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On the Summation of Series in Terms of

Bessel Functions

Slobodan B. Tričković, Mirjana V. Vidanović
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Abstract. In this article we deal with summation formulas for the series
∑

∞

n=1
Jµ(nx)

nν
,

referring partly to some results from our paper in J. Math. Anal. Appl. 247 (2000)
15 – 26. We show how these formulas arise from different representations of Bessel
functions. In other words, we first apply Poisson’s or Bessel’s integral, then in the
sequel we define a function by means of the power series representation of Bessel
functions and make use of Poisson’s formula. Also, closed form cases as well as those
when it is necessary to take the limit have been thoroughly analyzed.

Keywords. Bessel functions, Riemann’s ζ-function, Poisson’s formula, Fourier’s
transform
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1. Introduction

At first we start with integral representations of Bessel functions Jµ(z) i.e. Pois-
son’s and Bessel’s integral, and show how they give rise to different summation
formulas for the series

∞
∑

n=1

Jµ(nx)

nν
. (1)

All the aspects of relations between real parameters µ and ν arising from these
representations are given in detail.

In the second part we consider another representation of Bessel functions
and define a suitable function to apply Poisson’s formula and find one more
summation formula for (1).
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2. Summation based on Poisson’s and Bessel’s integral

Poisson’s integral

Jµ(z) =
zµ

2µ−1Γ(1
2
)Γ(µ+ 1

2
)

∫ π

2

0

sin2µ θ cos(z cos θ) dθ, µ > −1

2
, (2)

is a representation of the Bessel function Jµ(z) of the first kind and order µ. We
just recall that Poisson [11] and Lommel [7] proved that for 2µ ∈ N0 Poisson’s
integral is a solution of Bessel’s differential equation

z2
d2u

dz2
+ z

du

dz
+ (z2 − µ2)u = 0 .

If we set µ = m ∈ N0 in Poisson’s integral, after a rearrangement, we obtain
Bessel’s integral

Jm(z) =
1

π

∫ π

0

cos(mθ − z sin θ) dθ =
1

π

∫ π

0

g(mθ)g(z sin θ) dθ, (3)

where m = 2k + δ, k ∈ N0 and g =
{

sin
cos

}

δ =
{

1
0

}

. The preceding formula is in
fact Bessel’s definition of the function Jm(z) (see [2], p. 34).

2.1. Summation based on Poisson’s integral. After placing Poisson’s in-
tegral (2) in (1), we have to interchange summation and integration, i.e.,

2(x
2
)µ√

πΓ(µ+ 1
2
)

∞
∑

n=1

∫ π

2

0

sin2µ θ cos(nx cos θ)

nν−µ
dθ

=
2(x

2
)µ√

πΓ(µ+ 1
2
)

∫ π

2

0

sin2µ θ
∞
∑

n=1

cos(nx cos θ)

nν−µ
dθ.

The latter we are allowed to do because of uniform convergence of the series on
the right-hand side, which we prove in

Lemma 1. The series
∞
∑

n=1

cos(nx cos θ)

nν−µ
(ν > µ), (4)

is uniformly convergent with respect to θ on each segment [ε, π
2
− ε] ⊂ (0, π

2
),

ε > 0.

Proof. By virtue of Dirichlet’s test (see [5]) the series
∑

∞

n=0 an(x)bn(x) is uni-
formly convergent inD, if the partial sums of

∑

∞

n=0 an(x) are uniformly bounded
in D, and the sequence bn(x), being monotonic for every fixed x, uniformly con-
verges to 0.
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We first note that 0 < cos θ < 1, and if 0 < x < 2π, we have 0 < x cos θ
2

< π.
For each ε > 0 satisfying ε ≤ x cos θ

2
≤ π − ε we know that sin x cos θ

2
≥ sin ε > 0,

so there follows
∣

∣

∣

∣

∣

1 +
n
∑

k=1

cos(kx cos θ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

sin (n+1)x cos θ
2

cos nx cos θ
2

sin x cos θ
2

∣

∣

∣

∣

∣

≤ 1

sin x cos θ
2

≤ 1

sin ε
,

meaning that partial sums
∑n

k=1 cos(kx cos θ) are uniformly bounded with re-
spect to θ on each segment [ε, π

2
− ε] ⊂ (0, π

2
), 0 < ε < π

2
, and for ν > µ the

monotonically decreasing sequence 1
nν−µ

tends to 0.

Now we have to find the sum of the trigonometric series (4) in terms of
Riemann’s ζ-function. First of all, we start with the following

Lemma 2. For m ∈ N there holds

∞
∑

n=1

cosnx

n2m
=

(−1)mπx2m−1
2(2m− 1)!

+
m
∑

i=0

(−1)iζ(2m− 2i)

(2i)!
x2i. (5)

Proof. Because of uniform convergence of the series

Sα(x) =
∞
∑

n=1

sinnx

nα
, Cα(x) =

∞
∑

n=1

cosnx

nα
, α > 0, 0 < x < 2π,

we may integrate them to get
∫ x

0
Sα(x) dx=ζ(α+1)−Cα+1(x) and

∫ x

0
Cα(x) dx =

Sα+1(x). Since S1(x) =
π−x
2
, we get

∫ x

0

S1(x) dx = ζ(2)− C2(x) ⇒ C2(x) = −
π

2
x+ ζ(2)− ζ(0)

2
x2,

and S3(x) =
∫ x

0
C2(x) dx = −π

4
x2 + ζ(2)x− ζ(0)

6
x3, as well as

∫ x

0

S3(x) dx = ζ(4)− C4(x) ⇒ C4(x) =
π

12
x3 + ζ(4)− ζ(2)

2
x2 +

ζ(0)

24
x4.

Continuing in the same manner, and using mathematical induction we obtain
the above closed form formula (5).

It is known that ζ(−2k) = 0, k ∈ N. Thus, we rewrite the formula (5) as

∞
∑

n=1

cosnx

n2m
=

πx2m−1

2Γ(2m) cos(π
2
2m)

+
∞
∑

i=0

(−1)iζ(2m− 2i)

(2i)!
x2i, m ∈ N.

Now there arises a question whether the left-hand side is expressed as a non-
trigonometric series in terms of ζ function, if we replace 2m with an arbitrary
real number s > 0. We shall show that the same form is retained, except for s
odd, when the first term changes.
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Theorem 1. For s ∈ R
+ \ 2N + 1, there holds

∞
∑

n=1

cosnx

ns
=

πxs−1

2Γ(s) cos πs
2

+
∞
∑

i=0

(−1)iζ(s− 2i)

(2i)!
x2i. (6)

However, for s ∈ 2N + 1,

∞
∑

n=1

cosnx

n2m+1
= Φ2m+1(x) +

∞
∑

i=m+1

(−1)iζ(2m+ 1− 2i)

(2i)!
x2i, m ∈ N ∪ {0},

where

Φ2m+1(x)=
(−1)m
(2m)!

(

ψ(2m+1)+γ−lnx
)

x2m+
m
∑

i=1

(−1)m−iζ(2i+ 1)

(2m− 2i)!
x2m−2i. (7)

Proof. We make use of the following representation

∞
∑

n=1

cosnx

ns
=

1

2

∞
∑

n=1

e−inx + einx

ns
=

1

2

(

Lis(e
−ix) + Lis(e

ix)
)

, s > 0, (8)

where Lis(z) is called polylogarithm defined by (see [6])

Lis(z) =
∞
∑

n=1

zn

ns
=

1

Γ(s)

∫

∞

0

ts−1

et

z
− 1

dt,

where the right-hand side integral converges for z ∈ C \ {z | z ∈ R, z ≥ 1},
and it is referred to as Bose’s integral. We shall consider the Mellin transform
of the polylogarithm in the form of Bose’s integral. The Mellin transform of a
function f and the inverse transform of a function ϕ are (see [10])

M
(

f(x)
)

=

∫

∞

0

xu−1f(x) dx, M−1(ϕ(u)) =
1

2πi

∫ c+i∞

c−i∞

x−uϕ(u) du.

This integral transform is closely connected to the theory of Dirichlet series,
and is often used in number theory and the theory of asymptotic expansions.
Also, it is closely related to the Laplace and Fourier transform as well as to the
theory of the gamma function and allied special functions. So we find

M
(

Lis(p e
−x)
)

=

∫

∞

0

xu−1Lis(p e
−x) dx =

1

Γ(s)

∫

∞

0

∫

∞

0

ts−1xu−1

et+x

p
− 1

dt dx

The change of variables x = ab, t = a(1−b) allows the integrals to be separated

M
(

Lis(p e
−x)
)

=
1

Γ(s)

∫ 1

0

bu−1(1− b)s−1 db

∫

∞

0

as+u−1

ea

p
− 1

da = Γ(u)Lis+u(p).
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For p = 1, because Lis+u(1) = ζ(s + u), through the inverse Mellin transform,
we have

Lis(e
−x) =

1

2πi

∫ c+i∞

c−i∞

Γ(u)ζ(s+ u)x−u du,

where c is a constant to the right of the poles of the integrand. The path
of integration may be converted into a closed contour, and the poles of the
integrand are those of Γ(u) at u = 0,−1,−2, . . ., and of ζ(s + u) at u = 1− s.
Summing the residues yields a representation of the polylogarithm as a power
series

Lis(e
µ) = (−µ)s−1Γ(1− s) +

∞
∑

k=0

ζ(s− k)

k!
µk, |µ| < 2π, s 6= 1, 2, 3, . . .

about µ = 0. Further, following (8), we have

1

2

(

Lis(e
µ) + Lis(e

−µ)
)

=
1

2

(

(−µ)s−1 + µs−1
)

Γ(1− s) +
∞
∑

k=0

ζ(s− 2k)

(2k)!
µ2k. (9)

If the parameter s is a positive integer, the gamma function becomes infinite,
and we can not place s immediately in (9). In order to get a finite value for
a positive integer n, we must take, on the right-hand side sum, the first [ n−1

2
]

terms if n is odd, and [n+1
2
] terms if n is even. Then we take a limit

lim
s→n

(

1

2
((−µ)s−1 + µs−1)Γ(1− s) +

[n−1

2
]

∑

k=0

ζ(s− 2k)

(2k)!
µ2k

)

.

We distinguish two cases: n = 2m+ 1, m ∈ N ∪ {0}, and n = 2m, m ∈ N. So,
we find

lim
s→2m+1

(

1

2

(

(−µ)s−1 + µs−1
)

Γ(1− s) +
m
∑

k=0

ζ(s− 2k)

(2k)!
µ2k

)

=
1

(2m)!

(

ψ(2m+ 1) + γ − ln(−µ) + lnµ

2

)

µ2m +
m
∑

i=1

ζ(2i+ 1)

(2m− 2i)!
µ2m−2i.

Setting µ = ix, 0 < x < 2π, we obtain (7). Now we consider

lim
s→2m

(

1

2

(

(−µ)s−1+µs−1
)

Γ(1− s) +
m
∑

k=0

ζ(s− 2k)

(2k)!
µ2k

)

= − ln(−µ)− lnµ

2(2m− 1)!
µ2m−1 +

m
∑

k=0

ζ(2m− 2k)

(2k)!
µ2k.

Setting µ = ix, 0 < x < 2π, we obtain (5).
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If the parameter s is a positive non-integer, the gamma function is finite,
so replacing µ with ix, 0 < x < 2π, and in view of (± i)s−1 = e± i(s−1)π

2 =
cos π

2
(s− 1)± i sin π

2
(s− 1), we calculate the first term in (9)

1

2

(

(−µ)s−1 + µs−1
)

Γ(1− s) =
πxs−1

2Γ(s) sinπs

(

(−i)s−1 + is−1
)

=
πxs−1

2Γ(s) cos π
2
s
.

Gathering all these results, taking into account (8), we complete the proof.

Remark. We note that formula for s odd can be in fact obtained, if we let s
tend to 2m+ 1 (m ∈ N ∪ {0}) in (6), whose left-hand side series are related to
Clausen functions defined by (see [6])

Cl2ν =
∞
∑

n=1

sinnx

n2ν
, Cl2ν−1 =

∞
∑

n=1

cosnx

n2ν−1
, ν ∈ N,

as well as to Bernoulli polynomials (see [1]). This leads to a new class of integrals

∞
∑

n=1

Jµ(nx)

nν
=

zµ

2µ−1
√
πΓ(µ+ 1

2
)

∫ 1

0

Clν−µ(tx)

(
√
1− t2)

1

2
−µ

dt.

Now, we resume deriving the summation formula for the series (1), relying
on the results of Lemma 2.1 and Theorem 2.3. If we replace x with x cos θ and
s with ν−µ in (6), we come to a non-trigonometric expression for the series (4).
Then we continue

2(x
2
)µ√

πΓ(µ+ 1
2
)

∫ π

2

0

sin2µ θ
∞
∑

n=1

cos(nx cos θ)

nν−µ
dθ

=
2(x

2
)µ√

πΓ(µ+ 1
2
)

∫ π

2

0

sin2µ θ

(

π(x cos θ)ν−µ−1

2Γ(ν − µ) cos π(ν−µ)
2

+
∞
∑

i=0

(−1)iζ(ν − µ− 2i)(x cos θ)2i

(2i)!

)

dθ

=

√
πxν−1

2µΓ(µ+ 1
2
)Γ(ν − µ) cos π(ν−µ)

2

∫ π

2

0

sin2µ θ cosν−µ−1 θ dθ

+
xµ

2µ−1
√
πΓ(µ+ 1

2
)

∞
∑

i=0

(−1)iζ(ν − µ− 2i)x2i

Γ
(

2(i+ 1
2
)
)

∫ π

2

0

sin2µ θ cos2i θ dθ.

By virtue of Legendre’s duplication formula
√
π Γ(2z) = 22z−1Γ(z)Γ(z + 1

2
)

(see [9]) and an integral of the type (see [13])

2

∫ π

2

0

sin2a−1 θ cos2b−1 θ dθ = B(a, b),
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we finally obtain the following summation formula (see [15])

∞
∑

n=1

Jµ(nx)

nν
=

π(x
2
)ν−1

2Γ(ν−µ+1
2

)Γ(ν+µ+1
2

) cos π(ν−µ)
2

+
∞
∑

i=0

(−1)iζ(ν − µ− 2i)(x
2
)µ+2i

i! Γ(µ+ i+ 1)
,

(10)

where the convergence region is 0 < x < 2π and ν > µ > − 1
2
.

2.1.1. Closed form cases. On condition that ν − µ = 2k, k ∈ N0, the right-
hand side series in (10) truncates because ζ(2k − 2i) = 0 for i > k (ζ equals
zero if its argument is a negative even number). Thus we obtain closed form
cases of the summation formula (10). That means infinite series is reduced to
finite number of terms, and (10) becomes

∞
∑

n=1

Jµ(nx)

nµ+2k
=

k! (−1)k xµ+2k−1
√
π

2µ+k (2k)! Γ(µ+ k + 1
2
)
+

k
∑

i=0

(−1)i ζ(2k − 2i) (x
2
)µ+2i

i! Γ(µ+ i+ 1)
. (11)

2.1.2. Limiting value cases. But, when ν − µ = 2k + 1, k ∈ N0, one should
take limits. Actually, we first denote τ = ν−µ and replace ν with τ +µ in (10).
Afterwards we consider the limiting value

lim
τ→2k+1

[

2−τ−µ πxτ+µ−1

Γ( τ+1
2
)Γ(µ+ τ+1

2
) cos(πτ

2
)
+

k
∑

i=0

(−1)iζ(τ − 2i)(x
2
)µ+2i

i! Γ(µ+ i+ 1)

]

= Φµ,2k+1(x),

so that we have
∞
∑

n=1

Jµ(nx)

nµ+2k+1
= Φµ,2k+1(x) +

∞
∑

i=k+1

(−1)iζ(2k + 1− 2i)(x
2
)µ+2i

i! Γ(µ+ i+ 1)
, (12)

where

Φµ,2k+1(x) =
(−1)k(x

2
)µ+2k

2k!Γ(µ+ k + 1)

(

ψ(k + 1) + ψ(µ+ k + 1) + 2γ − 2 ln
x

2

)

+
k−1
∑

i=0

(−1)iζ(2k + 1− 2i)(x
2
)µ+2i

i!Γ(µ+ i+ 1)
.

Here γ is Euler’s constant and ψ is the digamma function. For example, if
ν − µ = 3 we find

∞
∑

n=1

Jµ(nx)

nµ+3
= Φµ,3(x) +

∞
∑

i=2

(−1)iζ(3− 2i)(x
2
)µ+2i

i! Γ(µ+ i+ 1)
,

where

Φµ,3(x) = −
x2Γ(µ+ 1)(1 + γ + 2 ln 2− 2 ln x+ ψ(µ+ 2))− 8Γ(µ+ 2)ζ(3)

2µ+3 Γ(µ+ 1)Γ(µ+ 2)
xµ.
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2.2. Summation based on Bessel’s integral. There is, however, another
summation formula of the series (1) holding when both ν ≤ µ and ν > µ
providing that µ = 2k + δ, where k ∈ N0, δ =

{

1
0

}

g =
{

sin
cos

}

, and ν > 0. Now
we have to deal with Bessel’s integral (3) and place it in (1). Then referring
again to Dirichlet’s test as in the case of the series (4), we similarly ascertain that
∑

∞

n=1
g(nx sin θ)

nν
converges uniformly with respect to θ on each segment [ε, π−ε] ⊂

(0, π), 0 < ε < π, for ν > 0, where the convergence region is again 0 < x < 2π.
Consequently, summation and integration are interchangeable

1

π

∞
∑

n=1

∫ π

2

0

g
(

(2k + δ)θ
)

g(nx cos θ)

nν
dθ =

1

π

∫ π

2

0

g
(

(2k + δ)θ
)

∞
∑

n=1

g(nx cos θ)

nν
dθ.

Afterwards, we apply the same procedure as when deriving (10), and obtain
(see [15])

∞
∑

n=1

J2k+δ(nx)

nν
= (−1)k

[

πxν−1

2νg(πν
2
) Gk

+
∞
∑

i=k

(−1)iζ(ν − 2i− δ)(x
2
)2i+δ

Γ(i− k + 1)Γ(δ + i+ k + 1)

]

, (13)

where g =
{

sin
cos

}

δ =
{

1
0

}

, and Gk = Γ(ν+2k+δ+1
2

)Γ(ν−2k−δ+1
2

) has been intro-
duced for the sake of brevity. The summation index i starts from k, because
for 0 ≤ i ≤ k − 1, we have 1/Γ(i − k + 1) = 0, implying that the first k terms
vanish.

2.2.1. Closed form cases. We see that (13) takes closed form if g =
{

sin
cos

}

ν =
{

2l−1
2l

}

, l ∈ N. So, if we take g = sin, then ν = 2l−1 and δ = 1, and for l ≥ k+1
we obtain

∞
∑

n=1

J2k+1(nx)

n2l−1
=

(−1)k−l+1πx2l−2

22l−1Γ(l + k + 1
2
)Γ(l − k − 1

2
)

+
l−1
∑

i=k

(−1)k+iζ(2l − 2i− 2)(x
2
)2i+1

(i− k)! (i+ k + 1)!
.

(14)

But l < k + 1 implies ζ(2l − 2i− 2) = 0, the whole infinite sum in (13) vanish,
and we have

∞
∑

n=1

J2k+1(nx)

n2l−1
=

(−1)k−l+1πx2l−2

22l−1Γ(l + k + 1
2
)Γ(l − k − 1

2
)
. (15)

If g = cos, then ν = 2l and δ = 0, then for l ≥ k we obtain a formula similar
to (14), and for l < k another one similar to (15).
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2.2.2. Limiting value cases. Otherwise, if g =
{

sin
cos

}

ν =
{

2l
2l−1

}

, we have to
take limits. For instance, when g = cos and ν = 2l − 1 > 2k = µ (remember
that if g = cos then δ = 0) we deal with

lim
ν→2l−1

[

2−νπxν−1

cos(πν
2
)Γ(ν+2k+1

2
)Γ(ν−2k+1

2
)
+

l−1
∑

i=k

(−1)iζ(ν − 2i)(x
2
)2i

Γ(i+ k + 1)Γ(i− k + 1)

]

=Φ2k,2l−1(x),

where

Φ2k,2l−1(x) =
(−1)l−1(x

2
)2(l−1)

2Γ(l + k)Γ(l − k)

(

ψ(l + k) + ψ(l − k) + 2γ − 2 ln
x

2

)

+
l−2
∑

i=k

(−1)iζ(2l − 1− 2i)(x
2
)2i

(i+ k)!(i− k)!
,

and (13) becomes

∞
∑

n=1

J2k(nx)

n2l−1
= (−1)k

[

Φ2k,2l−1(x) +
∞
∑

i=l

(−1)iζ(2l − 1− 2i)(x
2
)2i

(i+ k)!(i− k)!

]

. (16)

For example:

∞
∑

n=1

J4(nx)

n5
=

x4

9216
(25 + 24 ln 2− 24 ln x) +

∞
∑

i=3

(−1)iζ(5− 2i)(x
2
)2i

(i+ 2)!(i− 2)!
.

Alternatively, if ν = 2l − 1 < 2k = µ we have l − k < 1
2
, implying that an

integer l−k is non-positive, and at these points Γ(z) has poles, so 1/Γ(l−k) = 0,
i.e., 1/Γ( ν−2k+1

2
) = 0. In this case (13) is

∞
∑

n=1

J2k(nx)

n2l−1
= (−1)k

∞
∑

i=k

(−1)iζ(2l − 1− 2i)(x
2
)2i

(i+ k)!(i− k)!
. (17)

We give an example:

∞
∑

n=1

J4(nx)

n3
=

∞
∑

i=2

(−1)iζ(3− 2i)(x
2
)2i

(i+ k)!(i− k)!
.
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3. Summation based on Poisson’s formula

We shall now find sums of the series (1) by using quite a different procedure.
This method is based on Poisson’s formula including the Fourier transform of
a suitably chosen function.

There exist several formulations of Poisson’s formula in the literature (see
[3], [8], [14]). We shall choose the following setting. Let f(x) be a continuous
function, suppose that it is smooth and absolutely integrable on (0,+∞). Then,
for αβ = 2π, α > 0,

√
α

(

1

2
f(0) +

∞
∑

n=1

f(nα)

)

=
√

β

(

1

2
Fc(0) +

∞
∑

n=1

Fc(nβ)

)

, (18)

holds, assuming that the left and right side of (18) converge absolutely. Fc(ω)
is the Fourier transform of a function f(x), i.e.,

Fc(f(x), ω) = Fc(ω) =

√

2

π

∫

∞

0

f(x) cosωxdx. (19)

We shall make use of a representation of the Bessel function (see [4, p. 900])

Jµ(x) =
xµ

2µ

∞
∑

k=0

(−1)kx2k
22k k! Γ(µ+ k + 1)

, | arg x| < π.

Further, on this basis we can consider a function

g(x) =
Jµ(x)

xν
=
xµ−ν

2µ

∞
∑

k=0

(−1)kx2k
22k k! Γ(µ+ k + 1)

, µ > ν, x 6= 0. (20)

If we take limit in (20), we find limx→0 g(x) = 0 for µ > ν, and limx→0 g(x) =
1

2µΓ(µ+1)
for µ = ν, which we write in the form of

lim
x→0

g(x) =
δµ,ν

2µΓ(µ+ 1)
, δµ,ν =

{

1, µ = ν

0, µ > ν.

Now we define a function

f(x) =







g(x), x 6= 0
δµ,ν

2µΓ(µ+ 1)
, x = 0

(21)

that is continuous, smooth and absolutely integrable on (0,+∞). So we have

Fc(f(x), ω) = Fc(ω) =

√

2

π

∫

∞

0

Jµ(x)

xν
cosωx dx.
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After substituting the right-hand side for Fc(ω) in (18) and taking ω = nβ, we
get

√
α

(

1

2
f(0) +

∞
∑

n=1

Jµ(nα)

(nα)ν

)

=

√

2β

π

(

1

2

∫

∞

0

Jµ(x)

xν
dx+

∞
∑

n=1

∫

∞

0

Jµ(x)

xν
cos(nβx) dx

)

.

(22)

Since αβ = 2π in (18), there follows β = 2π
α
, so (22) becomes

∞
∑

n=1

Jµ(nα)

(nα)ν
=

2

α

(

1

2

∫

∞

0

Jµ(x)

xν
dx+

∞
∑

n=1

∫

∞

0

Jµ(x)

xν
cos

2nπx

α
dx

)

− 1

2
f(0). (23)

In [4, p. 669] we find the integral

∫

∞

0

Jµ(x)

xν
dx = 2−ν

Γ
(

1+µ−ν

2

)

Γ
(

1+µ+ν

2

) , µ+ 1 > ν > −1

2
. (24)

We also use (see [12, p. 192])

∫

∞

0

Jµ(x)

xν
cos

2nπx

α
dx =

1

22µ−ν+1

( α

nπ

)µ−ν+1

cos
(µ−ν+1)π

2
· Γ(µ−ν+1)

Γ(µ+1)

× 2F 1

(

µ− ν + 1

2
,
µ− ν + 2

2
, µ+ 1,

( α

2nπ

)2
)

,

(25)

with α < 2nπ, µ+ 1 > ν > − 1
2
.

Now we put the right-hand sides of (24), (25) and (21) instead of corre-
sponding expressions in (23), and further use a power series representation of
the Gauss hypergeometric function 2F1:

2F1(a, b; c; z) =
∞
∑

n=0

(a)n(b)n
(c)n

· z
n

n!
, |z| < 1.

Thus we come to a double sum. Because α < 2nπ is one of conditions for (25),
there follows

(

α
2nπ

)2
< 1. Interchanging the order of these two summations,

yields

∞
∑

n=1

Jµ(nα)

nν
=
αν−1Γ(1+µ−ν

2
)

2ν Γ(1+µ+ν

2
)

+
αµ cos

(

µ−ν+1
2

π
)

Γ(µ− ν + 1)

22µ−νπµ−ν+1Γ(µ+ 1)

×
∞
∑

k=0

(µ−ν+1
2

)k(
µ−ν+2

2
)k(

α
2π
)2k

k! (µ+ 1)k

∞
∑

n=1

1

n2k+µ−ν+1
− ανδµ,ν

2µ+1Γ(µ+ 1)
.

(26)
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Obviously,
∞
∑

n=1

1

n2k+µ−ν+1
= ζ(2k + µ− ν + 1),

and if µ > ν, then 2k+µ−ν+1 > 1 is valid for each k ∈ N0. We also express the
Pochhammer symbol (a)k = a(a+1) · · · (a+k−1) by means of Gamma functions:
(a)k = Γ(a + k)/Γ(a), and make use of the relation π

cosπz
= Γ(1

2
+ z)Γ(1

2
− z).

After cancellation, (26) can be written in the form of

∞
∑

n=1

Jµ(nα)

nν
=
αν−1Γ(1+µ−ν

2
)

2ν Γ(1+µ+ν

2
)

+
(α
2
)µ(2π)ν−µΓ(µ− ν + 1)

Γ(ν−µ

2
)Γ(µ−ν+1

2
)Γ2(µ−ν

2
+ 1)

×
∞
∑

k=0

Γ(µ−ν+1
2

+k)Γ(µ−ν

2
+1+k)( α

2π
)2kζ(2k+µ−ν+1)

k! Γ(µ+ 1 + k)

− ανδµ,ν
2µ+1Γ(µ+ 1)

,

(27)

with 0 < α < 2π, µ > ν > − 1
2
. By using a property of Gamma Γ(z+1) = zΓ(z)

and Legendre’s duplication formula (see page 398), the formula (27) is reduced
to

∞
∑

n=1

Jµ(nα)

nν
=
αν−1Γ(1+µ−ν

2
)

2ν Γ(1+µ+ν

2
)
− ανδµ,ν

2µ+1Γ(µ+ 1)
+
πν− 1

2Γ(µ−ν+1
2

)

Γ(ν−µ

2
)

×
∞
∑

k=0

( α
2π
)2k+µζ(2k + µ− ν + 1)

∏k

i=1(
µ−ν−1

2
+ i)(µ−ν

2
+ i)

k! Γ(µ+ 1 + k)
.

(28)

3.1. Closed form cases. Unlike (10), closed form cases of (28) do not ensue
because ζ-function vanishes. Its argument in this case does not take negative
even integers since µ > ν. But, for ν − µ = −2p, p ∈ N0, the expression
1/Γ(ν−µ

2
) becomes zero since Γ has poles at non-positive integers. Because of

δµ,ν = 0 for µ > ν, (28) takes closed form

∞
∑

n=1

Jµ(nα)

nµ−2p
=

αµ−2p−1Γ(p+ 1
2
)

2µ−2p Γ(µ− p+ 1
2
)
. (29)

But, for µ = ν, we have seen that δµ,ν = 1, so in that case (28) takes closed
form

∞
∑

n=1

Jµ(nα)

nµ
=

αµ−1
√
π

2µ Γ(µ+ 1
2
)
− αµ

2µ+1Γ(µ+ 1)
. (30)

For a particular choice of parameters, the closed form formula (29) can be
reduced to (15) or a similar closed form case coming out of (13) (see the remark
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after (15)). If we take ν = 2l − 1, µ = 2k + 1, and require l < k + 1 (these are
conditions of holding (15)), we further have µ−ν = 2p, where p = k− l+1 ∈ N.
Replacing these values in (29), setting afterwards z = k − l + 3

2
and applying

the property Γ(z)Γ(1−z) = π
sinπz

, we easily come to (15). So, by using different
methods we obtain the same formula. Yet, note that (29) holds whenever real
numbers µ and ν (µ > ν > − 1

2
) satisfy µ− ν = 2p (p ∈ N), whereas (15) holds

only for positive integers µ and ν.

Let us have a look at the formula 9 in [12, p. 678]:

∞
∑

k=1

Jν(kx)

kν−2n
=

Γ(n+ 3
2
)

(2n+ 1)Γ(ν − n+ 1
2
)

(x

2

)ν−2n−1

,

where n ∈ N, ν > 2n − 1
2
, 0 ≤ x < 2π. After Γ(n + 3

2
) = (n + 1

2
)Γ(n + 1

2
) and

cancellation, this formula becomes (29), which in turn holds on condition that
µ − 2p = ν > −1

2
, whence we have µ > 2p − 1

2
, and we conclude that these

formulas are identical.

The formula 8 in [12, p. 678]

∞
∑

k=1

J2n+m(kx)

km
=

xm−1

(2n+ 1)(2n+ 3) · · · (2n+ 2m− 1)
, n ∈ N, 0 < x < 2π,

is another example of a particular case obtainable from our formula (28). If we
set ν = m ∈ N in (28) with µ− ν = 2p ∈ N, after a rearrangement we come to
the last formula, which is in fact a special case of our formula (29).

4. Concluding remarks

Now we review our results and show how each concrete case of the series (1) for
given µ and ν can be handled. Actually, all possible cases of relations between
parameters µ and ν are comprised.

So, if µ and ν are real numbers, ν > µ > − 1
2
, we apply the summation

formula (10) obtained by using Poisson’s integral. If, for these numbers, there
holds ν−µ = 2k, k ∈ N0, we apply (11). If ν−µ = 2k+1, k ∈ N0, we use (12).

If µ is a non-negative integer and ν positive real number, then, irrespective
of being ν > µ or ν ≤ µ, we apply the summation formula (13) obtained by
way of Bessel’s integral. In addition, if ν ∈ N, then closed form or limit cases
ensue. Some examples are given by (14) and (15) or (16) and (17) respectively.

If µ and ν are real numbers, µ > ν > − 1
2
, we use (28) obtained by means

of a power series representation of Bessel functions and Poisson’s formula. In
particular, if there holds µ− ν = 2p, p ∈ N0, we apply (29) or (30). In special
cases, when µ and ν are odd positive integers, we may use (15) or a similar
formula obtainable from (13), when they are even positive integers.
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