
1

Section 5.2 Summations and Closed Forms
A closed form is an expression that can be computed by applying a fixed number of
familiar operations to the arguments. For example, the expression 2 + 4 + … + 2n is not a
closed form, but the expression n(n+1) is a closed form.

!

ak
k=1

n

" = a1 +L+an .Summation Notation:

Some Useful Closed Forms

Summation Facts

!

ak+i
k=m

n

" = ak
k=m+i

n+i

" .(4)

!

(ak +bk)" = ak +" bk" .(2)

!

akx
i+k" = xi akx

k" .(3)

!

cak" = c ak" .(1)

!

c
k=m

n

" = (n#m +1)c.(1)

!

k
k=1

n

" =
n(n+1)
2

.(2)

!

k 2
k=1

n

" =
n(n+1)(2n+1)

6
.(3) (4)

(5)

(5) Collapsing Sums)

!

(ak " ak"1)
k=1

n

= an " a0 and (ak"1 " ak)
k=1

n

= a0 " an .

!

ak

k=0

n

" =
an+1 #1
a #1

(where a $1).

!

kak

k=1

n

" =
a # (n+1)an+1 +nan+2

(a #1)2 (where a $1).

2

!

(k "1)2k+1

k=2

n

= k2k+2

k=1

n"1

#

= 22 k2k
k=1

n"1

#

= 22(2" n2n + (n"1)2n+1)
= 23 " (2" n)2n+2.

(Fact 4)

(Fact 3)

(Form 5)

Example. Find a closed form for the expression

!

(k "1)2k+1

k=2

n

.

Solution:

Solution: The sum has the form

!

2+ 2k (k "1) #7
k=2

n

$

= 2+ 7 (k "1)2k
k=2

n

$

= 2+ 7 k2k+1

k=1

n"1

$

= 2+14 k2k
k=1

n"1

$

= 2+14(2" n2n + (n"1)2n+1).

Example. Find a closed form for

!

2 + 22 "7 + 23 "14 +L+ 2n(n#1) "7.

(Fact 1)

(Fact 4)

(Fact 3)

(Form 5)

3

Solution.

Quiz. Use summation facts and forms to prove that

!

2+ 3+ ...+ n =
(n"1)(n + 2)

2
.

!

2+ 3+ ...+n = k
k=2

n

" = (k +1)
k=1

n#1

"

= k
k=1

n#1

" + 1
k=1

n#1

"

=
(n#1)(n)

2
+ (n#1)

=
(n#1)(n+2)

2
.

Solution.

!

(3+ 4k)
k=0

n

" = 3
k=0

n

" + 4k
k=0

n

"

= 3
k=0

n

" + 4 k
k=0

n

"

= 3(n+1)+ 4n(n+1)
2

= (3+2n)(n+1).

Quiz. Use summation facts and forms to find a closed form for

!

3+ 7+L+ (3+ 4n).

4

Example. Let count(n) be the number of := statements executed by the following
algorithm as a function of n, where n ∈ N. Find a closed form for count(n).

!

count(n) =1+ (n"1) + (2+ 3+L+ n)
= (n"1) + (1+ 2+ 3+L+ n)

= (n"1) +
n(n +1)

2
.

Quiz. Let count(n) be the number of executions of S in the preceding algorithm as a
function of n. Find a closed form for count(n).

!

count(n) = (2+ 3+L+ n)
= (1+ 2+ 3+L+ n)"1

=
n(n +1)

2
"1.

Solution.

i := 1;
while i < n do

i := i + 1;
for j := 1 to i do S od

od
The expressions in parentheses indicate the number of times that := is executed.

(1)

(n – 1)
(2 + 3 + … + n)

Therefore, count(n) is the sum:

5

Example. Let count(n) be the number of times S is executed by the following algorithm as
a function of n, where n ∈ N. Find a closed form for count(n).

i := 1;
while i < n do

i := i + 2;
for j := 1 to i do S od

od
Solution: Each time through the while-loop i is incremented by 2. So the values of i at the
start of each for-loop are 3, 5, …, (2k + 1), where i = 2k + 1 ≥ n represents the stopping
point for the while-loop. So we have

!

count(n) = 3+5+L+ (2k +1)

= (2i +1)
i=1

k

" = 2 i + 1
i=1

k

"
i=1

k

"

=
2k(k +1)

2
+ k = k(k +1) + k = k(k + 2).

But we need to write count(n) in terms of n. Since 2k + 1 ≥ n is the stopping point
for the while-loop it follows that 2k –1< n is the last time the while-condition is
true. In other words, we have the inequality 2k – 1 < n ≤ 2k + 1. Solving for k, we
have 2k – 2 < n – 1 ≤ 2k, which gives k – 1 < (n – 1)/2 ≤ k. Therefore k = ⎡(n – 1)/2⎤.
Now we can write count(n) in terms of n as

count(n) = k(k + 2) = ⎡(n – 1)/2⎤(⎡(n – 1)/2⎤ + 2).

6

Approximating Sums. Suppose we have a sum that doesn’t have a closed form or we
can’t find a closed form. Then we might find an approximation to suit our needs. For
example, consider the following sum:

Hn = 1 + 1/2 + 1/3 + ... + 1/n.
This sum is called the nth harmonic number and it has no closed form. It is closely
approximated by ln n because the definite integral of 1/x from 1 to n is ln n. A constant,
called Euler’s constant, with a value close to 0.58, approximates the difference between Hn
and ln n for large n. In other words, we have Hn > ln n and Hn – ln n is close to Euler’s
constant for large n. For example,

H10 – ln 10 ≈ 2.93 – 2.31 = 0.62
H20 – ln 20 ≈ 3.00 – 2.60 = 0.60
H40 – ln 40 ≈ 4.28 – 3.69 = 0.59

Example (Overlapping windows). Suppose we have set of files in the form of windows on a
computer screen that are to be displayed as a stack of overlapped windows. How much
total space is needed for the display? For example, if A is the area of the top window and
each overlapped window has area A/2, then a stack of n files will have area

A + A(n – 1)/2.
This might take too much space for even small values of n, which would force A to be
quite small. In this case we could decrease the size of each overlapped window to a smaller
fraction of A. But it might be useful to make the overlapped files progressively smaller with
sizes such as A/2, A/3, A/4, In this case the n files will have total area

A + A/2 + A/3 + ... + A/(n – 1) = AHn–1,
which is approximately equal to A(ln(n – 1) + 0.58).

