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Chapter 5 
Window Functions 

 

5.1 Introduction 

As discussed in section (3.7.5), the DTFS assumes that the input waveform is 

periodic with a period of N (number of samples).  This is observed in table (3.1).  

Therefore, if the time-domain waveform completes and integer number of cycles (no 

greater than half the sampling frequency) over the course of the N samples, then the 

waveform is properly prepared for DTFS, or FFT, analysis.  Often times though, this is 

not the case, and the resulting sampled data set represents a truncated version of the 

periodic signal.  For example, consider a sinusoid that completes one full cycle over a 

period of 360 samples.  If only 270 samples are taken (starting at the rising edge of the 

sinusoid), then the resulting waveform is displayed in figure (5.1). 

 
Figure 5.1 Truncated Sinusoid 

 Recall that the DTFS assumes the input signal is periodic over the N samples.  

Therefore, the DTFS periodically extends the waveform assuming a period of N, and the 

DTFS actually “sees” the waveform in figure (5.2).  As a result, there are transients 

(discontinuities) at integer multiples of N.  These discontinuities are artificially created by 
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the DTFS.  As discussed in section (3.7.5), the DTFS is not well suited for transient 

signal analysis.  These transients correspond to high-frequency sinusoids that were not 

present in the original signal.  If these frequencies are higher than the Nyquist frequency 

as discussed in section (3.4.6), they will appear to have frequencies between 0 Hz and 

half the sampling rate.  In other words, they are aliased to within the unambiguous 

frequency range of the DTFS.  This is spectral leakage at work as the energy from high 

frequencies due to the artificial transients leak into the frequency range of the DTFS.  As 

discussed in section (3.7.4), spectral leakage is also caused by a sinusoid’s frequency not 

lying directly at the center frequency of a DTFS bandpass filter [2]. 

 
Figure 5.2 Periodically Extended Version of Figure 5.1 

Spectral leakage will cause the energy of the FFT spectrum to spread out instead 

of being concentrated at the actual frequencies that are present in the time-domain signal.  

The FFT spectrum will not have highly distinct peaks at the true frequencies.  Instead, it 

will have small peaks at the true frequencies and will have a slow roll-off rate outside of 

these frequencies.  Figure (5.3) is a sinusoid that has been sampled over an integer 

number of cycles.  The corresponding FFT of this sinusoid is shown in figure (5.4).  

Notice the distinct peaks and the fast roll-off rate.  In contrast, figure (5.5) represents the 

case where the number of samples taken does not cover an integer number of cycles; 

therefore, a truncated sinusoid is processed by the FFT.  The FFT of this truncated 
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sinusoid is shown in figure (5.6).  Notice the figure (5.6) has wider responses at the peaks 

and has a slower roll-off rate. 

 
Figure 5.3 Sinusoid with Four Complete Cycles 

 
Figure 5.4 FFT without Spectral Leakage 
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Figure 5.5 Sinusoid with Incomplete Cycle 

 
Figure 5.6 FFT with Spectral Leakage 

In order to help minimize the effects of spectral leakage, window functions (or 

weighting functions) can be applied to the input signal [2]. 
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5.2 Window Functions 

A window function can be applied to an input data set in order to improve the 

FFT response.  The time-domain data is simply multiplied by another discrete, time-

domain function called a window function.  These window functions tend to taper off the 

outside edges of the input signal.  This diminishes the effect of the artificial transients 

produced by the periodic extension of the FFT. 

Several types of window functions exist and each have their own unique 

characteristics.  Each window function is better suited for a specific type of application 

with a certain input signal and a certain type of desired analysis.  In order to select the 

optimum window for an application, the user must be aware of the behavior of the input 

signal as well as the type of frequency analysis that is required [2]. 

 An important aspect of window functions is that the processes of selecting the 

window function and the FFT algorithm are independent of each other.  Since FFT 

algorithms are not approximations to the DTFS but are alternate methods of calculating 

it, all FFT algorithms produce the same result.  They go about the calculations using 

different methods but ultimately reach the same result.  In consequence, window 

functions can be used with any FFT algorithm.  Also, the window functions can be used 

with any length FFT, since the input data sequence can be zero-padded to fit the FFT 

length as discussed in section (3.5).  Another important aspect of window functions is 

that they do not alter the resolution of the FFT.  Therefore, applying a window function to 

the input data set does not alter the bin spacing, or frequency spacing, in the output 

spectrum of the FFT [2]. 
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Recall that the input data set is multiplied by the window function in the time 

domain.  This corresponds to convolution in the frequency domain.  The convolution 

takes the window function’s spectral content, reverses it, and copies it to every point in 

the original signal’s discrete spectral content.  In other words, reversed replicas of the 

spectral content of the window function are centered about every frequency bin (or DTFS 

coefficient) of the original signal’s FFT [5]. 

5.3 Characteristics of Window Functions 

 The following six characteristics are used as quality factors of each window 

function.  By assessing the characteristics of each window function, an appropriate 

determination can be made as to which window function to use for a specific application. 

 5.3.1 Coherent Integration Gain 

 As discussed in section (3.6.4) the DTFS leads to a coherent integration gain of N 

(using equation (3.1) without the normalization constant).  All of the window functions, 

with exception to the rectangular, lead to a coherent integration gain less than N [2]. 

 5.3.2 Highest Sidelobe Level 

 Each DTFS coefficient acts as a bandpass filter.  As discussed in section (3.7.3), 

the frequency response of these filters is not ideal.  Instead, the filters have a sinc-shaped 

frequency response with a main lobe in the center and smaller sidelobes on either side.  

The high sidelobe levels allow a signal that is not centered at the center frequency of the 

DTFS filter to produce a significant response from that particular DTFS output 

coefficient.  A lower the sidelobe level leads to higher rejection of signals that are not 

centered at the center frequency of the filter [2]. 
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 5.3.3 Sidelobe Rolloff Ratio 

 As frequency increases further away from the center frequency of a DTFS filter, 

the sidelobes discussed in section (5.3.2) begin to decrease in amplitude or remain 

constant.  This rolloff rate usually has dimensions of decibels per decade or decibels per 

octave [5].  A fast rolloff, or fall-off, rate diminishes the ability for an off-center 

frequency component to stimulate a significant response from a DTFS filter.  Therefore, a 

higher rolloff rate leads to higher credibility as to where the frequency component lies on 

the frequency axis.   In other words, the DTFS becomes more frequency-selective, 

allowing only signals that are extremely close to the center frequency of the DTFS filter 

to pass through.  The main-lobe width discussed in section (5.3.6) is also a contributing 

factor to frequency selectivity. [2]. 

 5.3.4 Frequency Straddle Loss 

 Frequency straddle loss was described in section (3.7.4) as the difference between 

the maximum coherent integration gain and the actual achieved coherent integration gain.  

If a signal does not lie at the center of the DTFS bandpass filter then its contribution to 

the DTFS component will be reduced.  This is due to the sidelobe rolloff ratio discussed 

in section (5.3.3).  A signal that lies exactly between two adjacent filters has the lowest 

coherent integration gain [2]. 

 5.3.5 Equivalent Noise Bandwidth 

 Noise is an inherent part of any system, and therefore its impact on the system 

must be understood.  Generally, noise is spread across the frequency domain.  White 

noise is evenly distributed across the frequency domain, meaning that the noise has the 

same magnitude at all frequencies in the spectrum.  Since the DTFS filters pass the noise 
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as well as the signal, it is important to understand how much of this noise reaches the 

output of the filter.  Consider an ideal bandpass filter with a rectangular frequency 

response and a gain equal to the peak gain of the DTFS filter.  The equivalent noise 

bandwidth of the DTFS filter is the bandwidth of the ideal bandpass filter that would 

allow the same amount of white noise power to pass through as the DTFS filter [2]. 

 5.3.6 Three-dB Main Lobe Bandwidth 

 As discussed in section (5.3.2), the DTFS filters have a sinc-shaped response with 

a main-lobe in the center and smaller sidelobes as frequency increases away from the 

center frequency of the filter.  The width of this main lobe determines the range of 

frequencies about the center frequency of the filter which can pass through without being 

attenuated significantly.  The 3-dB bandwidth is the range of frequencies which a signal 

can pass without its power being attenuated by more than a factor of 2 (or 10*LOG10(2) 

dB).  Having a narrower main lobe improves the accuracy of the DTFS to resolve 

frequencies.  In contrast, a narrower main lobe reduces the range of frequencies about the 

center frequency that can be resolved by the DTFS [2]. 

5.4 Common Window Functions 

Many different window functions exist and allow the user to choose from a broad 

range of characteristics.  This section will discuss some of the more common window 

functions including their equations and characteristics. 

5.4.1 Rectangular 

The rectangular window function is applied simply by not modifying the input 

data set before it is processed by the FFT.  It is inherent in the DTFS/FFT.  The equation 

for the rectangular window function is 
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where N is the total number of samples. 

 The peak of the highest sidelobe is 13 dB below the peak of the main lobe.  This 

corresponds to an attenuation of approximately 4.5 (or 10(13dB/20)) times less than that of 

the peak main-lobe attenuation [2].  This attenuation is in terms of the magnitude of the 

frequency component as opposed to power.  This is considered a poor sidelobe 

performance compared to the other window functions.   

The rectangular window function redeems itself by having a narrower main lobe 

and higher coherent integration gain than any of the other weighting functions.  This 

causes the rectangular window to give the smallest output noise power but also the 

highest straddle loss.  Since the rectangular window function has the lowest output noise 

power and highest coherent integration gain, it is better suited for applications where 

maximum signal-to-noise ratios are required [2]. 

 5.4.2 Triangular 

 The triangular window function is defined in the time domain by equation (5.2): 
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 The triangular window function has a highest sidelobe level of -27 dB, an 

improvement over the rectangular window function.  It also has a higher sidelobe level 

rolloff ratio of –12 and a lower straddle loss.  As shown in table (5.1) the triangular 

window function has a higher output noise power and wider 3-dB main lobe width [2]. 
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 5.4.3 Sine Lobe 

 The sine lobe window function is defined in the time domain by equation (5.3): 
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 The sine lobe window function improves the coherent integration gain over the 

triangular window function.  The highest sidelobe level is between those of the 

rectangular and triangular window functions.  The sine lobe window function has 

approximately the same sidelobe rolloff ratio as the triangular window function [2]. 

 5.4.4 Hanning 

 The Hanning window function is defined in the time domain by equation (5.4): 

(
⎪⎩

⎪
⎨

⎧
=⎟

⎠
⎞

⎜
⎝
⎛ π−⎟

⎠
⎞

⎜
⎝
⎛

=
lsewheree                                  

1-N to 0  n for       
N
n

nw
,0

),cos1
2
1

)(                                          (5.4) 

 The Hanning window function is accompanied by an improvement in the highest 

sidelobe level and sidelobe rolloff ratio over the previous window functions [2]. 

 5.4.5 Hamming 

 The Hamming window function is defined in the time domain by equation (5.5): 
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 The Hamming window function provides an even greater improvement to the 

highest sidelobe level but is accompanied by a poorer sidelobe rolloff ratio (equal to that 

of the rectangular window function). 
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 5.4.6 Blackman 

 The Blackman window function is defined in the time domain by equation (5.6): 
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 The Blackman window function has the lowest coherent integration gain out of 

the six window functions discussed in this chapter, but it also has the lowest of the 

sidelobe level responses.  The sidelobe rolloff ratio is equal to that of the Hanning 

window function.  This window function provides high rejection of signals outside of its 

main lobe [2]. 

 The characteristics discussed above about the window functions can be observed 

in table (5.1) below [2]. 

Window 
Function 

Coherent 
Integration 

Gain 

Highest 
Sidelobe

Level 
(dB) 

Sidelobe
Rolloff 
Ratio 

Frequency
Straddle 
Loss (dB) 

Equivalent 
Noise 

Bandwidth 

3-dB 
Bandwidth

Rectangular 1.00 -13 -6 3.92 1.00 0.89 

Triangular 0.50 -27 -12 1.82 1.33 1.28 

Sine Lobe 0.64 -23 -12 2.10 1.23 1.20 

Hanning 0.50 -32 -18 1.42 1.50 1.44 

Hamming 0.54 -43 -6 1.78 1.36 1.30 

Blackman 0.42 -58 -18 1.10 1.73 1.68 

Table 5.1 Window Function Comparison Chart 
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5.5 Summary 

The weaknesses of the DTFS discussed in chapter 3 as well as the usual 

truncation of a periodic signal provide a need to manipulate the data before it is processed 

by the DTFS or FFT.  This can be done easily by using window functions, or discrete 

time-domain functions that are designed to minimize the weaknesses inherent in the 

DTFS.  These improvements, though, do not come without flaw.  As with most 

engineering processes, tradeoffs are involved in applying window functions.  The user 

must weigh each characteristic of the window functions and determine which are most 

important and which are least important to the specific application.  Several other 

window functions can be found in [2] in addition to the window functions discussed 

above in section (5.4). 


