
Systolic Super Summation with Reduced Hardware

Willard L. Miranker

Mathematical Sciences Department

IBM T.J. Watson Research Center

Route 134 & Kitichwan Road

Yorktown Heights, NY 10598

Abstract

A principal limitation in accuracy for scientific computation performed with floating-

point arithmetic may be traced to the computation of repeated sums, such as those

which arise in inner products. As previously reported, a systolic super summer is a

cellular piece of hardware for the summation of floating-point numbers. The appara-

tus receives floating-point summands, converting them into a fixed-point form within

a sieve-like cellular array. The emerging fixed-point numbers then are summed in a

pipelined array of long accumulators. An improved design is presented for systolic su-

per summation’s sieve. Although the new sieve is structurally simpler and uses less

hardware, the throughput per unit area is the same as the previously designed sieve.

The architectural regularity of the new sieve makes it ideal for implementation in VLSI

circuit technology.

1

1 Introduction

1.1 Super summation

An operation called the floating-point inner product (FLIP), has been advocated [7, 8] in

order to eliminate the need for scaling while still enjoying error-free, associative accumu-

lation. Such an operation can be simulated by iterative algorithms [7, Ch. 6], [4, 5], and

parallel algorithms [9]. High performance hardware units also have been devised [1, 6]. The

unit described in [1] has been more or less implemented, by means of microcoded assists,

in the IBM 4361. This IBM unit uses a super (i.e., very long) accumulator, the output of

which is called a super summation.

In [3], we provide a design called systolic super summation (SSS) for the cellular sum-

mation of floating-point numbers. Some additional design details are furnished in [2]. We

propose here a modification of that design which uses substantially less hardware (approx-

imately an order of magnitude less for the design parameters that we have in mind). The

sieve is the dominant component of the design with respect to area. The throughput per

unit area for the proposed sieve is asymptotically equal to that of the sieve in [3]. The

proposed design thus provides an area vs. throughput tradeoff. We argue in the conclusion

that the proposed design is a more realistic choice for integration into a scientific computing

system.

1.2 The design of Cappello and Miranker

We provide an overview of the design presented in [3]. Let R(b,M, e1, e2) denote the collec-

tion of floating-point numbers with base b, mantissa length M , and minimum [maximum]

exponent e1 [e2]. Suppose that a block of floating-point numbers in R(2, M, 2e1, 2e2) rep-

resenting summands arrive at this apparatus in bit-parallel order. The zero floating-point

2

number is appended to the end of a block in order to flush and initialize the apparatus.

The output mantissa length is a device parameter called M where M < M . Thus, each

completed sum is a number in R(2,M, e1, e2),

A schematic of the systolic super summation device is given in Figure 1. Upon entry, the

summands flow through a bit skewing device, emerging from it in serial-parallel order. This

reordering of the bits is performed to accommodate bit collisions which occur in the sieve,

the next part of the apparatus. The skewed summands enter the sieve. Each summand

is accompanied by a bit, the end-of-sum signal (whose value is ‘true’ or ‘false’). The sieve

is a systolic packet switching network with signal combining. The mantissa of an entering

summand is switched from its entry at the top of the sieve to an appropriate position at

the bottom. The switching path is determined by the exponent of the summand. The

appropriately switched summand mantissa emerging from the sieve enters a pipeline, called

the A-pipeline, of accumulators, themselves denoted α0, α1, . . . , αP+1 successively. These

accumulators are able to accommodate each mantissa as if it were a fixed-point number, and

the sieve is a shifting device for determining the correct fixed-point position for addition

of the summands in α0. Accumulator α0, a super(-long) accumulator, is M + 2C bits

long, where design parameter C = b2+ log |e1|+log e2c. In fact several, say F , overflow bit

positions are appended to the left (the high-order end) of α0 as well as all other accumulators

in the A-pipeline.

The sum is accumulated in α0. The end-of-sum signal bumps the contents of α0 to α1.

Thus α0 is initialized and ready for the next sum which may emerge from the sieve. In

α1 the carry resolution process in the summing continues, if necessary. This is combined

with the encoding of the sum into a floating-point number in R(2, M, e1, e2). That is, as

new sums arrive to bump predecessor sums down the A-pipeline, the latter are completing

their carry resolution, shifting out leading zeros (normalizing), re-encoding the exponent,

3

and finally rounding; all of this more or less, concurrently.

Since sums may be completed in an order quite different from their order of entry into

the super summer, the A-pipeline is furnished with a sum completion detection capability.

As soon as a completed sum is detected, it is made to descend through the A-pipeline to

be ejected from the apparatus. A completed sum may pass through other sums which are

still in progress. This early sum departure feature, asynchronizes the process, and it is for

this reason that sum tagging is introduced. An identity pointer (tag) enters the device with

each summand block. The tag flows through the device in step with the summation process.

The tag accompanies the sum as it departs the apparatus.

Entry of a sum into the sieve occupies only M of the M +2C bit width of the sieve. The

design thus is modified to increase entry capacity. The sieve is augmented into a so-called

cylinder sieve (see Figure 2).

[3] Every disjoint band of width M becomes a port of entry into the sieve thereby

increasing its bandwidth. There are now many streams of summand bits which descend

in the sieve. These streams cross and collide. Collisions are resolved by combining bits

(addition of bits) within the sieve itself. A key part of this design is the regulation of this

bit traffic, and a proof that it works.

2 A design with reduced hardware

We present a design that uses less hardware than that presented in [3]. It is essentially the

same as the design presented in [3], but replaces the large sieve with a much smaller one.

The overall system is not cylindrical, because the sieve is not cylindrical. (see Figure 3).

Although the new sieve is much smaller and simpler than the original sieve, the interface

between the sieve and the super accumulator is unchanged.

Operands enter the sieve in a bit-skewed manner: An summand’s characteristic bits

4

enter before its mantissa bits; high-order characteristic bits enter before low-order bits;

high-order mantissa bits enter before low-order bits. A summand skewer (see Figure 3) can

be used to skew the summands. Let us focus on the sieve, the new part of the overall design.

Figure 4 illustrates its size and simple structure.

2.1 Characteristic decoding

The summand’s characteristic, represented with C bits, ranges in value from 0 (i.e., C ‘0’

bits) to 2C − 1 (i.e., C ‘1’ bits). For each of these 2C characteristic values, the sieve has

a C-bit hard-wired characteristic key. Each summand starts out moving westerly through

the sieve. When its characteristic matches one of the 2C characteristic keys located along

the top of the sieve, its mantissa starts moving southwesterly. Key matching is illustrated

in Figure 5. Since the summand’s characteristic is bit-skewed (from high-order bits to low-

order bits), its C bits encounter the vertically aligned key matching cells on C successive

cycles. The boolean variables for an individual key match cell are as follows:

• e is an exponent bit (i.e., a characteristic bit of a summand)

• k is a key bit (i.e., characteristic key bit)

• f is the flag bit (i.e., the match flag, a value of 1 indicates a match)

The equations governing cell input/output, as illustrated in Figure 5, are as follows1:

e ← e

f ← f · (e ≡ k)

Initially, f ← 1. When and only when the summand characteristic matches a key, the

flag (f) that is entering the mantissa portion of the sieve has value 1.

1The binary operation ≡ means p is equivalent to q: (p · q) ∨ (p · q)

5

2.2 Mantissa movement

When the mantissa receives a key flag that is high (i.e., f = 1), its bits change the direction of

their motion, in succession, from westerly to southwesterly. Since the summand’s mantissa

is bit-skewed (from high-order bits to low-order bits), its M bits encounter the vertically

descending key flag on M successive cycles.

A mantissa bit that starts moving southwesterly can ‘collide’ with a bit of another

mantissa that is moving southwesterly. In this case, both bits are destined for the same

position of the super accumulator. We thus may add them, possibly producing a carry bit2.

This logic is illustrated in Figure 6. The boolean variables are as follows:

• f is the flag bit (i.e., the match flag that emerges from the characteristic decode

region)

• m is a mantissa bit (i.e., a mantissa bit of a summand)

• s is a sum bit (see Figure 6)

• c is a carry bit (see Figure 6)

The equations governing cell input/output, as illustrated in Figure 6, are as follows:

f ← f

m ← f ·m
s ← s⊕ c⊕ (f ·m)

c ← (s · c) + (s · f ·m) + (c · f ·m)

The area, A, of the sieve is O((C + M)(2C + M)). The minimum time for all the

summands to enter the sieve (assuming there are at least 2 summands) is C +M +1. So the
2The phenomenon of collison/co-habitation is illustrated and described in detail in [3], hence omitted

from this note.

6

number of super accumulators, P , needed in a completely pipelined design (see [3]) is given

by d(2C + M)/(C + M + 1)e. Envisioned values for C and M are 9 and 48, respectively.

For these values, P = d(29 + 48)/(9 + 48 + 1)e = 10.

2.3 Sum unloading

The sum unloading procedure is designed so that the sieve/accumulator hardware interface

is the same as that reported in [3]. Unloading proceeds as follows.

1. One cycle after the least significant bit of the last summand enters the sieve, the sum

unload signal (σ) is input with value ‘1’; on all other cycles, it is input with value ‘0’.

2. This unload signal moves systolically from right to left through the unload register

(whose length matches that of a super accumulator). The unload signal also is directed

out the bottom of the unload register cell. As in the original design, the unload signal

enters the super accumulator cells from above.

3. An unload signal (σ = 1) causes the super accumulator cell to unload its sum and

carry bits, and to initialize these variables to ‘0’.

4. Each super accumulator thus is unloaded systolically from least significant bit to most

significant bit. Carry resolution consequently is completed as the super accumulator

is unloaded.

3 Conclusion

In [3], we presented a design for the cellular summation of floating-point numbers. We

proposed here a modification to that design’s sieve which uses substantially less hardware.

The sieve also is structurally less complicated, and accepts only one summand/cycle. Such

7

a device is much simpler to integrate into a computing system than the one presented in

[3], whose input capacity (for envisioned parameter values) is 11 summands/cycle.

The two design’s characteristics are compared in Table 1.

Asymptotic value For C = 9 & M = 48

Measure Design [3] Proposed design Design [3] Proposed design

Area in bit-level sieve cells (2C + M)2(C+M
M) (C + M)(2C + M) 372,400 31,920

Throughput in summands/cycle (2C + M)/M 1 11 1

Area/Throughput (C + M)(2C + M) (C + M)(2C + M) 33,855 31,920

Table 1: The design in [3] vs. the proposed design.

8

We believe that the proposed design’s

• structural simplicity,

• order of magnitude smaller size, and

• ease of system integration

are compelling advantages.

References

[1] G. Bohlender and U. W. Kulisch. Features of a hardware implementation of an optimal

arithmetic. In U. W. Kulisch and Willard L. Miranker, editors, A New Approach to

Scientific Computation. Academic Press, 1983.

[2] Peter R. Cappello and Willard L. Miranker. Systolic super summation. Technical Report

RC 11826, IBM, April 1987.

[3] Peter R. Cappello and Willard L. Miranker. Systolic super summation. IEEE Trans.

Comput., 37(6):657–677, June 1988.

[4] IBM. High Accuracy Arithmetic, Subroutine Library, General Information Manual.

Program Number 5664-185.

[5] IBM. High Accuracy Arithmetic, Subroutine Library, Program Description and User’s

Guide. Publication Number GC 33-6163.

[6] R. Kirchner and U. W. Kulisch. Arithmetic for vector processors. In M. J. Irwin and

R. Stefanelli, editors, Proc. 8th Symp. on Computer Arithmetic, pages 256–269. IEEE

Computer Society Press, Como, ITALY, May 1987.

9

[7] U. W. Kulisch and Willard L. Miranker. Computer Arithmetic in Theory and Practice.

Academic Press, 1981.

[8] U. W. Kulisch and Willard L. Miranker. The arithmetic of the digital computer. SIAM

Review, 28(1):1–40, Mar. 1986.

[9] H. Leuprecht and W. Oberaigner. Parallel algorithms for the rounding exact summation

of floating point numbers. Computing, 28, 1982.

10

Figure 1: Overall schematic of systolic super summation device .

Figure 2: [a] Summands enter the cylinder sieve in parallel vertical streams. [b] The radial

lines emanating from the top view depict the characteristic decoders. The figure illustrates

the case where (2C + M)/M = 8.

Figure 3: Overall schematic of reduced hardware systolic super summation device.

Figure 4: Schematic of the sieve. Operands are bit-skewed: An summand’s characteristic

bits enter before its mantissa bits; high-order characteristic bits enter before low-order bits;

high-order mantissa bits enter before low-order bits.

Figure 5: Each of the 2C characteristic keys has C cells.

Figure 6: The cellular logic of mantissa bit movement through the sieve.

11

