
SUMMATION

How should we compute a sum

S = a1 + a2 + · · ·+ an

with a sequence of machine numbers {a1, ..., an}. Should
we add from largest to small, should we add from

smallest to largest, or should we just add the numbers

based on their original given order? In other words,

does it matter how we calculate the sum?

Recall the relationship between a number x and its

machine approximation fl(x):

fl(x) = (1 + ε)x

For bounds on ε for a binary floating point represen-

tation with N binary digits in the mantissa, we have

−2−N ≤ ε ≤ 2−N, rounding
−2−N+1 ≤ ε ≤ 0, chopping

We use these results as tools for analyzing the error

in computing the sum S.

We create the sum S by a sequence simple additions.

Define

S2 = fl (a1 + a2) = (1 + ε2) (a1 + a2)
S3 = fl(S2 + a3) = (1 + ε3) (S2 + a3)
S4 = fl(S3 + a4) = (1 + ε4) (S3 + a4)

...
Sn = fl(Sn−1 + an) = (1 + εn) (Sn−1 + an)

This says each simple addition is performed exactly,

following which it is rounded or chopped back to the

precision of the machine. All of the numbers εj satisfy

the inequalities given earlier.

We now combine the above to obtain a formula that

is simpler to work with. In particular, we find that

S − Sn ≈ −a1 (ε2 + · · ·+ εn)
−a2 (ε2 + · · ·+ εn)
−a3 (ε3 + · · ·+ εn)
−a3 (ε4 + · · ·+ εn)

...
−anεn

In obtaining this, we have neglected all terms contain-

ing products εiεj, as these are generally much smaller

than the remaining terms.

For example,

S2 = (a1 + a2) + ε2 (a1 + a2)
S3 = (1 + ε3) [a3 + (1 + ε2) (a1 + a2)]

= (a1 + a2 + a3) + (a1 + a2) (ε2 + ε3)
+a3ε3 + ε2ε3 (a1 + a2).

= (a1 + a2 + a3) + (a1 + a2) (ε2 + ε3) + a3ε3

Continue in this manner to get

Sn
.
= (a1 + a2 + · · ·+ an)

+ (a1 + a2) (ε2 + ε3 + · · ·+ εn)
+a3 (ε3 + · · ·+ εn)
+a4 (ε4 + · · ·+ εn)
+ · · ·+ anεn

Using this yields the formula given earlier for S − Sn.

Consider now the formula

S − Sn = −a1 (ε2 + · · ·+ εn)
−a2 (ε2 + · · ·+ εn)
−a3 (ε3 + · · ·+ εn)
−a4 (ε4 + · · ·+ εn)

...
−anεn

and what it suggests as a method for adding the num-

bers a1, ..., an.

Since a1 and a2 have the largest number of quantities

εj multiplied times them, it makes sense to have a1
and a2 be the smallest numbers in magnitude. We can

continue in this vein to motivate ordering the numbers

to satisfy

|a1| ≤ |a2| ≤ · · · ≤ |an|
This is not an optimal method, but it generally is

superior to using a random ordering or to adding from

the largest term to the smallest.

EXAMPLE

An example is given in the text for

nX
n=1

aj

with

aj = fl (1/j) , j ≥ 1
The numbers aj are obtained by rounding to 4 signif-

icant decimal digits the numbers 1/j. Then two dif-

ferent decimal arithmetics are used, along with adding

from smallest to largest (SL), and from largest to

smallest (LS). The results are given in Section 2.4.

For n = 1000, we have the following results:

Chopped arithmetic, smallest to largest: Error=.202

Chopped arithmetic, largest to smallest: Error=.417

Rounded arithmetic, smallest to largest: Error=0

Rounded arithmetic, largest to smallest: Error=.037

Why is it so much larger with chopped arithmetic?

Using chopped 4-digit decimal arithmetic

n True SL Error LS Error
10 2.929 2.928 0.001 2.927 0.002

25 3.816 3.813 0.003 3.806 0.010

50 4.499 4.491 0.008 4.479 0.020

100 5.187 5.170 0.017 5.142 0.045

200 5.878 5.841 0.037 5.786 0.092

500 6.793 6.692 0.101 6.569 0.224

1000 7.486 7.284 0.202 7.069 0.417

Using rounded 4-digit decimal arithmetic

n True SL Error LS Error
10 2.929 2.929 0 2.929 0

25 3.816 3.816 0 3.817 −0.001
50 4.499 4.500 −0.001 4.498 0.001

100 5.187 5.187 0 5.187 0

200 5.878 5.878 0 5.876 0.002

500 6.793 6.794 −0.001 6.783 0.010

1000 7.486 7.486 0 7.449 0.037

Recall the formula

Sn
.
= (a1 + a2 + · · ·+ an)

+ (a1 + a2) (ε2 + ε3 + · · ·+ εn)
+a3 (ε3 + · · ·+ εn)
+a4 (ε4 + · · ·+ εn)
+ · · ·+ anεn

and examine one of the quantities on the right, as an

example of the general case. The first term contains

the sum

ε2 + ε3 + · · ·+ εn

Write this as

(n− 1)
 1

n− 1
nX

j=2

εj

 ≡ (n− 1)ε∗

In the case of rounding, the mean ε∗ is approximately
zero, because the negative and positive values of εj
are likely to cancel when large numbers of such εj are

being summed; and thus (n− 1) ε∗ is usually quite
small. But for the case of chopping, ε∗ is approxi-
mately −2−N , and therefore,

(n− 1) ε∗ ≈ − (n− 1) 2−N

Thus (n− 1) ε∗ will grow in a manner proportional

to n. By more advanced arguments, it can be shown

that for the case of rounded arithmetic, (n− 1) ε∗ will
grow in a manner proportional to sqrt(n), which grows

much slower than n.

EXTENDED PRECISION ARITHMETIC

Sometimes a limited use of a higher precision arith-

metic will greatly cut the amount of rounding error in

a calculation. Consider as an important example the

calculation of the ‘dot product’ or ‘inner product’

S =
nX

j=1

ajbj

with the numbers aj, bj all machine numbers.

Imagine calculating this in single precision arithmetic.

Then there will be approximately n rounding errors

from the multiplications and n − 1 rounding errors

from the additions. To cut this, imagine extending

each of the numbers aj, bj to double precision by ap-

pending sufficient zeros to them. Then multiply and

add them in double precision; and when completed,

round the answer back to single precision. This re-

places 2n − 1 single precision rounding errors with 1
such rounding error, a significant improvement.

What do you do if you are already in double preci-

sion? With the IEEE standard, you can use ‘extended

precision arithmetic’, which gives 16 binary digits of

extra accuracy. It must be accessed by using special

routines, but it allows calculation of much more accu-

rate inner products at a minimal increase in operation

time.

In linear algebra problems, rounding errors in many-

term summations, including inner products, are the

principal source of error. We will discuss this further

in the chapter on numerical linear algebra.

In MATLAB, all arithmetic is in double precision, and

extended IEEE arithmetic is not available. Thus we

illustrate these ideas with only a Fortran program.

REAL FUNCTION SUMPRD(A,B,N)

C

C THIS CALCULATES THE INNER PRODUCT

C

C I=N

C SUMPRD = SUM A(I)*B(I)

C I=1

C

C THE PRODUCTS AND SUMS ARE DONE IN DOUBLE

C PRECISION, AND THE FINAL RESULT IS

C CONVERTED BACK TO SINGLE PRECISION.

C

REAL A(*), B(*)

DOUBLE PRECISION DSUM

C

DSUM = 0.0D0

DO I=1,N

DSUM = DSUM + DBLE(A(I))*DBLE(B(I))

END DO

SUMPRD = DSUM

RETURN

END

