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Section 5.2 Summations and Closed Forms
A closed form is an expression that can be computed by applying a fixed number of
familiar operations to the arguments. For example, the expression 2 + 4 + … + 2n is not a
closed form, but the expression n(n+1) is a closed form.
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Example. Find a closed form for the expression 
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Solution: The sum has the form
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Example. Find a closed form for       
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Solution.

Quiz. Use summation facts and forms to prove that
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Quiz. Use summation facts and forms to find a closed form for       
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Example. Let count(n) be the number of := statements executed by the following
algorithm as a function of n, where n ∈ N. Find a closed form for count(n).
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Quiz. Let count(n) be the number of executions of S in the preceding algorithm as a
function of n. Find a closed form for count(n).
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Solution.

i := 1;
while i < n do

i := i + 1;
for j := 1 to i do S od

od
The expressions in parentheses indicate the number of times that  := is executed.

(1)

(n – 1)
(2 + 3 + … + n)

Therefore, count(n) is the sum:
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Example. Let count(n) be the number of times S is executed by the following algorithm as
a function of n, where n ∈ N. Find a closed form for count(n).

i := 1;
while i < n do

i := i + 2;
for j := 1 to i do S od

od
Solution: Each time through the while-loop i is incremented by 2. So the values of i at the
start of each for-loop are 3, 5, …, (2k + 1), where  i = 2k + 1 ≥ n represents the stopping
point for the while-loop. So we have
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But we need to write count(n) in terms of n. Since 2k + 1 ≥ n is the stopping point
for the while-loop it follows that 2k –1< n is the last time the while-condition is
true. In other words, we have the inequality 2k – 1 < n  ≤ 2k + 1. Solving for k, we
have 2k – 2 < n – 1 ≤ 2k, which gives k – 1 < (n – 1)/2 ≤ k. Therefore k = ⎡(n – 1)/2⎤.
Now we can write count(n) in terms of n as

count(n) = k(k + 2) = ⎡(n – 1)/2⎤(⎡(n – 1)/2⎤ + 2).



6

Approximating Sums. Suppose we have a sum that doesn’t have a closed form or we
can’t find a closed form. Then we might find an approximation to suit our needs. For
example, consider the following sum:

Hn = 1 + 1/2 + 1/3 + ... + 1/n.
This sum is called the nth harmonic number and it has no closed form. It is closely
approximated by ln n because the definite integral of 1/x from 1 to n is ln n. A constant,
called Euler’s constant, with a value close to 0.58, approximates the difference between Hn
and ln n for large n. In other words, we have Hn > ln n and Hn – ln n is close to Euler’s
constant for large n.  For example,

H10 – ln 10 ≈ 2.93 – 2.31 = 0.62
H20 – ln 20 ≈ 3.00 – 2.60 = 0.60
H40 – ln 40 ≈ 4.28 – 3.69 = 0.59

Example (Overlapping windows). Suppose we have set of files in the form of windows on a
computer screen that are to be displayed as a stack of overlapped windows. How much
total space is needed for the display? For example, if A is the area of the top window and
each overlapped window has area A/2, then a stack of n files will have area

A + A(n – 1)/2.
This might take too much space for even small values of n, which would force A to be
quite small. In this case we could decrease the size of each overlapped window to a smaller
fraction of A. But it might be useful to make the overlapped files progressively smaller with
sizes such as A/2, A/3, A/4, ... . In this case the n files will have total area

A + A/2 + A/3 + ... + A/(n – 1) = AHn–1,
which is approximately equal to A(ln(n – 1) + 0.58).


