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Appendix I 
The Scientific Method 

 
 The study of science is different from other disciplines in many ways.  Perhaps 
the most important aspect of “hard” science is its adherence to the principle of the 
scientific method:  the posing of questions and the use of rigorous methods to answer 
those questions.   
 

I.  Our Friend, the Null Hypothesis 
 As a science major, you are probably no stranger to curiosity.  It is the beginning 
of all scientific discovery.  As you walk through the campus arboretum, you might 
wonder, “Why are trees green?”  As you observe your peers in social groups at the 
cafeteria, you might ask yourself, “What subtle kinds of body language are those people 
using to communicate?”  As you read an article about a new drug which promises to be 
an effective treatment for male pattern baldness, you think, “But how do they know it will 
work?”  Asking such questions is the first step towards hypothesis formation. 
 A scientific investigator does not begin the study of a biological phenomenon in a 
vacuum.  If an investigator observes something interesting, s/he first asks a question 
about it, and then uses inductive reasoning (from the specific to the general) to 
generate an hypothesis based upon a logical set of expectations.  To test the 
hypothesis, the investigator systematically collects data, either with field observations or 
a series of carefully designed experiments.  By analyzing the data, the investigator uses 
deductive reasoning (from the general to the specific) to state a second hypothesis (it 
may be the same as or different from the original) about the observations.  Further 
experiments and observations either refute or support this second hypothesis, and if 
enough data exist, the hypothesis may eventually become a theory, or generally 
accepted scientific principle.   
 Proper scientific method requires that the investigator state his/her hypothesis in 
negative terms, forming a null hypothesis (Ho) concerning the expected results of the 
study.  The null hypothesis states the expected results by predicting that there will be no 
difference between the test groups.  For example, if a pharmaceutical company is 
attempting to test a new weight loss drug (Fat-B-Gontm), its scientific investigators might 
put forth a null hypothesis stating: 
 

"There is no difference in the rate of weight loss between members of the 
population who use Fat-B-Gontm and those who do not use Fat-B-Gontm" 

 

 A second hypothesis, the alternative hypothesis (Ha), states the exact opposite 
of the null hypothesis.  Ha is, of course, the hypothesis of interest: 
 

"There is a difference in the rate of weight loss between members of the 
population who use Fat-B-Gontm and those who do not use Fat-B-Gontm." 

 

 By stating the question as a null hypothesis, the investigator allows much less 
ambiguity in accepting or rejecting one or the other hypothesis.  Once the null 
hypothesis is rejected, the alternative hypothesis becomes subject to greater scrutiny 
and further testing.   
 Note that the null hypothesis does not necessarily state that people who don’t 
use Fat-B-Gontm are less likely to lose weight!  It states only that there is no difference 
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between the groups being compared.  Such an hypothesis, which does not predict a 
direction in which the data might deviate from the expected (e.g., "higher" or "lower") is 
called a two-tailed hypothesis (it can “go either way”).  Similarly, the alternate 
hypothesis does not state whether Fat-B-Gontm users are more or less likely to lose 
weight.  It simply says there is a difference.  The analyzed data will suggest the 
direction (i.e. "higher," "lower," "less likely," "more likely") of the alternate hypothesis.   
 In some situations, it is of great interest to determine the direction in which 
observed results deviate from the expected.  In this case, one should design a one-
tailed hypothesis.  It is more difficult to reject a one-tailed hypothesis than a two-tailed 
hypothesis, as you will learn when we analyze probabilities.  Statistical formulas 
specially designed to test one- and two-tailed hypotheses do exist, but they are beyond 
the scope of this appendix. 
 

 Before you begin any experiment in this laboratory, you must formulate a null 
hypothesis pertaining to your experimental groups.  If you are writing a report on your 
experiment, the null hypothesis should be stated in the INTRODUCTION of your report. 
 
II.  Experimental Design 
 

 To test the null hypothesis, the investigators design an experiment.  In the Fat-B-
Gontm example, they will hire a group of volunteers to serve as experimental subjects.  
These will be divided into treatment and the control groups. 
 In a properly designed experiment, the treatment and control groups must be 
subjected to exactly the same physical conditions with the exception of a single 
variable.  Both groups must be carefully monitored, their food intake and physical 
activity rigorously controlled.  Along with their daily rations, the treatment group will 
receive a dose of Fat-B-Gontm, whereas the control group will receive a dose of a 
placebo--an inert substance administered in exactly the same way as the Fat-B-Gontm 
and cannot be physically distinguished from it.  The subjects should not know whether 
they are in the treatment or control group (a single-blind study), and in some cases, 
not even the investigators know which subjects are in the treatment and control groups 
(a double-blind study).  Thus, the only difference between the treatment and 
control groups is the presence or absence of a single variable, in this case, Fat-B-
Gontm.  Such rigor reduces the influence of confounding effects, uncontrolled 
differences between the two groups that could affect the results. 
 Over the course of the experiment, the investigators measure weight changes in 
each individual of both groups (Table A1-1).  Because they cannot control for the 
obvious confounding effect of genetic differences in metabolism, the investigators must 
try to reduce the influence of that effect by using a large sample size--as many 
experimental subjects as possible--so that there will be a wide variety of metabolic types 
in both the treatment and control groups.  It is a general rule that the larger the 
sample size, the closer the approximation of the statistic to the actual parameter.  
Even so, it is never wise to completely ignore the possibility of confounding effects.  
Honest investigators should mention them when reporting their findings.   
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Table A1-1.  Change in weight (x) of subjects given Fat-B-Gontm (treatment) and 
placebo (control) food supplements over the course of one month.  All weight 
changes were negative (weight loss).  Mean weight change (x), the square of each 
data point (x2) and the squared deviation from the mean (x - x)2 are included for 
later statistical analysis.   
 

control 
subjects 

� weight  
(kg) (= x) 

(� weight�  
    (= x2) 

     (x - x)2 treatment 
subjects 

� weight 
(kg) (= x) 

(� weight �  
      (= x2) 

      (x - x)2 

1 � �    19.36    0.12 11  121.00 13.40 
2 � �    36.69    2.43 12 � �     30.25   3.39 
3 �       1.44 12.53 13 � �     38.44   1.30 
4 � �    54.76    7.07 14 �     82.81   3.10 
5 �    36.00    1.59 15 �     65.61   0.58 
6 �    16.81    0.41 16 �     36.00   1.80 
7 � �    27.04    0.21 17 � �     67.24   0.74 
8 �       9.61    2.69 18 �     25.00   5.47 
9 � �    17.64    0.29 19 � �     51.84   0.02 
10 � �    30.25    0.58 20 �     50.41   0.06 
total (� ) � � �  

x=4.74) 
249.6 
(=� x2) 

27.92 
(=� (x-x)2) 

total (� ) 73.4 
(x = 7.34) 

568.60 
(=� x2) 

29.86 
(=� (x-x)2) 

 

III.  Data, parameters and statistics 
 Most investigations in the biological sciences today are quantitative.  The 
investigator's goal is to collect biological observations which can be tabulated as 
numerical facts, also known as data (singular = datum).  Biological research can yield 
several different types of data: 
 

1.  Attribute data.   This simplest type consists of descriptive, "either-or" 
measurements, and usually describe the presence or absence of a particular attribute.  
The presence or absence of a genetic trait ("freckles" or "no freckles") or the type of 
genetic trait (type A, B, AB or o blood) are examples.  Because this type of data has no 
specific sequence, it is considered unordered data.   
2.  Discrete numerical data.  These data correspond to biological observations which 
are counted, and are integers (whole numbers).  The number of leaves on each 
member of a group of plants, the number of breaths per minute in a group of newborns 
or the number of beetles per square meter of forest floor are all examples of numerical 
discrete data.  Although these data are ordered, they do not describe physical attributes 
of the things being counted. 
3.  Continuous numerical data.  The most quantitative data fall along a numerical 
continuum.  The limit of resolution of such data is the accuracy of the methods and 
instruments used to collect them.  Examples of continuous numerical data are tail 
length, brain volume, percent body fat...anything that varies on a continuous scale.  
Rates (such as decomposition of hydrogen peroxide per minute or uptake of oxygen 
during respiration over the course of an hour) are also numerical continuous data.   
 

 When you perform an experiment, be sure to determine which type of data you 
are collecting.  The type of statistical test appropriate in any given situation depends 
upon the type of data! 
 
 When an investigator collects numerical data from a group of subjects, s/he must 
determine how and with what frequency the data vary.  For example, if one wished to 
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study the distribution of shoe size in the human population, one might measure the shoe 
size of a sample of the human population (say, 50 individuals) and graph the numbers 
with "shoe size" on the x-axis and "number of individuals" on the y-axis.  The resulting 
figure shows the frequency distribution of the data, a representation of how often a 
particular data point occurs at a given measurement. 
 Usually, data measurements are distributed over a range of values.  Measures of 
the tendency of measurements to occur near the center of the range include the 
population mean (the average measurement), the median (the measurement located at 
the exact center of the range) and the mode (the most common measurement in the 
range).   
 It is also important to understand how much variation a group of subjects exhibits 
around the mean.  For example, if the average human shoe size is "9," we must 
determine whether shoe size forms a very wide distribution (with a relatively small 
number of individuals wearing all sizes from 1 - 15) or one which hovers near the mean 
(with a relatively large number of individuals wearing sizes 7 through 10, and many 
fewer wearing sizes 1-6 and 11-15).  Measurements of dispersion around the mean 
include the range, variance and standard deviation. 
 
Parameters and Statistics 
 If you were able to measure the height of every adult male Homo sapiens who ever 
existed, and then calculate a mean, median, mode, range, variance and standard 
deviation from your measurements, those values would be known as parameters.  
They represent the actual values as calculated from measuring every member of a 
population of interest.  Obviously, it is very difficult to obtain data from every member of 
a population of interest, and impossible of that population is theoretically infinite in size.  
However, one can estimate parameters by randomly sampling members of the 
population.  Such an estimate, calculated from measurements of a subset of the entire 
population, is known as a statistic. 
 In general, parameters are written as Greek symbols equivalent to the Roman 
symbols used to represent statistics.  For example, the standard deviation for a subset 
of an entire population is written as "s", whereas the true population parameter is written 
as σ. 
 Statistics and statistical tests are used to test whether the results of an experiment 
are significantly different from what is expected.  What is meant by "significant?"  For 
that matter, what is meant by "expected" results?  To answer these questions, we must 
consider the matter of probability. 
 

IV.  Statistical tests 
 Let's return to our Fat-B-Gontm subjects.  After the data have been collected, the 
subjects can go home and eat TwinkiesT.M. and the investigators' work begins in earnest.  
They must now determine whether any difference in weight loss between the two 
groups is significant or simply due to random chance.  To do so, the investigators 
must perform a statistical test on the data collected.  The results of this test will enable 
them to either ACCEPT or REJECT the null hypothesis.   
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A.  Calculation of mean, variance and standard deviation 
 

 You probably will be dealing most often with numerical continuous data, and so 
should be familiar with the definitions and abbreviations of several important quantities: 
 

x = data point  the individual values of a measured parameter (=xi) 
 _ 
x = mean   the average value of a measured parameter  
 

n = sample size  the number of individuals in a particular test group 
 

df = degrees of freedom the number of independent quantities in a system  
 

s2 = variance   a measure of individual data points' variability from  
     the mean 
 

s = standard deviation  the positive square root of the variance 
 

 
 To calculate the mean weight change of either the treatment or control group,  
the investigators simply sum the weight change of all individuals in a particular group  
and divide it by the sample size.   
                  n 

_      Σ   xi 
   x =         i=1  
          n 
 
Thus calculated, the mean weight change of our Fat-B-Gontm control group is 4.74 kg, 
and of the treatment group, 7.34 kg (Table A1-1).   
 To determine the degree of the subjects' variability from the mean weight 
change, the investigators calculate several quantities.  The first is the sum of squares 
(SS) of the deviations from the mean, defined as: 
 

 _ 
SS = Σ  (x - xi)2 

 

Whenever there is more than one test group, statistics referring to each test group are 
given a subscript as a label.  In our example, we will designate any statistic from the 
control group with a subscript "c" and any statistic from the treatment group with a 
subscript "t."  Thus, sum of squares of our control group (SSc) is equal to 27.92 and SSt 
is equal to 29.86 (See Table A1-2). 
 The variance (s2) of the data, the mean SS of each test group, is defined as: 
 

 

 
 

 

Calculate the variance for both the treatment and control Fat-B-Gontm groups.  Check 
your answers against the correct ones listed Table A1-2. 
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 Standard deviation (s), the square root of the variance: 
 

 

 
Calculate the standard deviation for the treatment and control groups.  Check your 
answers against the correct ones listed in Table A1-2. 
 

B.  Parametric tests 
 A parametric test is used to test the significance of continuous numerical data 
(e.g. - lizard tail length, change in weight, reaction rate, etc.).  Examples of commonly 
used parametric tests are the Student's t-test and the ANOVA.  You will be guided 
through the use of the Student t-test in the first two laboratories of this course, and so 
they will not be duplicated here. 
 

C.  Non-parametric tests 
 A non-parametric test is used to test the significance of qualitative data (e.g. 
numbers of purple versus yellow corn kernels, presence or absence of freckles in 
members of a population etc.).  Both attribute data and discrete numerical data can be 
analyzed with non-parametric tests such as the Chi-square and Mann-Whitney U test. 
Although these tests are often simpler to perform, they are not as powerful as 
parametric tests.  In other words, non-parametric tests less able than parametric tests to 
accurately predict whether unexpected results are due to random chance. 
 

A Sample Non-parametric test:  The Chi-square. 
 A commonly used non parametric test is the Chi square (Χ2).  Although this test 
has several complex permutations, we will use only the simplest formula to analyze 
genetic data from corn in the Mendelian Genetics laboratory, but you can also use it to 
test a wide variety of attribute or discrete data.  (Complete instructions on how to 
perform this type of Chi-square test are included in that lab chapter.)  The formula for 
calculating the Chi square statistic is as follows: 
 

Χ2 = Σ  (O - E)2 
 E 

In which:  
  O = the observed  results  
  E = the expected results  
 Σ means the summation of � 2 values over every phenotypic category 
 

 In the Chi square test, n has a slightly different meaning than it has in parametric 
tests.  In this case, n is the total number of categories possible.  For example, if you are 
counting purple and yellow corn kernels, n = 2 (purple and yellow).  If you are counting 
expression of two phenotypes, such as brown versus black fur and curly versus straight 
fur, n = 4 (black curly, black straight, brown curly and brown straight).   
 The degrees of freedom (df) in this Chi square test is equal to n-1.   
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V.  Probability and significance 
 The term "significant" is often used in every day conversation, yet few people know 
the statistical meaning of the word.  In scientific endeavors, significance has a highly 
specific and important definition.  Every time you read the word "significant" in this book, 
know that we refer to the following scientifically accepted standard: 
 The difference between an observed and expected result is said to be statistically 
significant if and only if:  

 
Under the assumption that there is no true difference, the 
probability that the observed difference would be at least as large 
as that actually seen is less than or equal to 5% (0.05). 
 
Conversely, under the assumption that there is no true difference, 
the probability that the observed difference would be smaller than 
that actually seen is greater than 95% (0.95). 

 
 Once an investigator has calculated a Chi-square or t-statistic, s/he must be able to 
draw conclusions from it.  How does one determine whether deviations from the 
expected (null hypothesis) are significant? 
 As mentioned previously, depending upon the degrees of freedom, there is a 
specific probability value linked to every possible value of any statistic.   
 

A.  Determining the significance level of a parametric statistic 
 If were to perform an independent sample t- test (see Lab #1) on the Fat-B-Gon 
data listed previously, you should obtain values equal to those listed in Table A1-2, with 
a t-statistic equal to 4.05.  The next step is to interpret what this statistic tells us about 
the difference in mean weight loss between the treatment and control groups.  Is the 
difference significant, suggesting that Fat-B-Gontm is that mysterious factor "other than 
chance?"  Or is the melting of unsightly cellulite at the pop of a pill just another poor 
biologist's fantasy of becoming fabulously wealthy?  Once again, the answer lies in the 
table of critical values for the t-statistic, part of which is illustrated in Table A1-3. 
 
Table A1-2.  Treatment and control group statistics and overall statistics for weight loss in 
the Fat-B-Gon experiment.   

statistic control  treatment 
mean (x) 4.74 7.34 
sum of squares (SS) 27.9 29.9 
variance (s2) 2.79 2.99 
standard deviation (s) 1.66 1.82 
overall statistics   
s2p 3.21  

sxt - sxc  0.642  
t 4.05  
degrees of freedom (df) 9  
P value (significance)  <---you fill in! 
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To determine whether the t-statistic indicates rejection of the null hypothesis, do the 
following: 
1. Locate the appropriate degrees of freedom in the far left column of Table A1-3.. 
2. Look across the df row to find a t value closest to the one you obtained from the 
 Fat-B-Gontm data. 
3. If the exact value does not appear on the table, note the two t values which most 
 closely border your Fat-B-Gon value. 
4. Find the P values which correspond to the two bordering values.  Your P value 
 lies between them.  Fill in the P value for our Fat-B-Gontm experiment below and 
 in Table A1-3. 

 > P >     
 
 The Fat-B-Gontm t statistic (4.05) lies between 3.69 and 4.30 (df = 9) on the table of 
critical values.  Thus, the probability that the weight difference in treatment and control 
groups is due to chance is between 0.005 (0.5%) and 0.002 (0.2%).  This is highly 
significant, meaning that there is a 99.5% - 99.8% probability that the weight difference 
is due to the only variable between the two groups:  Fat-B-Gontm!  We can reject our 
original two-tailed hypothesis and accept the alternate hypothesis: 
 

"There is a significant difference in the rate of weight loss between 
members of the population who use Fat-B-Gontm and those who do not use 
Fat-B-Gontm." 

 

Table A1-3.  Partial table of critical values for the two-sample t-test.  The second row of P values 
should be used for a two-tailed alternate hypothesis (i.e., one which does not specify the direction 
(weight loss or gain) of the alternate hypothesis).  The first row of P values should be used for a 
one-tailed hypothesis (i.e., one which does specify the direction of the alternate hypothesis).  A t-
statistic to the right of the double bar indicates rejection of the two-tailed Fat-B-Gontm null 
hypothesis (at df = 9).  (NOTE:  This table is only a small portion of those available, some of which 
list df to 100 and beyond.) 
 
P = 1-tailo 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 
P = 2-tail 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 
  df          
  1 1.00 3.08 6.31 12.70 31.82 63.66 127.32 318.31 636.62 
  2 0.82 1.89 2.92    4.30    6.965    9.925   14.09  22.32  31.60 
  3 0.77 1.64 2.35   3.18   4.54    5.84      7.45  10.22  12.92 
  4 0.74 1.53 2.13   2.78   3.75    4.604      5.60     7.17     8.61 
  5 0.73 1.48 2.02   2.57   3.37    4.03      4.78     5.90     6.87 
  6 0.72 1.44 1.94   2.45   3.14    3.71      4.32     5.21     5.96 
  7 0.71 1.42 1.90   2.37   3.00    3.50      4.03     4.79     5.41 
  8 0.71 1.40 1.86   2.31   2.90    3.56      3.83     4.50     5.04 
  9 0.70 1.38 1.83   2.62   2.82    3.25      3.69     4.30     4.78 
10 0.70 1.37 1.81   2.23   2.76    3.17      3.58     4.14     4.59 
 

 Notice that the t-value calculated for the Fat-B-Gontm data indicates rejection of 
even one-tailed hypothesis.  However, because all honest researchers state their 
hypotheses before they see their results, Team Fat-B-Gontm should stick by their 
original hypothesis and let the direction of the data (i.e., all volunteers lost weight) speak 
for itself. 
 Remember that you must have a representative sample of the population--not a 
single experimental run--in order to perform the t-test (A single experiment cannot have 
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a mean, variance or standard deviation.).  Your probability value will come closer to the 
population parameter if your sample size is large.  Hence, it is best to use the pooled 
data from every group in a particular lab section if you perform this statistical test 
on your data. 
 

B.  Determining significance level of a non-parametric statistic 
 First let us determine the probability value for our non parametric test, the Chi 
square.  In this semester’s laboratory on Mendelian Genetics, you will use the Chi 
Square to determine whether the proportion of physical types of offspring (purple or 
yellow corn kernels) in a single cohort is different from the expected.  In the example 
presented in the chapter, data yield a Χ2 value equal to 1.333.  Because there are two 
independent categories (purple and yellow), df = 2-1 = 1.   
 

1. In the far left column of Table A1-4, locate the appropriate df.   
2. Go across the appropriate df row, and locate the Chi square value closest to  

the one we obtained with the example data.  As you can see, 1.333 is not listed 
on the table.  Rather, it lies between two values listed on the table, 1.323 and 
2.706.   

3. Go to the top row above each of the Chi square values bordering our example 
 value.  Above each is listed a corresponding probability (P) value.   
4. The P value corresponding to 1.323 is 0.25; this means that a Chi square value  

of 1.323 indicates a 25% possibility that the deviation from the expected is due to 
chance.  Thus, there is only a 75% chance that these deviations are due to some 
factor other than chance 

5. The P value corresponding to 2.706 is 0.10; this means that a Chi square value 
 of 2.706 indicates a 10% probability that the deviation from the expected is due 
 to chance, and a 90% probability that the deviation is due to some factor other 
 than chance. 
6. The probability value of our example Chi square lies between 0.25 and 0.10.  
 This is most often expressed as 
 

0.25 > P > 0.10 
 

 This P value is outside the accepted standards for statistical significance.  The 
null hypothesis (the observed ratio of purple to yellow corn kernels will not differ from 
those predicted by Mendel's Laws) cannot be rejected. 
 

Table A1-4.  A partial table of the probability values for the Chi square statistic. 

P =  0.999 0.995 0.990 0.975 0.950 0.900 0.750 0.50 0.25 0.10 0.05 0.02 0.01 0.005 0.001 
df  
1 0.000 0.000 0.000 0.001 0.004 0.016 0.102 0.455 1.323 2.706 3.841 5.024 6.635 7.879 10.82 
2 0.002 0.010 0.020 0.051 0.103 0.211 0.575 1.386 2.773 4.605 5.991 7.378 9.210 10.59 13.82 
3 0.024 0.072 0.115 0.216 0.352 0.584 1.213 2.366 4.108 6.251 7.815 9.348 11.35 12.84 16.27 
4 0.091 0.207 0.297 0.484 0.711 1.064 1.923 3.357 5.385 7.779 9.488 11.14 13.27 14.86 18.47 
5 0.210 0.412 0.554 0.831 1.145 1.610 2.675 4.351 6.626 9.236 11.07 12.83 15.09 16.75 20.52 
 


