
Summation of Series

To find the sums of type
∑
n∈Z

f(n) and
∑
n∈Z

(−1)
n
f(n) we apply the Residue

Theorem which is done by means of the following Proposition:

Proposition 1 Let f be holomorphic on C except for finitely many points
a1, a2, ..., ak, none of which is an integer (real). Suppose that there exists M > 0
such that

∣∣z2f(z)
∣∣ ≤M for all |z| > R for some R. Let

g(z) = π
cosπz

sinπz
f(z) and h(z) =

π

sinπz
f(z) for all z.

Then

∞∑
n=−∞

f(n) = −
k∑
j=1

Res(g, aj) and

∞∑
n=−∞

(−1)
n
f(n) = −

k∑
j=1

Res(h, aj).

Proof. Note that sinπz = 0 at each n ∈ Z and by hypothesis f is holomorphic
at each n. Consider two cases:

Case (i): Let f(n) 6= 0 for each n. Then both the functions g and h have
simple poles at each n ∈ Z and the singularities at a1, a2, ..., ak. Let us consider
a large rectangle not passing through any integer and containing all singularites
a1, a2, ..., ak of f and the integers −n, ...,−2,−1, 0, 1, 2, ..., n. Then such rectan-
gle may be the square with vertices ±

(
n+ 1

2

)
± i
(
n+ 1

2

)
for large n so that

|aj | < n and that square we denote by Sn. Hence, by Residue Theorem∫
Sn

g(z)dz =
∑

(Residue of g at singularities inside Sn)

=

k∑
j=1

Res(g, aj) +

n∑
m=−n

Res(g,m).

Now, since g has a simple pole at each m,

Res(g,m) = lim
z→m

(z −m) g(z) = lim
z→m

π
z −m
sinπz

cosπz f(z)

= π

(
lim
z→m

z −m
sinπz

)
· cosπm f(m) = f(m).

Hence, ∫
Sn

g(z)dz =

k∑
j=1

Res(g, aj) +

n∑
m=−n

f(m).

Similarly, we have

Res(h,m) = lim
z→m

(z −m)h(z) = lim
z→m

π
z −m
sinπz

f(z)

= = π

(
lim
z→m

z −m
sinπz

)
· f(m) = (−1)

m
f(m)
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as cosπm = (−1)
m

and∫
Sn

h(z)dz =

k∑
j=1

Res(h, aj) +

n∑
m=−n

(−1)
m
f(m).

Case (ii): If f(m) = 0 for some m, then g and h have removable singularities at
such m and can be taken to be holomorphic there. Hence, in this case also,
we have ∫

Sn

g(z)dz =

k∑
j=1

Res(g, aj) +

n∑
m=−n

f(m)

and ∫
Sn

h(z)dz =

k∑
j=1

Res(h, aj) +

n∑
m=−n

(−1)
m
f(m).

Now, we only need to show that

lim
n→∞

∫
Sn

g(z)dz = 0 = lim
n→∞

∫
Sn

h(z)dz.

We have ∣∣∣∣∫
Sn

g(z)dz

∣∣∣∣ ≤ π ∫
Sn

∣∣∣cosπz

sinπz

∣∣∣ · |f(z)| |dz|

and ∣∣∣∣∫
Sn

h(z)dz

∣∣∣∣ ≤ π ∫
Sn

1

|sinπz|
· |f(z)| |dz| ,

where by hypothesis, we have for any z ∈ Sn, |z| > n for large n, |f(z)| ≤
M
|z|2 <

M
n2 . With the use of the results (which may easily be proved): that for

any z ∈ Sn, |z| > n, ∣∣∣cosπz

sinπz

∣∣∣ ≤ A for some A > 0

and ∣∣∣∣ 1

sinπz

∣∣∣∣ ≤ B for some B > 0,

we obtain ∣∣∣∣∫
Sn

g(z)dz

∣∣∣∣ ≤ πAM

n2
· 4 (2n+ 1)→ 0 as n→∞.

Similarly,
∣∣∣∫Sn

h(z)dz
∣∣∣→ 0 as n→∞. This proves the Proposition.

Remark 1 If f has singularities at some integer (real) the Proposition above
can still be applied. That integer will be excluded from the sum

∑n
m=−n and the

residue at that integer will be included in the sum
∑k
j=1.
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Example 1 Show that
∞∑
n=1

1

n2
=
π2

6
.

Solution 1 Consider the function f(z) = 1
z2 which has double pole at z = 0

and no other singularity (there is no aj). Hence, g(z) = π
z2

cosπz
sinπz = π cotπz

z2 has
a pole of order 3 at z = 0 and simple poles at all other integers. The Laurent
expansion of cotπz at z = 0 is given by

cotπz =
1

πz
− πz

3
+ ...

and hence, the Laurent expansion of g(z) at z = 0 is given by

g(z) =
1

z3
− π2

3
· 1

z
+ ...

which shows that Res(g(z), 0) = −π
2

3 . Thus in view of the above Remark

∑
n 6=0

1

n2
= 2

∞∑
n=1

1

n2
= −Res (g(z), 0)

which proves that
∞∑
n=1

1

n2
=

1

2
(−Res (g(z), 0)) =

π2

6
.

Example 2 Show that, for a > 0 and not an integer,

(i)
∞∑
n=1

1

n2 + a2
= − 1

2a2
+

π

2a
cothπa.

(ii)
∞∑
n=1

(−1)
n+1

n2 + a2
=

1

2a2
− π

2a sinhπa
.

Solution 2 Consider the function f(z) = 1
z2+a2 which has simple poles at z =

±ai. Hence, by Proposition 1,

∞∑
n=−∞

1

n2 + a2
= −Res (g, ai)− Res (g,−ai) ,

where
g(z) =

π

z2 + a2
cotπz.
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Clearly,

Res (g, ai) = lim
z→ai

(z − ai) π

(z − ai) (z + ai)
cotπz

=
π

2ai
cotπai = − π

2a
cothπa

and

Res (g,−ai) = lim
z→−ai

(z + ai)
π

(z − ai) (z + ai)
cotπz

=
π

2ai
cotπai = − π

2a
cothπa.

Thus
∞∑

n=−∞

1

n2 + a2
= 2

∞∑
n=1

1

n2 + a2
+

1

a2
=
π

a
cothπa

which proves the result (i). To prove the result (ii), we have by Proposition 1,

∞∑
n=−∞

(−1)
n

n2 + a2
= −Res (h, ai)− Res (h,−ai) ,

where

h(z) =
π

z2 + a2
1

sinhπz

and

Res (h, ai) = − π

2a

1

sinhπa
, Res (h,−ai) = − π

2a

1

sinhπa
.

hus
∞∑

n=−∞

(−1)
n

n2 + a2
= 2

∞∑
n=1

(−1)
n

n2 + a2
+

1

a2
=
π

a

1

sinhπa

which gives
∞∑
n=1

(−1)
n

n2 + a2
= − 1

2a2
+

π

2a

1

sinhπa

and this leads the result (ii).

Example 3 Show that, for a > 0 and not an integer,

(i)
∞∑

n=−∞

1

(n+ a)
2 =

π2

sin2 πa
.

(ii)
∞∑
n=1

(−1)
n

(n+ a)
2 =

π2 cosπa

sin2 πa
.
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Solution 3 Consider the function f(z) = 1
(n+a)2

which has double pole at z =

−a. Hence, by Proposition 1,

∞∑
n=−∞

1

(n+ a)
2 = −Res (g,−a) ,

where
g(z) =

π

(n+ a)
2 cotπz

and

Res (g,−a) = lim
z→−ai

(π cotπz)
′

= − π2

(sinhπa)
2

hence, the result. Similarly, result (ii) may be obtained.
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