, ~ K and not all c, are 0. (The c, have other special properties which are 
needed in [1 ll.) 

To show I-regulari ty alone, we assume that k > 0 and g = 0 and try to show that 
f E  F, so that the desired condition regarding f follows by E-regularity of  F, o. This 
proof  consists of  deriving a contradiction from the assumption that f ~ F. Most of  
the details appear in "Notes" given under this theorem in [11]. This case is referred 
to as the "g = 0" case. 

To show computable I-regulari ty,  we assume that c, = 1 for all i but that g is 
arbitrary, and try to determine a k or show that none exists. Note that if g = 0, then 
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k = 0 is the answer; we hereafter assume g # 0 when proving computable I - regular i ty  
and call this the "g # 0" case. Note that 

f E F and g E F =~ k may be determined by computable I - regular i ty  in F, 
f ~ F and g ~ F ~ k = * (because f ~ F ~ 3qh~ E F). 

Thus we may assume that throughout this proof k # 0 in the g # 0 case a n d f ~  F. 
In most parts of  the proof, the technique is to narrow the possible values of  k to a 

single value/,  as we did with computable I]-regularity. We again use the convention 
k = *, and occasionally l = * or I is not an integer. Then 

k = ( l  , f  I E Z  and j~/}=g, 
[. otherwise. 

The proof (and algorithm) is broken into its major parts by consideration of  the 
following degrees: 

m ~ deg( f ) ,  n ~ deg(g). 

In Part 1 we consider the case in which m = 0. Here, after excluding various 
impossibilities, we consider leading coefficients and use I-regular i ty  in F to obtain 
l. Even this involves a slight twist however. In Part 2 we consider certain "easy" cases 
for determining/,  on the basis of  those situations in which deg(~ 3%) becomes larger 
as k becomes larger in absolute value. After Part 2 the sign of  k is determined, and 
certain relationships of  m and n may be assumed. Part 3 involves examining factors 
in den(f{k}) and matching them up with factors in den(g) .  

Part 1. m = 0. In the g = 0 case we derive a contradiction in Part 3. The 
remainder of  this part is concerned only with g # 0 (recall that c, = 1 in this case). 
On the basis of the consideration that deg(~ 3%) -< 0 (by facts (3) and (7), above), we 
see that 

deg(g)  > 0 ~  k = *. 

Thus we may assume that deg(g)  _< 0. Now let 

v A lc( f ) ,  

w~{~ c(g)= 
By facts (5) and (6), 

if deg(g)  = 0, 
otherwise (i.e., deg(g) < 0). 

V(~) W. 
O_<l<k 

Now if v is 1 or not a root of  unity, we may use I-regulari ty in F to determine that 
the above equation is impossible or to determine the unique I such that vl: } = w. This 
I is then the trial value of  k, and we proceed as in the introduction. 

Thus the only remaining problem is when v is a root of  unity other than 1. Using 
recognizability of  powers in K, we may determine the smallest positive p such that 
v" = 1. Then we must have 

v ~ -  1 v ~ -  1 
r - = k m o d p ~ v { k } - - - - - - - w .  

v - I  v - I  

Again using recognizabihty of  powers in K, we can determine r by the equation 

v ~= w . ( v -  l) + I. 
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O f  course, 

r does not exist =* k ffi *. 

Hence we have at least determined k mod p ,  and we let k ffi p .  q + r and set about 
trying to find q. By the g = 0 case of  Part 3 (using f ~ F),  we will see that f tp l  # 0. 
This allows the mysterious definitions, 

~ o- r (  g -- EO~t<rAt))IAr) 
{p} 

f a_f<~i'°f{pl 
- -  f { p }  

It is shown in [ 11, Note 1 under this theorem] that 

f {  p q+r} "~ g ~ f{q,oP} ---- g .  

Thus we have converted the problem from one in F(t) ,  o to one in F(t),  o p f o rp  > 
1. This may not seem like a reduction, but actually it is. First, note that we have 
assumed that F, o p is computably 11I- and E-regular and that H ( F ) ,  o p is torsion-free. 
Lemma 4 then says that F ( t ) ,  o p is a E-extension of  F, o p, so that the hypotheses of  
this theorem remain true with o p substituted for p. Second, note that deg(0 = 0, so 
that when this proof  (or algorithm) is used for f and g, it is still Part 1 that applies, 
and we need not worry about what happens in the rest of  this proof. Third, it is 
shown in [17, Note 2] that lc(0 is either equal to 1 or is not a root of  unity, so that a 
trial I is obtained earlier in Part I - - t he  proof  (or algorithm) does not pass this way 
twice. 

Thus we can determine q in F ( t ) ,  o p. Then 

l & ~ q "  p + r  if q exists, 

t* otherwise. 

This completes the determination of  k when m ffi 0. 

P a r t  2. m # O. The proof  of  the g ffi 0 case for this part may be found in [17, 
Note 3]. Observe that the terms of  E J~,) have distinct degree. Tabulating the various 
possibilities, we have 

m . ( k -  1) if  m > 0 ,  k > 0 ,  
( ~ j }  ~ 0 if m < 0 ,  k > 0 ,  

d e g \ . / , )  = - m  if  m > 0 ,  k < 0 ,  
m . k  i f  r n < 0 ,  k < 0 .  

Case 1. m > 0, n _> 0. If  k < 0, then together with m > 0, deg(Ej},) ) = - m  < 
0 _< n. Thus if k exists, k > 0, and in fact, 

m . ( k  - 1 ) = n .  

Accordingly, the only possible choice for k is 

1 A n  _ - - - + 1 .  
m 

Case 2. m < 0, n > 0. If  k > 0, then together with m > 0, deg(E ~o)  = 0 < n. 
Thus if k exists, k < 0, and m fact, 

m . k = n .  
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The only possible choice for k is 

323 

n 

m 

Case 3. m < 0, n _< 0. I f k  < 0, then together with m < 0, deg(~.fio) -- m .  k > 
0 >_ n. Thus k > 0. We shall worry about its exact value in Part 3. 

Case 4. m > 0, n < 0. I l k  > 0, then together with m > 0, d e g ( ~ o )  = m .  
(k - l) _~ 0 > n. Thus k < 0. We may convert this into a case 2 or 3 problem by 
substituting f ~ ~_1) and 9 ~ -o (g / f ) ;  observe that deg(f) -- - d e g ( f )  < 0 (by identity 
(4) of  Subsection 2.3). It is shown in [l l, Note 4] that 

O_<t<k O ~ < - k  

Part 3. k > 0 and (m = 0 (g = 0 case) or s = O, m < O, and n _< 0 (g # 0 case)). In 
this part we inductively consider the more complicated equation, 

c,. o'h "J<o = g, 0 ~ h ~ F[t], all factors of  h have period O. 
0<_t.<k 

Given any irreducible f a c t o r / o f  den( f ) ,  period 0, we give a procedure which has 
one of  the following outcomes: 

(1) A contradiction is derived for the continuation of  Part 1, or the possible values 
for k are narrowed down to a single choice l for the continuation of  Part 2. 

(2) It is shown that h, f ,  g exist such that the above equation can be satisfied for a 
given k ¢=~ the same equation can be satisfied with h, f, g substituted in it. 
Further, the hypothesis regarding h is maintained, deg f = degf ,  and g = 0 
g = 0. A reduction occurs because 

(a) deg(den(f)) < deg(den(f)) ,  or 
(b) deg(den(t)) = deg(den(f))  and deg h < deg h. 

Note that ff this reduction procedure cannot be applied, f E F or all of  the factors of  
den ( f )  have period l, that is, the extension is homogeneous and d e n ( f )  is a power 
of  t. We worry later about what this means, first presenting the reduction (the first 
time through, h = 1). 

Step I. Eliminate the possibility that o-~ffIh. If  it does, then let 

fay. f 

g a g  

--7 0 

h ~  = 

O- 

(note that deg(den(0 ) = deg(den(f)) ,  deg f -- deg f ) ,  

(note that g = 0 ~ g = 0), 

(note that h E F[t], deg h < deg h, so outcome (2b) holds). 

It is shown in [11, Note 5] that the equivalence is maintained. By repeatedly applying 
this step, we may assume henceforth that 

f{ d e n ( f )  ~ o-lf ,r  h. 

Step 2. Suppose f l  den ( f )  and oJfl n u m ( f )  for some.] > 0. Then let 

f a f (deg(den(0) < deg(den(f)) ,  so outcome (2a) holds), 
= o k f l f  

g ~ g .  ~ )  (note that g = 0 <=~ g = 0), 
h ,~ h .  Z(~). 
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It is shown in [ 11, Note 6] that the equivalence is maintained. Again, the hypotheses 
regarding h, f ,  and g remain true. Thus, by repeatedly applying this step we may 
assume that 

f l d e n ( f )  and o~fl n u m ( f )  ~ j  < 0. 

Step 3. We use the definition o f #  from the proof of  Ill-regularity. 

p ~ #(den(f)),  
q __a ~(~n(g)).  

We also require 

r & max{ilc~ # 0}. 

By the assumption that the c, are not all zero, r _> O; when s -- 0 in the g # 0 case, r 
is of course k - 1. We prove in [ 11, Note 7] that 

For g = 0, the existence of k implies q ~ Z (as opposed to - ~ ) ,  and 

p + r - l = p + k - 2 = q  ( b e c a u s e g ~ 0 ~ - ~ r = k -  1). 

Accordingly, 

l ~ S , q - p + 2 [  if q ~ Z  and q > p - 2 ,  
otherwise. 

As for g ~ 0, the fact that ~ c,. o'h • J~,~ has a denominator contradicts the fact that 
it is equal to 0. Thus step l or 2 must have applied. 

End of  reduction process. We now consider the impact of this reduction process. 
As pointed out before, the only way that den( f )  can have a nontrivial denominator 
is if the extension is homogeneous and the denominator is a power of  t. Assume that 
this power is p ~ 0 (different/, from above). Then, since t ,t" h, t occurs to the power 
i .  p in den(o'h • ~,~), and to the power r .  p in den(~ c,. # h .  j~,~), where, as before, 
r ~s the largest value <k  such that cr # 0. I f  t occurs to the power q (different q from 
above) in den(g), then 

r . p = q .  

For Part 2 we have as the only possible value of k, 

l ~ -q + 1 (because r = k - 1 In this case). 
P 

Since deg( f )  < 0, we must havep ~ 0 in Part 2, thereby completing the determination 
of k (at long last). The final contradiction for Part 1 is shown in [11, Note 8]. [] 

2.6 THE HOMOGENEOUS GROUP. In this subsection we answer various questions 
which have arisen concerning the homogeneous group. We begin with a necessary 
result about torsion-freeness. 

LEMMA 5. Let F(t), o be a I~-extens ton o fF,  o. Suppose 

(a) F, o is IX-regular; 
(b) H(F)  is torsion-free. 

Then H(F(t)) ts torswn-free. 
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We turn to computational questions. First, the problem of  deciding whether an 
extension where at = a • t is an [I-extension requires an answer to 

G w e n f ~  F, does there exist a nonzero n ~ Z such that f n  ~ H ( F ) ?  

Second, the problem of  deciding whether an inhomogeneous extension is a E- 
extension requires answers to the above question and to 

I s f  ~ H(F)?  

The fact that F is an arbitrary l iE-field seems to force the consideration of  the 
following problem, the solution to which easily suffices to resolve the original 
questions: 

Given ffi . . . . .  fk ~ F, describe the set of  nl . . . . .  nk ~ Z such that fT'  . . .  f~k 
H(F). 

Convention. fn A f,~, . . .  f'~k. We do not reserve k for the length o f f .  

One might worry that there is an infinite set of  n such that fn ~ H; however, the 
set of  these values has a convenient algebraic structure which makes a finite 
description possible. 

Definition 21. M(f, F )  =a {n l f -  ~ H}. 

LEMMA 6. Let f ~ F ~. Then M(f, F) forms a submodule of Z ltl (the underlying 
ring is Z ). 

Since M(f, F)  is a submodule of  a finite-dimensional free module, it itself is free 
[12, Th. X.12, p. 358] and can be described simply by giving a basis for its elements. 
Thus we may further refine the above question as follows: 

Given f ~ F ~, compute a basis for M(f, F). 

We shall be able to do this in arbitrary liE-fields. 

We first consider the problem in a constant field. This paper does not consider 
how to go about making computations in K, but it states precisely the requirements 
for such computations. Since H(K)  = { 1 }, we have the following. 

Defimtion 22. We say a field K has recogmzable powers ~ there is an algorithm 
which, given c ~ K ~', produces a basis for the set of all n ~ Z '~ such that 

) 
c n =  1. 

We have taken the liberty of  reusing the term "recognizable powers" of  the 
previous section, because the ability required m Definition 22 above easily implies 
the ability required in Definition 19. This problem is not difficult to solve in Q or in 
any transcendental extension of a field in which it is already solved. Lifting this 
ability through arbitrary algebraic extensions is an open problem. 

The key to lifting the computability of a basis for M is a certain canonical form for 
the elements of F(t); this form relies heavily on the equivalence relaUon ~. We first 
introduce this form, prove that it is canonical, and show how to compute it. Then we 
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use it in computing a basis for M. Throughout this section, we assume that F(t), a is 
a II- or I-extension of F, o. 

Definition 23. Let f E F(t) ~, and suppose that 

(oFO) f i  -- us" t e' " H Ok if)'*, us ~ F, :: ~ F i t ] .  
j,k 

We say that ( (~ ) j ,  (u,, e,, (esjk)j,k),) is a a-factorization o f f  ~=~ 

(oF 1) 
(oF2a) 
(oF2b) 
(oF3) 
(oF4) 

is manic, has degree >0, and is irreducible; 
t # ~ if the extension is homogeneous; 
e, = 0 if the extension is inhomogeneous; 

for all j, there exists some i, k such that es~k # O. 

The idea behind this definition is that equivalent irreducible factors are grouped 
together (with a special case made for the one possible factor with nonzero period). 

THEOREM 7. Let F, o be H" and I-regular. Then there exists a o-factorization of 
every element ofF(t)% and it is unique up to the u,, permutation of  the ~, and translation 
of the last index of esjk. The o-factorization may be computed, provided that there is an 
algorithm for factoring polynomials over F, and that spec for the extension is a 
computable function. 

PROOF. Uniqueness is proved in [11]; we examine here the existence (or compu- 
tation) question. Consider (or calculate) the set of all irreducible factors of  the ft. 
Any factors of period 1 determine es for ft. All other factors have period 0. Group 
these into equivalence classes under - ,  and pick an arbitrary representative of each 
equivalence class, calling these representatives ~ (this may be computed if spec is 
computable). Once the set ~ is fixed, all of the factors of period 0 may be written in 
the form ok,~ (perhaps multiplying by an element of F). Then esjk lS simply the power 
to which ok~ occurs infi (by convention, es~k is 0 if Ok~ is not a factor of fi). The u, 
are determined by dividingfi by t e' and okff) ~k for appropriate j and k; this forces 
us ~ F, and guarantees oF0. The conditions oF l -aF4 are clear from the construc- 
tion. [] 

We now come to the main result of this section, which characterizes M( . . . .  F(t)) 
in terms of M( . . . .  F)  and various functions of the components of a o-factorization. 

THEOREM 8. Let f ~ F(t) °° have a o-factorization, denoted as in Definition 22. Then 

M(f, F(t)) = M1 N M2 tq M3, 

where 

(a) M1 A [M(u, F) in the case of a I-extension, 
= [ { n l n ^ d ~ g ( u , . l / o ~ , F ) }  otherwise, 

(b) M2 _& Ann(e), 

(c) M3 & f'l Ann ~ ~ 

Furthermore, Mr, M2, and M3 are each submodules o f Z  Itl 

We do not discuss in this paper how to obtain the basis for an annihilator, given 
the elements to be annihilated; nor how to obtain the basis for M1, given that for 
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M ( u  ^ ( l / a ) ,  F) ;  nor  how to compu te  the basis for  the intersection o f  two modules ,  
given the basis for each. These  are p rob lems  in s tandard  l inear  algebra,  which  do not  
concern  us here. G iven  techniques for  those p rob lems  and  the abil i ty to  compu te  o- 
factorization,  it is clear that  the computab i l i ty  o f  a basis for  M(f ,  . . .  ) m a y  be  lifted 
through I ]~-ex tens ions ,  which was the goal we set for  ourselves in this section. 

We now give several examples  which illustrate the combined  power  o f  the above  
theorem and T h e o r e m  2. 

Example 7. Consider  the difference field Q(x),  where  ox = x + 1; let E = 
Q(x)(p~,p~ . . . .  ), where  p, is the ith pr ime.  We  show that  {x} t.I {p~}, is an  
algebraical ly independent  set (not  a surprising result, o f  course- - -what  relat ionships 
could there possibly be?), in part icular ,  that  p~ is t ranscendenta l  over  Fk-1 
Q(x)(p~ . . . . .  p~-l) .  To  begin with, i f  2 x is algebraic  over  Q(x),  then  2 '~ ~ H(Q(x)) for  
some n, by  T h e o r e m  2. In  T h e o r e m  8, let f = (2) ,  F = Q, and  t = x. In  the o-free 
factorizat ion of  f, j ranges over  the null  set, and  we have ul = 2; also, el = 0. Thus  M2 
and M3 o f  the theorem are both  Z (considered as a module  over  itself), and  M~ is 
s imply M<e> in Q. But 

{n12" E H ( Q ) )  -- {n]2 n =  1) = {0). 

Hence  2" ~ H(Q(x)) for n > 0, and 2 x is t ranscendenta l  over  Q(x).  (We could arrive 
at the same conclusion "analy t ica l ly"  because 2 x grows too fast as x --* ~ . )  

2 x Inductively,  assume that  p [  is t ranscendenta l  over  Ft-~ for 1 < k. By T h e o r e m  , pk 
is algebraic over  Fk-i only  i fp~ k E H(Fk-~) for nk > 0. This  leads to a contradict ion.  
Let p -~ (pt+~ . . . . .  ph) ,  n ~- (nl+~ . . . . .  nk). Start ing at l = k - 1, we m a y  inductively 
assume that  pn ~ H(Ft). In T h e o r e m  7 le t f i  = p~, F = Ft-~. In the o-factor izat ion o f  
f, j ranges over  the null set, u --- p, and e = 0. Thus  M2 = Ma = Z ltl (i.e., yields 
no information) ,  and Mi = M(p,,(l/pt)). Thus  there exists nl ~ Z such that  
p'[' .p" E H(Fi-O. Thus  we have  decreased l by 1 in the induct ion process. W h e n  
l = 0, we have p = (p~, . . . , p k ) ,  n = (n~ . . . .  nk), with pn E H(Q(x)). Here  we use 
T h e o r e m  4 in the inhomogeneous  case and  obtain  pn ~ H ( Q ) ,  that  is, p'~ = 1. But 
since the p, are all primes,  this forces n = 0, in par t icular  nk -- 0. Thus  p~ is 
t ranscendental  over  Fk-~, so that  {x, p~ . . . . .  p [}  is an algebraical ly independent  set 
for any k. [ ]  

Example 8. Again consider Q(x), but  this t ime extend Q(x)  by  x!, so ox! = 
(x + l)x!. This extension is algebraic  only  i f ( x  + 1)" E H(Q(x)), for some n. App ly  
T h e o r e m  8 with f = (x  + 1), t = x, F = Q. In the o-factor izat ion o f f ,  

= x +  1, u l =  1, e l = 0 ,  euo--- 1. 

Condi t ion (c) o f  T h e o r e m  8 requires that  n. e~0 = 0. Since e ,o  ~ 0, we conclude that  
n = 0, that  is, M(f ,  Q(x)) = M~ N Mz N {0} = {0}, wi thout  even calculat ing M1 
M~. Thus  x! ~s t ranscendenta l  over  O(x).  

Consider  any extension F(x) which is inhomogeneous .  Then  using exact ly  the 
same proof,  we see that  x! ~s t ranscendental  over  F(x). Since we showed in Example  
7 that  Q(pff . . . .  )(x) ~s an inhomogeneous  extension of  ~ ( p ~  . . . .  ) (because the set 
{x, p~, p~ . . . .  } is a lgebraical ly independent) ,  we can conclude that  {x, x!, p~ . . . .  } is 
an algebraical ly independent  set, as one would expect. [ ]  

2.7. REVIEW. The  purpose  o f  this sectton has been to introduce l iE- f i e lds  and  
prove  basic facts about  them. W e  have  seen that  a constant  field K is vacuous ly  a 
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HE-field over itself. More important, given any iH~-field F, o and elements a, fl 
F, we have considered an extension F(t), o, where at = a .  t + fl, and have been able 
to characterize whether it is a [I-extension (possibly by a "change of basis"), a E- 
extension, or neither. 

In the process of characterizing I~ - f i e lds  it has been necessary to study various 
properties which all such fields have. The crucial work in doing this has been 
scattered throughout previous subsections; the following result concisely summarizes 
these results, and its proof [11] ensures that all the pieces fit together as intended. 
Note that all the results of this chapter are tied together in an inductive way along 
the tower of  a [I~-field. 

THEOREM 9. Let F, o be a [I~-field over a constant f ield K. Then 

(a) F, o k is a [IS-field over K whenever k # O. 
(b) F, o is [I-regular and I-regular. 
(c) H(F,  o) is torsion-free. 
(d) Let F(t), ~ be a [I~-extension o fF ,  o. All  elements o fF( t ) ,  o have periods of  I or 

0; the only elements of  period I are either in F or, in the case of  a [I-extension, are 
of  the form u . t  '~, u E F. 

Suppose that K has the following properties: 

(i) Polynomials in several variables may be factored over K. 
(ii) K has recognizable powers (by Definition 22). 

(iii) The integers are a computable subset of  K. 

Then we can also conclude that 

(e) F, o is computably [i- and I-regular. 
( f )  For F(t), o a [iX-extension o fF ,  o, spee is a computable function. 
(g)  Given f ~ F w, a basis for  M(f, F)  may be calculated. 

The only question of computation which remains concerning [i  I-extensions is the 
ability either to solve the first-order linear equation og - a .g  = f i n  F, o or to declare 
that a solution does not exist. This will be answered in the next section. 

3. Solutmns 

3.1. THE GENERAL EQUATION. We mentioned earlier that og - g = f is not a 
convenient equation to consider when we try to lift solvabihty through [i  Y,-exten- 
sions. There are two ways in which the equation must be generalized. First, we are 
forced to consider general first-order-linear equations og - a .g  = f ;  the need for 
solving these arose anyway in the characterization of ]-IY:extensions. Even more 
generally, it is necessary to consider the following problem: 

Given a E F, f ~ F ~, solve og - a .g  -- e . f  for g ~ F, c ~ K °'. 

As part of  the inductive process, we are interested in "all" solutions to og - a .g  -~ 
c.f. The first thing to notice about "all" these solutions is that they have a familiar 
algebraic structure. 

Definition 24. Let S C F, a E F, f E F ~. The solution space for a, f in S, 

V(a, f, S)  & (c,, g E  K Itl x S ] o g -  a .g  = e . f ) .  

Observe that f is not necessarily in S '°. 

PROPOSITION 6. I f  S is a vector space over K, then for  any a, f, V(a, f, S)  is a vector 
space over K, with dimension _<[f] + I. 
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Definition 25. Let S be a vector space over K, a E F, f ~ F% A solution basis for 
a, f in S is by definition a basis for V(a, f, S) .  Elements of  this basis are usually 
denoted c, ^ g,, and the totality of  the elements may be written C ^ g where C is a 
matrix whose ith row is c,, and g a column vector whose ith element is g, (note abuse 
of  "^" notation). I f  V(a, f, S) = (0}, then a basis for it is 00.tel ̂  00. 

This section has many worked examples in which we need conventions for matrices 
and vectors. Matrices are written with parentheses in the usual fashion; In is the 
identity matrix of  size n; for example, 

Vectors are throught of  as column vectors (for convenience in multiplying by 
matrices), but the tuple convention may be used for typographical convenience. 

When the vector has a length of  one, the notations are interchangeable: (1 } - -  (1) .  
In the midst of  all this generality, it might be well to point out how knowledge of  

the solution basis tells us whether f is summable. Suppose we have a basis 
for V(I, ( f ) ,  F) .  This space will always include (0, 1) (because o l  - 1.1 - - O . f )  
and so will be at least one-dimensional. I f  and only if the dimension is two, we 
will have nonzero c and some g such that og - 1 .g  = c. f .  Since e is nonzero, 
o ( g / c )  - 1 . ( g / c )  = f ,  a n d f i s  summable. 

Our first result concerning solutions is for the constant field, where the recursion 
must stop. 

THEOREM 10. Gzven a E K, f ~ K °', 

V(a, f, K )  = AnnK( f^  (a -- 1)). 

Given a vector, there are well-known ways to produce a basis of  its aimihilator; 
these will not be discussed here. 

It is convenient to introduce at this time a method for transforming the a in the 
equation o g  - a . g  = c . f .  

LEMMA 7. Let  a E F, f ~ F '~, and let ao E F be nonzero. Then 

C ^ g is a basis f o r  V(a.(oao/ao),  oao.f,  F )  

=~ C ^ g/ao is a basis f o r  V(a, f, F) .  

In words, we may modify an equation by multiplying a by an element of  H ( F )  
and adjusting f accordingly, and thus obtain the basis for the original equation from 
that for the modified equation. 

3.2. REDUCTION TECHNIQUES. In the language of  solution spaces, the problem 
we are trying to solve is: Given the ability to find a basis for V(u, v, F) ,  given 
arbitrary u, v, E F, devise a method to find a basis for V(a, f, F(t)) .  This problem 
breaks down naturally into a series of  smaller problems of  the following type. Note 
that there are infinitely many vector spaces U over K lying between (0) and F(t).  
Depending upon a and f, we judiciously pick a finite number of  these and consider 
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the following tower: 

F(t) = U, _D Un-1 D_ . . .  _DUo = {0}. 

Then, for i = n . . . . .  1, we reduce the problem of  finding a basis for V( . . . ,  . . . .  U,) 
to that of  finding a basis for V( . . . . . . .  , U,-1), perhaps using a solution from 
V( . . . .  . . . ,  F). This subsection considers various general properties of  the reduction 
process, and the rest of  Section 3 is concerned with particular U,. 

Our first result describes what happens at the end of  the reduction process. 

PROPOSITION 7. Given a E F(t), f ~ F(t) °', 

V(a, f, {0}) -- Annr( f )  × {0}. 

The techniques of this section rely on some measure of  the "complexity" of  an 
element of  F(t). There are many such measures, depending upon the particular 
U,/U,-i  in which we are interested. These measures can be defined so that they all 
have certain general properties. 

Definition 26. Let W be a vector space over a field K, and let II [I be a map from 
W to the integers. We say that H II grades W ¢* 

(GI) I I f+  gU -< max(Hfll, IIgH) for f ,  g E W. 
(G2) Uc.fll _< IIf[I for c E K, f E W .  

Given such a function, the grades of W are 

Wm A ( f ~  Wl[[f[[ _< m}. 

We use the following notational convention for f E W'°: 

[If I[ & max ][ffil[. 
l 

Typically, the range of  [[ [[ is the set of  all integers greater than some given integer. 

PROPOSITION 8. Let [[ [[ grade W. Then the grades o f  W form an ascending chain 
o f  vector spaces whose limit is W; that is, 

" ' "  C Wm-] C Wm.~_ . . .  --> W,  

Conversely, given such a sequence of  vector spaces, let 

[[fl[ _a_ min ( m l f  E Win}. 

Then II II grades W. 
We have the following additional properties for  any grading of  a vector space: 

(a) ]]c.fl[ _< [[fllfor c ~ K '~, f ~ W'°; 

(b) 119~11 > IIf2[I =~ IIf~ +f i l l  = I l f l l l for f l , f i  ~ W% 

Our first reduction result is the simplest; it tells when two solution spaces are the 
same, even though one of  them may be relative to a much larger W than the other. 
This result is used to "bound" Ilgll. 

THEOREM 1 1. Let W be a vector space graded by II II, let f E W, and suppose there 
is some m such that 

ag - a .g  = f ~ Ilgll -< m. 
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Then 

V(a, f, W ) =  V(a, f, Win). 

Let W1 D W2 be vector spaces between F(t) and F. There are infinitely many ways 
of  choosing a subspace of  Wi isomorphic to the quotient space of  W1 by W2. In tMs 
section, we use the symbol W1/W2 to refer to both the quotient space and to a specific 
(but arbitrary) subspace, with the distinction made clear by context. We use the fact 
from linear algebra that 

W~ ~ W2 @ Wd W2. 

Once a specific Wff W2 C W~ is fixed, the .~- may be replaced by equality. 

In this section, it will always be the case that there exists some 1 ~ Z such that for 
any g, 

I l o g -  a.gU-< Ugll + l. 

This number is known in any given application and is used in defining the object at 
the heart of  the reduction process. 

Definmon 27. Let Wm _D Wm-1 be vector spaces over K; let a ~ F(t), f ~ W,~+l. 
The incremental solution space for a, f relative to a fixed W~/Wm-~ is 

V(a, f, Wm/Wm-~) A_ ( e ^ g [ c  ~ K °', g E Wm/Wm-~, 3g~ ~ W,~-~ 
with o(g + gl) - a . ( g  + gO - c - f E  Wm+l-1}- 

Observe that this object depends not only upon the choice of  Wm/Win-1 _C Wm, but 
also upon/ ,  which is too much to bother with notationally. 

PROPOSITION 9. Let m, l, a, f be as in Definition 27. Then V(a, f, W~/Wm-O is a 
finite-dimensional vector space over K. 

Since an incremental solution space is a finite-dimensional vector space over K, it 
can be represented by its basis, just as a solution space may be. The following result 
shows how to compute a basis for a solution space of  a larger space, given a basis for 
a smaller space and a basis for the incremental solution space between the two 
spaces. 

THEOREM 12. Let m, I, a, f be as above. Perform the following construction. 

(i) Let C ^ g be a basis for  V(a, f, Wm/Win-l). 
(ii) Let fro--1 =a Cf - (og - a. g) (observe that fro-1 ~ Wr~+l-O. 
(iii) Let Din-1 ̂  hm-~ be a basis for  V(a, fro-l, Wm-O. 
(iv) Dm a__ D m - I C ,  hm k D r a - l g  + hm-1.  

Then 

D,r, ̂  hm is a basis for V(a, f, Wm). 

In some cases an incremental solution basis may be particularly easy to compute. 
One such example is the following. 

THEOREM 13. Let m, l, a, f be as above. Suppose that for g ~ Win~ Win-l, 

Ilog - a 'g l l  < m + 1~-} g = O. 

Suppose also that there exists g E (Wm/ Win-l) ~ with 

II f -  (og - a .  g)II < m + 1. 
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Then 

I ̂  g is a basis f o r  V(a, f, W,~/W,.-a),  

where I is the identity matrix.  

3.3. THE POLYNOMIAL PART. In this subsection we consider a vector space W 
with the property that 

F[t] C W C_ F(t).  

The goal is to "eliminate" the polynomial part of  the solution. The reduction process 
for doing this is based upon the following obvious grading. 

Definition 28. L e t f E  F(t) ,  and letfo be the polynomial part o f f .  Then 

- 1  if f o = 0 ,  
Ilfll & degfo otherwise. 

The first two results of  this section are concerned with bounding Ilgll in the case 
where II a II = 0. In most cases, Theorem 11 may be used in bounding II gll, but here 
the problem is more subtle, and we must use other means of  finding a bound. It is 
necessary to treat I]" and I-extensions separately. 

THEOREM 14. Let  F(t) ,  o be a I -ex tens ion  o f F ,  a, and let a E F( t )  with Ilall -- 0 
(i.e., the polynomial  part  o f  a is a nonzero element o f F ) .  For any f E W, i f  there exists 
g E W s u c h  that og - a . g  - - f a n d  Ilglt > Ilfll + l, then 

(a) a ~ F, so we may  write 

t p + u l t  p - ~ +  . . .  
a ---- u • tb + U2tP_ 1 + . . . where p > O, U, Ul, U2 ~ F; 

(b) ul # u2; 
(c) there exists a unique m E ~ ,  m > HfH + 1, such that f o r  some w E F, 

e w  - a . w  = a(ul  - u2) - m . f l ;  

(d) It gll -< m .  

Furthermore, the existence of the m o f  part  (c), and its value i f  it exists, may  be 
calculated provided that 

(i) a basis f o r  V( . . . . . . . .  F )  may  be computed; and 
(ii) • is a computable subset o f  K. 

PROOF. Most of  the proof is in [11]. We examine here only the issue of  calculating 
m. To do so, first calculate a basis C ,, w for V(a, (a.(u2 - ul), - i l l  F). Without loss 
of  generality we may assume that C ,, w is in reduced row echelon form. I f  the only 
row of  the matrix is of  the form (0 0 w), then the equation of  part (c) cannot be 
satisfied for w E F, m ~ K, let alone m E Z .  I f  the matrix has a row of  the form 
(0 1 w), then a ( - w )  - a . ( - w )  = fl and the extension is homogeneous, by Theorem 
1, contradicting our assumption. We may thus assume that C ^ w has a row of  the 
form (1 c w), c E K, where the other row, if any, has zeros in the first two columns. 
If  c E Z ,  part (c) will be satisfied ~=~ c > IlflJ + l, and of  course, m = c. If  c ~ Z ,  
then no such m exists. []  

Realize what a strange thing is going on here. The ability to find a solution basis 
in a smaller field is being used not to find "part" of  the solution (e.g., a basis for 
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some incremental solution space), but rather to find (or disprove the existence of)  
the integer m satisfying part (c). Note that what we would ordinarily think of  as the 
solution to the difference equation, w, is not used anywhere else in the result. 

Using this result, we can calculate an m such that 

og - a . g  = f =-~ Ilgl[ -< m, 

namely, m is either determined in part (c) above, or m & Ilfll + 1. Thus, for II a II ffi 0 
and inhomogeneous extensions, we have reduced the problem of  W to W,~, for a 
finite m. 

Example  9. Let F = Q, the rational numbers, and let F(t) -- Q(x), the rational 
functions of  x, so that ox  = x + I. Let a = (x ~ + 4x + 7)/(x 2 + l) and f - -  l, so we 
are considering the difference equation, 

x2 + 4x + 7 
ag x 2 +  1 . g = - - 1 3 .  

Applying Theorem 14, observe that 

(i) Part (a) is satisfied since a ~ F. The definitions require 

u =  1, U l = 4 ,  u 2 = 0 .  

(ii) Part (b) is satisfied since 4 # 0. 

Using the proof of  the result, we want a basis for V(I, (4, - 1 ) ,  Q). By Theorem 10 
we need Ann((4, - 1 ,  t - 1 )). Linear algebra algorithms yield the following basis in 
the required form: 

(,0 : 01) 
Using the notation from the proof  of  Theorem 14, c =a 4, so c E Z and c > Ilfll + 
1 -- 1. Thus we let m & 4, and by part (d) we know that the polynomial part of  g has 
degree _<4. [] 

This example shows why the generality of  Theorem 14 is required (we will 
eventually see that the difference equation has a polynomial solution of  degree 4). 
When dealing with the difference equation arising directly from a sum, the following 
result suffices. 

COROLLARY 1. Let  F(t), o and F, o be as above. I f  there emsts a g E W such that 

og - g = f ,  then Ilgl[-< I]fll + 1. 

PROOV. In this case, a = l ~ F, and we may use Theorem 14(a). [] 

We come to the corresponding result in II-extenslons. 

THEOREM 15. Let  F(t), o be a II-extension o f F ,  o. Le t  a E F(t) ,  with Ilall = 0 
and u E F the polynomial  part o f  a. For anfl f ~ W, i f  there exists g ~ W such that 
og - a . g  = f and l{ g II > lifl{, then 

(a) there exists a umque m ~ Z, m > Ilfll, such that 

U 
a--- ~ E H(F) ;  

(b) Ilgll <- m .  
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The existence and value, i f  any, o f  the m o f  part  (a) may  be calculated, provided that a 
basis f o r  M (  . . . .  F )  may  be calculated. 

PROOF. We consider here only the problem of  calculating m; the rest of  the proof  
is in [ll].  Given a basis for M((u ,  l / a ) ) ,  we may assume that there is at most one 
row which is nonzero in the first column. If  this row has _+l in the first column 
(without loss of  generality, say + l), and if  the value in the second column is > l l f l l ,  
then the value in the second column is necessarily m. I f  there is no such row, m does 
not exist. []  

Again, we have succeeded in reducing the problem from W to Win, given the 
ability to perform certain calculations in F, o. 

Example  10. Let F = Q, and think t = 2x; so ot = 2 • t. Consider the equation 

og - 1048576. g = 0. 

The method of  Theorem 15 requires a basis for M(( 1048576, 1/2}). By the results of  
Section 2, this is a problem of  recognizable powers in Q; the module has the basis 
(1, 20). Since 20 > II011 -- - 1 ,  m = 20 (and obviously g = t z° is a solution in this 
case). [] 

COROLLARY 2. Let  F(t), o and F, o be as above. I f  there exists a g ~ F(t) such that 

og - g = f ,  then Ilgll -< max(O, Ilfll). 

Paoov. Since u = 1 in this case, assuming the contrary would force a m ~ H ( F ) ,  
m > 0, contradicting Theorem 2 concerning [I-extensions. [] 

By Theorems 14 and 15, when Ilall -- 0 we need consider only the problem of  
finding a basis for V( . . . . . . .  , Win) for m _> - 1. The reduction to F(t)_~ also handles 
the case in which II a II --  - 1 ,  for which we first find a bound for m. 

LEMMA 8. If  II a II = - 1, then II og - a .  gll -- Ilgll- 

In particular, og - a . g  = f ~ Ilgll --  I lf l l ,  so we may choose m ~ I l f l l  in 
Theorem 11. 

Convention. Let m _> 0. Then 

Win~Win-1 ~ {vtmlv ~ F } .  

It is clear that this is a legitimate choice for a quotient space. 

THEOREM 16. Suppose F(t), o is a l]~-extension o f  F, a. Let  a E F(t) have 
polynomial  part  u E F (so Ilall -< 0). Note  in this case that [[og - a .gl[ < [[gl[, so 
l = O .  L e t f ~  W ~ , m > _ O .  

defv:  v t m +  . . . .  f, v e t ,  I I - " l l < m ,  

C ^ w _a a basis for V(u/ol m, v / a  n. F) .  

Then 

C ^ wt m is a basis f o r  V(a, f, Win~ Wm-O. 

By repeated application of  this result, we may henceforth assume that the poly- 
nomial part of  g is zero when trying to solve og - a .  g - - f ,  where [[ a 1[ < O. This is 
one of  the most important reduction techniques, so several examples of  its use are 
given. The examples are preceded by a result which is useful in short-cutting the 
reduction process. 
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PROPOSITION 10. Let F, o be a difference field and W C F a vector space over K. 
Then a basis for  V(I, 0,~, W )  is, 

In+l if W N K = K ,  
InA0n if W N K =  {0}, 

where I5 is the identity matrix of  size n. (These are the only possibilities.) 

Example 11. We consider an extremely simple sum, ~,%1 1. This leads to the 
difference equation in Q(x) (as usual, ox = x + 1), 

o g - g = l .  

By Corollary 1, I[gll  <- I l l l l  + 1 = 1. Thus we are looking for a basis for 
V(I, (1), Q(X)l). Apply Theorem 12 with m = 1. It first requires a solution basis 
for V(1, (1), Q(xh/QX)o ). For this, we apply Theorem 16 (where m = 1, f = (1), 
v = (0)), which requests a basis Cl,,Wl for V(1, (0), Q). By Proposition 10, 

Letting gl ~ WlX, Theorem 16 yields C1A g~ as a basis for the incremental solution 
space V(1, (x) ,  Q(xh/Q(x)o  ). Then Theorem 12 requires the computation 

, o -  ,o, ( : ) I (  0 
x + l  - " 

The next step is to obtain a basis for V(I, fo, Q(x)o). This is done by a "recursive" use 
of  Theorem 12, this time with m = 0. This use first requires a solution basis for 
V(1, fo, Q(x)o/Q(x)-~). For this, we again apply Theorem 16 (where m = 0, f = 
(1, - 1 ) ,  v = f), which requests a basis for V(I, (1, - 1 ) ,  Q), for which Theorem 10 
and a little linear algebra yield 

0') .o_-(0) 
Letting go = WoX ° = Wo, Theorem 16 yields Co,-go as a basis for the incremental 
solution space. Then Theorem 12 requires 

By Proposition 10, a basis for V(I, (0, 0), Q(x)-l)  is (Q N Q(x)_l -- {0}): 

o), 
We may now finish the recursive use which Theorem 12 has made of  itself. For  
m=0~ 

Then, for the original use of Theorem 12, where m = l, 
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This is the solution basis for V(I, ( 1 ), Q(x)). Since it is two-dimensional ,  we know 
that ~,~.11 is a rat ional  funct ion o f  n: 

~ l = X 1 ~" Xevaluated at n - -  Xevaluated at 0 = n - -  0 ~" n .  [ ]  

At this point  the serious reader  will go through the same exercise for the sum 
~,L~ i. The  computa t ion  is essentially the same as in Example  11, except the recursion 
goes one level deeper  (see I11, Exer. 1]). 

In Example  11 and the suggested exercise, the results are familiar, as are more  
efficient techniques for their derivation. The  following example,  though  somewhat  
lengthy, reveals more  subtle aspects o f  the procedure.  

Example 12. Let us cont inue Example  9. In  this case, u -- 1, a = l, and we have 
already seen that we m a y  start with m = 4. For  conciseness, the example  is presented 
in tableau form, with m a n y  details suppressed. 

Use Theorem 12 with m = 4, f = ( - 1 3 ) .  

(1) Use Theorem 16 with m -- 4, f ffi ( -  13 ): 

(0) 
g4  ~ WX 4 

X 4  • 

(2) f3 a ( - 1 3 ) -  o - a .  ffi - 7 x  2 - 4 x -  1 
X 4 X 4 . 

x 2 +  1 

(3) Use Theo rem 12 with m ffi 3, f = fa. 

(3.1) Use Theorem 16 with m ffi 3, f -- f3, v = C0, 0):  

C 3  ~ , w 3  ~ , 

(3.2) f 2 & C a f 3 - ( o g 3 - a ' g 3 ) =  x4 + 3 x 3 -  4 x 2 - 3 x -  1 . 

x 2 + l  

(3.3) Use Theorem 12 with m = 2, f = f2. 

(3.3.1) Use  Theorem 16 with m = 2, f = f2, v = (0, 0, - 1 ) :  

(!o!) ( ! ) ( o  o) 
C2 = 1 , w2 ffi , g2 = wx~ = . 

0 x 2 

(3.3.2) fl & C2f2 - ( o g 2  - a -  g2) ---- 2 X  3 + 5x 2 - 2x - 1 . 
x 2 + l  

(3.3.3) Use Theorem 12 with m = 1, f = fl. 
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(3.3.3.1) Use  T h e o r e m  16 with  m = 1, f = f~, v = (0, - 8 ,  2):  

C 1  = 1 , Wl  -~ , 

0 
g l  ---- WlX = 

(3.3.3.2) fo = C l f l  - (og - a .  g) = 

--13 

13X 2 -- 12X -- 5 

X 2 + I  

3x 2 + 6X -- 1 

X 2 + I  

(3.3.3.3) Use T h e o r e m  12 with m = 0, f = fo. 

(3.3.3.3.1) Use T h e o r e m  16 with m = 0, f = fo, v = ( - 1 3 ,  13, - 3 ) :  

Co = 1 - , Wo = , go = wx° __ wo. 
0 

/ 
1 • | - 3 8 x  . (3.3.3.3.2) f - l = C o f o - ( o g - a . g ) = x 2 +  1 \ 4 x : 6  

(3.3.3.3.3) W e  see la te r  that  V(a, f~, Q(X)- l )  = V(a, f~, {0}). By Propos i t ion  7 we 
de te rmine  a basis  for  AnnQ(f-1) × {0}: 

C - , = ( l  1 3 ) g _ , = ( O ) .  

(3.3.3.3.4) Do = C-1Co = (1 1 0), ho = C-lgo + g-~ = 3. 

(3.3.3.4) D1 = DoC~ = (1 1 4), h~ = Dog~ + ho = 3. 

(3.3.4) D 2 = D 1 C 2 = ( I  1 0 ) , h 2 = D ~ g 2 + h l = 4 x  2 + 3 .  

(3.4) D 3 = D 2 C a = ( I  1 ) , h 3 = D 2 g a + h 2 = 4 x  2 + 3 .  

(4) D4 = D3C4 = ( l ) ,  114 -- O394 + h3 = x 4 + 4x 2 + 3.  

Thus  a solut ion basis for V(a, - 1 3 ,  Q(x) )  is (1, x 4 + 4x ~ + 3); in o ther  words,  
x 4 + 4x 2 + 3 is a solut ion to the or ig ina l  d i f ference equa t ion  in E x a m p l e  9. [ ]  

In  Examples  11 and  12, we have cons idered  the I - e x t e n s i o n  Q ( x )  o f  the cons tant  
f ield Q. W e  give an  example  o f  the [ I - ex tens ion  Q(x,  x!) o f  the  noncons tan t  f ield 
Q(x) ;  recal l  that  ox! = (x + l ) . x ! .  

Example 13. Cons ide r  the di f ference equa t ion  ar is ing f rom ~,~-1 i.i!: 

o g -  g = x . x ! .  

In this case [If  I[ = 1 (the degree  as a p o l y n o m i a l  in x!),  so by  Coro l l a ry  2, Hgll -< 1. 

Use T h e o r e m  12 with m = 1, f = i x . x ! ) ,  F = Q(x) ,  t = x!.  

(1) To ob ta in  a basis for V(I,  x . x ! ,  Q(x)(x!h/Q(x)(x!)o)  use T h e o r e m  16 with  
m =  l , v = ( x ) .  
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(1.1) We require a basis for  V( l / ( x  + 1), x / ( x  + 1), Q(x)) .  To  obtain it, note that 
Hall = - 1 ;  so by L e m m a  8 we may  use m = Hfl[ = 0. Thus,  use Theo rem 12 with 
m = O, f -- ( x / ( x  + l ) ) , a - -  l / ( x  + l ) , F = Q , t = x .  

(1.1.1) To  obtain a basis for V(a, f, Q(X)o/Q(x)-l), use Theo rem 16. 

(1.1.1.1) Because v -- (1) ,  we require a basis for V(0, (1) ,  Q), which by Theorem l0 
is" 

Co = 0 ) ,  Wo = ( 1 ) .  

(1.1.1.2) The  required basis is thus Co^wox ° = Co^wo, so go = Wo. 

(1.1.2) f-1 = Co(x/(x  + 1)) - (e l  - ( l / ( x  + 1)). l) = x / ( x  + 1) - x / ( x  + 1) = (0). 

(1.1.3) A basis is required for V(a, (0), Q(x) - l ) ,  which will later be seen to be 
V(a, (0), {0}), which by  Proposi t ion 7 is AnnQ((0)) x {0}. Thus  

D- i  = (1), h-1 = (0). 

(1.1.4) Do = D-iCo -- (1), ho -- D-lgo + h-1 -- (1). 

(1.2) A basis for V(I, x . x ! ,  ~(x)(x!) l /Q(x)(x!)o)  is thus Cx ̂  gl: 

C1 = Do = (1), gl = box! 1 = (x!). 

( 2 )  fo - -  e l f -  ( o g l  - g O  = ( x . x !  - ( ( x  + 1 ) . x !  - x ! ) )  = (o) .  

(3) A basis is required for  V(I, (0), Q(x)(x!)o). By Proposi t ion 10, 

oo--(0) ,o horOo onow 
(4) D1 = DoC1 = (o~), ha = Dog1 + ho = (~') + G °) = (]'). Thus  

i.i! -- ~ i.i! = (n + 1 ) ! -  1. [ ]  

Example 14. To  show that ~,~-1 i! has no formula  in Q(n, n!), examine 

o g - g = x !  

The  process begins as in Example  13, but with f = (x! ) ,  v -- (1) in line (1). 

(1.1) We require a basis for  V(1/(x + 1), ( l / ( x  + 1)), Q(x)) .  Note  that []a[[ = - 1 ,  
so by L e m m a  8 we may  use m = I[f[[ = - 1 .  Thus  a basis is required for V( l / ( x  + 1), 
( l / ( x  + 1)), Q(x) - l ) .  We  will see in Example  23 that this solution space is equal  to 
{ (0, 0 ) ) ,  so the basis is null: 

C1 = 0ol ,  w l  = 0o. 

(1.2) I f  wl = 0o, so is gl = wlx!. 

(2) fo = C ~ f -  (ogl - ga) = 0o. 

(3) A basis is required for V(I, 0o, Q(x )(x !)o). By Proposi t ion 10, 

Do = 01o, ho = (1). 

(4) D1 = DoC~ -- (0), hi -- Do.g~ + ho -- (1). 

Since this basis is one-dimensional ,  ~L1 i! is not summable  in Q(n, nl). [ ]  
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The reader is invited to use these results to find formulas for ~,~.~ 2 i, ~,n.l i22 ' 
([11, Exer. 2, 3]). It may be assumed (see Example 15 below) that 1:(1/2, 0, Q(x)-  0 
equals V(1/2, 0, {0)). 

We now return to the main point of this subsection, which is to eliminate the 
polynomial part of the solution. We consider the case when a has a nontrivial 
polynomial part; that is, II a II > 0. As in the case where II a II = -1 ,  it is simple to find 
a bound on the II II of a solution. 

LEMMA 9. If II a I1 > 0, then 

I log -  a. gll _< ll gll + llall, with equality when Ilgll _> 0. 

Accordingly, for this case, l ~ Ilail. A direct consequence of this is 

a. n ll -- {IL U - ' 
if I l f l l -  > t, 

- otherwise. 

Thus, Theorem 11 may be applied with m & Ilfll - II a II o r  - l as appropriate. The 
only remaining case in which g might have a nonzero polynomial part is when 
Ilfl[ -> II a II > 0. This is handled by the following result. 

THEOREM 17. Let a be as above and f ~ Wm+l for m _> O. Perform the following 
construction: 

=a the polynomial part off;  
ao ~ the polynomial part of a; 
defg, h: g-ao + h = -fo,  g, h C Fit],  Ilhll < Ilaoll 

(division with remainder). 

Then 

[ I f -  (og - a. g)11 < m + I. 

For 0 # g ~ Win~ Win-l, [[ gU --> 0, and by Lemma 9, Hog - a.g[[ = [[ g[[ + l, and 
][o0 - a.0[[ = -1  # m + I for any m > 0. This fact, in combination with the above 
theorem, allows Theorem 13 to be used to reduce [if I[ until [[f[[ < I. Then, by the 
other part of Lemma 9, the polynomial part of any solution must be zero. Examples 
of Theorem 17 are not very interesting; readers may construct their own. 

In summary, this subsection has reduced the problem of computing a basis for 
V( . . . .  . . . ,  W) to V( . . . . . . . .  W-l). Furthermore, we have the following bound 
on f: 

[Ifll _< max( - l ,  I[aU- 1). 

3.4 FACTORS OF PERIOD 1 IN THE FRACTIONAL PART. The analysis of the frac- 
tional part proceeds by examining various possible factors of the denominator of  a 
solution. This subsection is concerned with the factor t in [i-extensions; this restric- 
tion is implicit throughout the subsection. We are concerned with vector spaces W 
such that 

v, E F  C WC_F(t).  

Defimtion 29. L e t f ~  W. In this subsection, 

,if[i a { ~  if t[ num(f ) ,  
= otherwise, where t occurs to the power m in den(f) .  

As with the polynomial part, we have a case analysis depending upon II a II- 
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Let a ~ F(t), Ilall -- 0 Write 

U . 6 . . .  
a m _ _  

1 - 6 . - - '  

where u ~ F and " . . . "  consists of terms with degree > 0  (perhaps none). (The fact that 
a can be written this way uses the fact that ]l a II = 0; observe that u # 0.) For a n y f ~  W, 
if there exists g E W such that og - a. g = f and II gll > Ilfll, then 

(a) there exists a unique m E ~ ,  rn > IIfll, such that 

u . a  m E H ( F ) ;  

(b) II gll -< m. 

The existence and value, if  any, of  the m of part (a) may be calculated provided that a 
basis for M(  . . . .  F) may be calculated. 

As usual,  this reduces the p rob l em to Wm when  [1 a II -- 0. There  is an even easier 

case when  II a II = - 1. 

LEMMA 10. / f l l a l l - -  - 1 ,  then I log - a ' g l l - - I l g l l .  

Again,  a s imple bound  for m has been ob ta ined  using T h e o r e m  11. 

Conventwn. Let m > 0. T h e n  

W~/Win-1 ~ {v/t m I v ~ F} .  

W e  now have  the result which  allows us to compu te  the incrementa l  solution space 

when  II all -< 0 

THEOREM 19. Let a ~ F(t) have Ilall -< 0, and write a as in Theorem 18: 

U . 6  . . "  
a =  l +  . . . '  where u ~ F (perhaps u = O). 

In this case II o g  - a .  gll -< II gll, so  l --  o Let f ~ W,~, where m > O. 

v 
defv:  ~ +  . . . .  f, v ~ F ,  I I . . . U < m ,  

C ^ w  a= a basis for V(u.c¢ m, v .a  m, F). 

Then 

C ^ w/ t  m is a basis for V(a, f, Win~ Wm-O. 

Repea ted ly  apply ing  this result, we have  reduced the p rob lem to Wo. In  other  
words,  we m a y  assume that  t is not  a factor  o f  the denomina to r  o f  g when  [1 a H -< 0 
and  the extension is homogeneous .  There  is a remain ing  case to consider,  when  
II all > 0 First  we bound  the grade  o f  g. 

LEMMA 1 1. If II a II > 0, then 

II og - a-  g]l --< I] gll + ]1 a ]], with equality when II gll -> O. 

Accordingly, for thts case, 1 ~ II a II. A direct consequence of thts ts 

~ r g - a ' g = f ~ U g l l - - { l l - f l l l - I  otherwise, zf ]lfll >- l; 
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Thus the grade of any solution can be bounded. Finally, we show how to get 
to Wo. 

Then 

U 
de f  u : a = ~7 + . . . ,  

V 

de f y :  f = t ~ + . . . ,  

g A (S~/u) .  

u ~ f ,  II.. .11 < t, 

v~F, II.. .11 < m  + l, 

I I f -  ( o g  - a .  g)II < m + t. 

Thus we may apply Theorem 13 until Ilfll -< l, so II gll -< 0. This is the final step in 
showing that henceforth we may assume that t is not a denominator of g in the 
homogeneous case. Observe that the reduction of this subsection and that of  the 
previous subsection may be applied in any order; only in the second reduction does 
the zeroth-order term u. t o = u = u/ t  ° actually have to be eliminated. 

3.5. FACTORS OF PERIOD 0 IN THE FRACTIONAL PART. As a preliminary to 
studying nonhomogeneous factors of the fractional part, It is convenient to consider 
only equations whose a's have the following property. 

Definition 30. Let a E F(t).  Then a is pure ~ for any ~, ~ which are factors of  a, 

For example, if ax = x + 1, then x . ( x  + 2) is impure; x . ( 2 x  + 1) is pure. 

LEMMA 12. Let  0 ~ a ~ F(t) .  Then there exists an ao E F( t )  such that a.(aao/ao) 
is pure. Given the o-factorization o f  a, ao may be computed. 

PROOF. Let ( ( 2~ )J, u, e, (ejk)~k) be the o-factorization of a (the " i"  index may be 
dropped, because a IS only a one-tuple). It is possible to choose 2~ so that ejk = 0 for 
k < 0 and ejo ~ 0. Assuming that this is done, let 

djk_a----~ejl  for k_>0, 
l~_k 

ao ~ I I  °k ff a''k+'" 
j ,k_>O 

A simple calculation [11] shows that 

Oao t e 
a . - - = u . - -  

ao l~I2ffff'"" 

Since the f f s  of the original set are pairwise inequivalent by definition of o- 
factorization, it is clear that all the factors of a. (oao/ao) are pairwise inequivalent. 
Thus a.(oaolao) is pure [] 

By Lemma 7, we lose no generality in assuming that a is pure. 
In this subsection we consider an irreducible polynomial ;e with period 0; that is, 

;e is not equal to t in a I]-extension. We show that algorithmlcally, only a finite 
number of such polynomials need be considered. The vector spaces W in which we 
are interested have the following property: 

, > 2  z degfk  < deg if_ W C F(t) .  
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Several different grades of W may be necessary for the complete reduction; the first 
of these is 

Definition 31. L e t f  ~ W. Then 

Ilfll __a max {il 3k  with o a f  ' dividing den(f)} .  

N.B. This grade depends upon if, but the notation suppresses this. 

LEMMA 13. Let a be pure and Ilall = O. Then IIog - a 'gl l  = Ilgll. 

By Theorem 11, if f has the property that II a II -- 0, then we know that Ilgll -< II f I I; 
in particular, if II fll = 0, then okicannot be a factor of the denominator of g for any 
k. This is a crucial result for the construction, because it eliminates all but a f'mite 
number of equivalence classes for ft. 

Example 15. It was claimed in Subsection 3.3 (regarding the summation of 
~ . ~  i22 ') that V(I/2, 0, Q(x)-0 = V(I/2, 0, {0}). This is an immediate consequence 
of Lemma 13 and the above remarks, since for any f, II 1/2 II = II 011 = 0. Thus g must 
have a trivial fractional part. [] 

For those fffor which Ilfl[ > 0, a reduction may be used. First we define the 
quotient space for this process. 

Convention. For m > 0, 

= i [fk E F[t], degfk < deg . 

In the following reduction process we use the fact that if okl ,r  den(a), then for any 
gk E F[t], deggk < degf, there exists (by the theory of partial fraction decomposition 
and per(if) = 0) a unique ha ~ F[t], deg hk < deg if, such that 

hk gk 
oki---.-- ~ + . . . .  a. ok i ,  n, where " . . . "  E Win-1. 

THEOREM 21. Let a E F(t) be pure and Ilall = 0. Let f E W,~ be written 

fk 
k _ ~  + . . . .  f, d e g f ~ < d e g f ,  " . . . " ~  W~-,. 

Choose i so that 

k < i ~ oki# num(a). (6) 

Note that f~ may well be zero. Next, perform the following construction: 

g j-1 & or-lfy, 

defhk: Ok~m'~" . . . .  a . o k ~ , } i . < k < j .  

gk-~ & o-l(fk + h~), 

This is done in the order j - l, j - 2 . . . . .  i so that gk is defined before hk, and hk before 
gk-~. Let 

J--I gk 
g_a-E 

k=~ O k l  m' 

C be a basis for  Ann(g,-O. 
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Then 

C(I  ^ g) is a basts for V(a, f, Win~ Win-a). 

Example 16. One of  the simplest applications of  this result is the demonstration 
that H ,  (see Subsection 1. l) is not a rational function of  n. Consider 

o g  - g = l / x .  

To calculate V(1, ( 1 / x ) ,  Q(x)), we begin with Corollary 1, which reduces Q(x) to 
Q(x)o. To apply Theorem 12, we must obtain a basis for V(l, ( 1 /x ) ,  Q(x)o/Q(x)-  O. 
Theorems 16 and 10 give this basis as C ,. g, where 

c o ( j )  w 
Theorem 12 also needs the calculation, 

Then Theorem 12 requires a basis for V(I, f-a, Q(x)-l) ,  which is where the methods 
of  this subsection come in. Applying Lemma 13 with a n y / ~  Q[x],  w h e r e / 7  z x, we 
further narrow Q(x)- i  to 

j . k ( x + k )  j c j k E Q  . 

F i x i n g / =  x, Lemma 13 narrows this choice further to 

Since W0 = {0}, Wa/Wo = W1. We now apply Theorem 21, with f = ( l /x ,  0). In the 
statement of  that result, we have i = j = 0, fo = (1, 0), and g_l = o-~fo = (1, 0). 
Observe that there are no k with i <_ k and k < 0. Then 

-a 

k~-0 gk _ g =  _ x + k  (0,0) .  

A basis C for Ann(g-a) = Ann(( 1, 0)) is (0, 1). Thus, the desired basis is 

0 0 

Therefore, letting D_~ = (0 1) and h-i = (0), we may return to Theorem 12 and 
calculate a solution basis for V(I, ( l / x ) ,  Q(x)): 

Do = D-1Co = (0),  ho = D-ag0 + h - ,  = (1) + (0) = ( l ) .  

This is only a one-dimensional solution space, so we have shown that Hn is not a 
rational function of  n. Since 1 ~ H(Q),  we know by Theorem 1 that Q(x, Hx) 
is a I -extens ion of  Q(x). This fact will be used when H~ occurs in the summand 
of  Z,. []  

The reader may follow a similar path to show that ~,%~ 11~ 2 is not a rational 
function o f n  [11, Exer. 1]. 
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Example  17. We now find a simple expression for ~,%1 l / ( i  2 + 20; we solve 

1 
o g -  g = x2 + 2x" 

Because x 2 + 2x = x ( x  + 2) -- x .a2x ,  the calculation here is essentially the same as 
in the previous example, until we begin to apply Theorem 21 with f ffi (1/(x 2 + 2x), 
0). Then we find that 

< 1 0> 
x 2 q - 2 x  ' = + x ~ l  x + 2 '  , so i = 0 ,  j = 2 ,  

,~_-<_~0> ,1_-o~ ,o-<~o> 
Then compute the g, h sequence, 

,1 = or--af2 ~" (--  ~, 0> , 

defhl:  - - h i  + . . . _ ( - 1 / 2 , 0 )  = < - ½  0> 
x +  1 x +  1 ' so hi , , 

defho: ho+  . . . _ ( - 1 / 2 , 0 )  so hoffi < - ½ , 0 >  
x x 

g- I  = o - l ( fo  + ho) = (0,  0 ) .  

Finally, 

1 <~, o> o) 
= = + ~ + l '  = \  x ~ + x  ' ' 

Ca asisfor nn.O,O , C : (0' 
Thus the desired basis is 

Returning to Theorem 12, we calculate a solution basis for V(1, 1/(x 2 + 2x), Q(x)): 

3 oo~o_,co--(o'),  ~o- -o_**~_~o  ~ . 

Thus, 
n , _  n+,+,,2 ( ~ )  3n2~Sn [] 

,_ i 2 + 2 i  ( n +  1) 2 + ( n +  1) 4n 2 + 2 4 n +  12" 

As a consequence of  Theorem 21, the only case remaining is when II all # 0, that 
is, ak f  [ den(a). Without loss of  generality, we may choose f so that it itself divides 
den(a). We continue to assume that a is pure, so that okf lden(a )  ~ k ffi 0, as well 
as the converse. 
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The elimination of  factors of the form oa f  as potential denominators of  g is done 
in two steps. The first of these steps eliminates the possibility that k is negative. For 
this, we need a new grade. 

Definition 32. Let f [  den(a). Then f o r f  ~ W, 

I[fll ~ max (i I ~k < 0 with o k f f ' l d e n ( f ) } .  

N.B. This grade depends upon ~, but the notation suppresses this. 

LEMMA 14. Let  a bepure ,  f f lden(a).  Then [log- a'gll = Ugl l .  

The remarks made after Lemma 13 may be adapted to this lemma as well, namely, 
that if f l den(a) and II fll = o, then o kfi cannot be a factor of the denominator of g, for 
any k < 0. 

Example  18. We previously encountered in Example 12 (step (3.3.3.3.3)) this 
space: 

V(1 / ( x  z + 1), (26x - 52/3, -38x  - 2/3, 4x + 6), Q(x)-,). 

Using Lemmas 13 and 14, Q(x)-i may be narrowed to the following space: 

,> z.o Ok(X z + 1) z ffk E Q[X], degfk  _~ 1 . [] 

Example  19. We saw in Example 13 (step (1.1.3)) the following space: 

V ( l / ( x  + l), (0), Q(x)-t). 

Again, Lemmas 13 and 14 reduce Q(x)-i to a smaller space, 

W =  ,>0,k_0~> o k ( x +  1) ~ c~k~K . [] 

In order to perform the desired reduction, it is necessary to introduce a preliminary 
result concerning partial fractions. 

PROPOSITION 11. Let  a E F( t )  be pure, f l d e n ( a ) ,  k < O. For any h ~ F[t],  
deg h < deg ~, there exists a umque g ~ F[t], deg g < deg ~, with 

_ h  
a. + • o~/ ,  . ,  where " . . . "  ~ W,n-l. 

Such a g is introduced using "deft" (see, e.g., Theorems 22 below). 

Convention. Under the grade of  Definition 32, for n > 0, 

For this reduction we can use Theorem 13. By Lemma 14 we see that for g ~ 
Win~Win- ,  

I[ og -- a.gl{ < m ~ g = O. 

The other requirement for Theorem 13 is contained m the following result. 

T~OREM 22. Let  a ~ F( t )  be pure, ffl den(a). Let  f ~ W~,  and write " 

~1 + . . . .  f i  where " " . . . "  E W~-x. 
k--z Ok~ rn 
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Without loss o f  generality, i may be chosen so that f i  # O. Construct the sequences ha, 
ga as follows: 

g,-I =~ 0, 

hk & oga-i - f i ,  I 
gk ha ] i _< k _< -1 .  

def  ga: a . ~ 7  + . . . .  

This is done in the order i, i + 1 . . . . .  so ga-! is defined before ha, and ha before ga. 
Proposition 11 allows the construction. Then set 

--1 gk 
g &  E oafm" k-t 

We have 

[[ f -  (og - a .  g)[[ < m. 

Example 20. Consider the difference equation, 

1 1 
o g  - x " g  = ( x  - 1) 2. 

It is quickly seen that any solution g is in {~Ca/okx}, SO we examine here only the 
case in which ff ffi x; observe that II f [I = 2. Apply Theorem 22, noting that i = -1  
andf-~ ffi 1 and performing the following construction: 

g-2 ffi 0, h-1 = oO - f - I  = -1 ,  

def  g-l: 1 g-I - 1  
~ ' ( x  - l )  2 + . . . .  ( x  - I y  

l - x  1 (  - l  1 ) 
x ( x - l )  2 x ( x - l )  2 x - I  

~ g - ,  = -1 ,  
- !  

g -  (X -- 1) 2' 

f -  (og - a.g) ffi 
1 1 1 1 1 

+ -- + x 2- ( x - l ) x  x 2 x - I  x 

We again apply Theorem 22, this time t o f  - (og - a.g), whose grade is 1. We still 
have i ffi - 1  andf-~ ffi 1, so again g-2 ffi 0 and h-~ = -1 .  Multiplying both sides of  
the previous definition of g-1 by x - 1 provides the proper definition of g-i in this 
case, so g-~ ffi - 1  again. Thus g for this case is - l / ( x  - 1), and we can write the 
original equation as follows: 

( ' , 
0 g + ( x - -  1) 2+  +--X g + ~ + ( X - -  1) 2 = ~  +--'X 

In other words, a solution to oh - a. h - -  1 I x  2 - 1 I x  allows the recovery of  g, and the 
impossibility o f  a solution means that g does not exist. [ ]  

For the remainder  o f  this subsect ion w e  consider  a more  l imited set o f  vector  
spaces than before, namely, 

{ X',>o.~ " ~oflk [ d e g f i h < d e g f }  - - 

For any such W we introduce yet another grade. 
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Definition 33. For the rest of this subsection, 

1 ~ the power to which f occurs in den(a). 

Then for any f E W, 

Ilfll A max {i + k . l l a k f  ' divides den(f) ,  i > 0} U {0}. 

LEMMA 15. For g ~ W, Il o g - a . g l[ -< ]J gll + 1, with equality/fl[gll > 0. 

By Theorem 11 we can bound the grade of solutions, namely, 

j ' l l f l l -I  if IIfll>l, 
o g -  a . g - -  f ~ ll gll - < [0 otherwise. 

Example 21. We continue Example 18. In this case f = x 2 + l, so l ffi I. 
The denominators of f are all l, and for any polynomial f ,  o~f i does not divide 
den(f) ,  so I[f[[ = 0. Thus the W of Example 18 may further be narrowed to W0, 
that is, {0}. [] 

Example 22. We continue Example 19. Here [ =  x + l, so l = I. The denominator 
of 0 is l, and the remarks of the previous example apply to this case. Q 

Example 23. In Example 14, step (l.l),  we claimed that the solution space 
V(1/(x + 1), ( 1/(x + l)),Q(x)_,) was {(0, 0)}. We can now prove this. By Lemmas 
13 and 14 we need consider only those g in the space, 

Chooseff= x + 1 to define the current grade. Then 1 ffi 1, and ][ l / ( x  + l)ll -- 1. Since 
[I f [[ -< l, we conclude that [[ g [[ _< 0, by the above remark. The only such g C W is 0, 
proving the claim. [] 

Having bounded the grade of  the solution, we turn to the reduction process. As 
usual, we first introduce the quotient space. 

Convention. For m > 0, 

Win~ Wm-1 ~. 2 fh/ohff m-t'~ E F[t], degf i  < deg . 
k - O  

THEOREM 23. Let a, I be as above. Let f ~ F(t)~+t, with m > O, and write 

fh 
Okffm+t_k. t + . . . .  f, with " . . . "  ~ F(t),n+t-l. 

k_>O 

Perform the following construction: 

gk & o-lfk+l, k _> 0, 
gk 

g ~ k_>o ~ akf m-k't' 

def q, r: q . f +  r = num(a.ff ' .o-lf l  + fo) 

C ~ a basis for Ann(r). 

(division with remainder), 

Then 

C(I  ̂  g) is a basis for  V(a, f, Win~ Wm-D. 
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Example  24. Continuing Example 20, we are interested m V ( l / x ,  ( l / x  2 + l / x ) ,  
W), where 

t>0,k_0 a 

H e r e , / =  x,  l = 1, and we observe that I l l / x  2 + 1/xll  = 2 > 1 = I. Thus Ilgll ~- 
2 - l = 1, and we would like a basis for V(a, f, W1/Wo) ,  where f = ( l / x  2 + l / x ) .  
Applying Theorem 23 with m = 1, 

1 0 1 1 
x 2 + x ~  + . . . . .  x 2 + - ~ f ° f f i x  (1) and f l  = (0). 

Following the construction of  that result, 

g o  
go - -  o - l f l  - -  0, g = - -  - 0 ,  

X 

defq ,  r: q . x + r = n u m ( ~ . x . o - l O +  1 ) - - 1  =~q = 0 ,  r =  l, 

C -- a basis for Ann(( l )) = 001. 

Thus the basis for the solution space is 

C((1) ^ 0) = 0ol ̂  0o. 

Since the quotient space is ((0, 0)}, the desired solution space will also be trivial; in 
other words, e g  - g / x  = l / x  + 1 /x  2 has no solution in Q(x) .  [] 

Reviewing this subsection, we need consider only a finite number of  possible f 
such that ok / i s  a factor of  the denominator of  g. By the use of  several reduction 
techniques, we can lower the degree to which any oaf  might occur, until ak fcan  no 
longer be in the denominator of  g. At the same time, the process "s implif ies ' f ,  so 
that eventually the power of)din d e n ( f )  is no greater than the power of;din den(a), 
including the case where this power is zero. 

4. Conclusion 

4.1 A FUNDAMENTAL THEOREM. In Section 2 we saw how to verify whether a 
tower of  affine extensions is a ~ - f i e l d  over some field of  constants, and in Section 
3 we saw how to solve arbitrary first-order-linear difference equations in any 17I~ - 
field. The question which this section answers is: How does one choose a particular 
I ~ - f i e l d  in which to look for a solution to an equation? 

In the various examples in this paper, we have always attempted to solve a 
difference equation in the smallest field in which it can be posed. As a case in point, 
consider ~i!. In Example 14, we tried to find an expression for this in Q(n, n!) and 
failed. We will shortly see why looking in larger fields is essentially futile. 

Definition 34. A basis for the t iE- tower  F = Fo C_ . . .  C Fn = E is a sequence 
tl, . . . ,  tn, where F~ = F,-l(t~). As usual, we define a,, fl, E F,-1 by ot, = a,t, + fl,. 
Associated with a tower's basis and a ~ F is 

S __a {l[O # 13, ~ F and a, = a}. 

(Recall that F, is a rI-extension of  F,-~ iffl,  = O; otherwise it is a I-extension.)  

Using S, there are "obvious" solutions to og - a . g  = f  for certain pairs a , f :  

f =  ov - a. v + ~ c,.fl~ where v ~ F 
,ES 

v + ~ c,. t~ is a solution. 
~ S  
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The interesting point is that i f f ~  0, all solutions in a IlK-tower to og ~- a . g  - - f a r e  
essentially of the above form. The only technicahty is that one must adjust the choice 
of basis relative to F and a E F. 

Definition 35. Given a tower and its basis as in Definition 34, and a ~ F, we say 
that the basis is normalized wrt (with respect to) a ~ f o r  i -- 1 . . . . .  n, 

fl, # 0 and a-2 ~ H(Fz-1) ~ a~ -- a. 
a 

We say that the basis is reduced wrt  F¢-~ for i = 1 . . . . .  n, 

fl, # 0 and h ~ F, _ 1 with fl, + ah - a,. h E F ~ fl, ~ F. 

We now see how to normalize and reduce a basis. 

PROPOSITION 12. Let  a tower o f  height n be normalized through height n - 1, and 

suppose an/a  = a w / w  f o r  w ~ Fn-1. Then letting t~ = t J w  produces a normalized basis 
tl, . . . ,  tn-1, t~. 

PROPOSITION 13. Consider a tower o f  height n which is reduced through height 

n - 1. I f  fin ~ 0 and 3 h  E F n - 1  with ah - an .h  + fin ~ F, let t~ -~ tn + h. Then 
tt . . . . .  tn-x, t~ is reduced wrt F.  

The following result is the difference field analog to Liouville's theorem on 
elementary integrals [16]. 

THEOREM 24. Let  tl . . . . .  tn be a basis f o r  the I ~ - t o w e r  F - -  Fo C . . .  C Fn = E. 
Given a E F, suppose that this basis is normalized wrt a and reduced wrt F .  Given also 
a n o n z e r o f ~  F, suppose that og - a . g  - - f h a s  a solution in E. Then 

3v  ~ F, c, E K with f = ov - a . v  + ~ c, fl~. 
~ S  

In the summation case, a = 1. Loosely speaking, i f f  is summable in E, then part 
of it is summable in F, and the rest consists of pieces whose formal sums have been 
adjoined to F in the construction of  E. This makes the construction of  extension 
fields in w h i c h f i s  summable somewhat uninteresting and justifies the tendency to 
look for sums o f f  ~ F only in F. 

4.2 FURTHER RESEARCH. There are a number of directions in which this work 
can be pursued. One place to look for generalization is in the class of  equations 
which can be solved. The techniques of this paper rely very heavily upon linearity, 
suggesting that the generalization to nth order (or simultaneous) linear difference 
equations may not be too difficult. It is not so clear how to get interesting results on 
even small classes of nonlinear equations; the general case is very likely recursively 
unsolvable. 

Another part of the theory which could stand generalization is the class of 
extensions considered. One might want to imbed difference fields in more general 
difference rings, so that ( - l )  n can be handled in a general way (note that 
l / ( l  + ( - l )  ~) is unreasonable, since it is l /0  half the time). Even staying within 
fields, there are perhaps other interesting cases to be examined; picking up an 
example from Subsection 1.1, one can model c 2' by ot = t 2. How difficult is this to 
analyze? 

Even staying within liE-fields and first-order-linear equations, there is analysis of 
algorithms to be done. For example, there are techniques for summing rational 
functions or answering questions about H(Q(x)) which do not require complete 
factorization of  polynomials [7, 10]. Can similar techniques be profitably applied in 
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HE-fields? There are very likely other approaches which would improve the effi- 
"ciency of  the algorithms of this paper. 

Finally, at a more mathematical level, one is always drawn back to the similarities 
of  the differential versus diffference c a s e s .  Particularly in light of  Theorem 24, one 
might hope for a theory which would unify the results of this paper and the 
corresponding results for at least the transcendental case of differential field theory. 
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