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Working with the Delta Function δ(t)

Note: We briefly introduced the topic of delta functions in the lecture of January 24. These
notes will review the discussion from that lecture.

The unit impulse function δ(t) has a long and honorable history in signal processing. In its
classic form the unit impulse function is used to represent pulse-like signals that are very
brief compared to any of the meaningful time constants of a realizable system. It is much
easier performing these computations using the idealized delta functions than with the orig-
inal brief signals, even though we must put up with some mathematical extremes. We will
being by discussing three equivalent definitions of the delta function. Following that we will
comment on how to obtain results for computations that involve the delta function.

Axiomatic definition of the delta function.

In many engineering courses, the delta function is defined in the following fashion:

δ(t) = 0, for t 6= 0 (1)∫ ∞
−∞

δ(t)dt = 1 (2)

Since the delta function equals zero by definition for values of t other than zero, it must have
infinite amplitude at t = 0 in order for it to maintain an area of one at t = 0. So under these
circumstances we may think of the delta function as being infinitesimally wide but infinitely
tall, with unit area.

Limiting definitions of the delta function.
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Figure 1: Two functions that approach δ(t) in the limiting case.
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Consider a function δT (t) which has finite amplitude and width, but unit area. Two examples
of such functions, δT1(t) and δT2(t), are depicted in the figure above. In either case, we can
express the delta function as the limit

δ(t) = lim
T→0

δT (t) (3)

where again, δT (t) can be any function of t that in the limit as T goes to zero has infinites-
imal width and infinite height with unit area. In practice, the shape of the function does
not matter, provided that the area remains constant independent of T as is the case with
the functions δT1(t) and δT2(t) depicted above. It can easily be seen that this definition is
consistent with (and in fact is a generalization of) the first definition.

Implicit definition of the delta function.

The most general definition of the delta function, which we encourage you to use always, is
the so-called distributional definition of the delta function. Specifically, let the function φ(t)
be any function of t that is continuous everywhere. The delta function is then defined as

∫ ∞
−∞

δ(t− a)φ(t)dt = φ(a) (4)

Please note that this is a different kind of definition for a function than you may be used
to: δ(t) is not defined by what it is but rather by what it does when subjected to the very
specific operations of multiplication by a continuous “testing” function and than integration
over all time. This type of definition is sometimes referred to as an implicit rather than
explicit definition. In our work with delta functions, we will only work with them in the
context of multiplication by a continuous function followed by subsequent integration. In
our work, the integration operation will be in the context of either convolution or Fourier
transformation. (For your information, convolution enables us to determine the output of
a linear time-invariant system given the system’s input and its “impulse response,” which
in fact is the response of a system to the input δ(t). Fourier transformation is the basic
operation that enables us to convert a time function directly to its equivalent representation
in the frequency domain. Both operations will be extremely important to us in the weeks to
come.)

It is easy to see that this definition is consistent with Eqs. (1) and (2). Specifically, δ(t)
must equal 0 for (in this case) φ 6= a because the result of the integral depends only on the
value of φ(t) at t = a. Since we have no idea what φ(t) is equal to (and in principle it could
be nonzero everywhere), the fact that

∫∞
−∞ δ(t − a)φ(t)dt = φ(a) implies that δ(t) equals

zero everywhere except for t = a. Equation (4) also reduces to Eq. (2) if we let a = 0 and
φ(t) = 1 for all t.

The delta function is also sometimes referred to as a “sifting function” because it extracts
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the value of a continuous function at one point in time.

Computation with the delta function.

We encourage you to approach the evaluation of all integrals involving the delta function
using the procedure implied by Eq. (4). Specifically, evaluate the integral by applying
three-step procedure:

1. Ask the question “What variable is being integrated?” [t in Eq. (4)]

2. Ask the question “What is the value of that variable that causes the argument of the
delta function to equal zero?” [t = a in Eq. (4)]

3. Then the result of the integration is the rest of the integrand evaluated at that value
of the variable that is being integrated. [φ(a) in Eq. (4)]

We will illustrate these principles in a few examples below.

Example 1 ∫ ∞
−∞

x(τ)δ(t− τ − a)dτ (5)

This is an equation that may come up in a convolution problem when the system is an ideal
delayer. The evaluation of the integral is straightforward following the discussion above:

1. “What variable is being integrated?” [τ in Eq. (5)]

2. “What is the value of that variable that causes the argument of the delta function to
equal zero?” [τ = t− a in Eq. (5)]

3. The result of the integration is the rest of the integrand evaluated at that value of the
variable that is being integrated. [x(t− a) in Eq. (5)]

Example 2

1

2π

∫ ∞
−∞

δ(ω − ω0)e
jωtdω (6)

This is an example of an inverse continuous-time Fourier transform, but the evaluation once
again is straightforward:

1. “What variable is being integrated?” [ω in Eq. (6)]
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2. “What is the value of that variable that causes the argument of the delta function to
equal zero?” [ω = ω0 in Eq. (6)]

3. The result of the integration is the rest of the integrand evaluated at that value of the
variable that is being integrated. [ 1

2π
ejω0t in Eq. (6)]

Example 3 ∫ ∞
−∞

δ(2t)dt (7)

This integral, which illuminates a property of delta functions, is only slightly less straight-
forward. In principle, we cannot evaluate this integral directly because Eq. (4) is defined in
terms of δ(t) rather than δ(2t). Nevertheless, we can easily work around this issue with a
change of variables. Specifically, let t′ = 2t. Then dt′ = 2dt, while t = t′/2 and dt = dt′/2.
Hence we can write directly∫ ∞

−∞
δ(2t)dt =

∫ ∞
−∞

δ(t′)dt′/2 =
1

2

∫ ∞
−∞

δ(t′)dt′ =
1

2

This last result makes sense, as replacing the argument t in the delta function by 2t causes
the delta function to be compressed by a factor of 2 in time. Consequently the area of the
delta function will be multiplied by a factor of 1/2.

Again, we restate that every integral involving delta functions can (and should!) be evalu-
ated using the three-step procedure outlined above.

The unit step function and derivatives of discontinuous functions

As you know, the continuous-time unit step function is defined as

u(t) =

{
0 t < 0,
1 t > 0

(8)

(We do not need to worry about the definition of u(0) for now or for that matter, ever). The
unit step function can be considered to be the integral of the delta function in that

u(t) =

∫ t

−∞
δ(τ)dτ (9)

While this may imply that δ(t) is the derivative of u(t), this cannot be stated in the ordinary
sense because of the discontinuity of u(t) at t = 0. Nevertheless, we can use delta functions to
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represent the derivatives of functions that are continuous except for a finite number of points.
For example, if x(t) is continuous everywhere except for t = a, and x(a+) = x(a−) +k, then
the derivative of x(t) would be

dx

dt
=

{
dx
dt

in the ordinary sense for t 6= a,
kδ(t− a) for t = a

(10)

In other words, if there are isolated discontinuities in an x(t) that is otherwise continuous,
the derivative of x(t) would be the ordinary derivative where x(t) is continuous, and there
would be delta functions at the locations along the t axis where the discontinuities are ob-
served. The areas of these delta functions would be equal to the size of the discontinuity at
that location.

For example, if

x(t) =

{
t2 t < 3,

t2 + 2 t > 3

then we would observe

dx(t)

dt
= 2t+ 2δ(t− 3)

Similarly, if

u(t) =

{
0 t < 0,
1 t > 0

then we would observe

du(t)

dt
= δ(t) (11)


