
 Last Modified January 26, 2007

Writing Functions Using R

In the following handout words and symbols in bold are R functions and words and
symbols in italics are entries supplied by the user; underlined words and symbols are
optional entries (all current as of version R-2.4.1). Sample texts from an R session are
highlighted with gray shading.

The Need to Create User-Defined Functions

R, as with any programming language, uses built-in functions to carry out defined tasks.
The availability of these built-in functions greatly simplifies calculations. For example,
to find the mean for an object requires only the command mean(object); thus:

 > mean(quarters)

 [1] 5.583333

No programming language, however, includes every possible function that a user might
wish to use. When a function does not exist, then the calculation must be carried out
using those functions that are available. Suppose that R does not include the function
mean(object); we can still find the mean by completing the following tasks:

1. determine the number of elements in the object using the function length(object)
2. add together the elements of the object to get the total sum using the function

sum(object)
3. divide the total sum by the number of elements to get the mean

Here is the code:

 > n = length(quarters)
 > total = sum(quarters)
 > Mean = total/n
 > Mean

 [1] 5.583333

Although we can simplify this by combining the first three lines of code into a single line

 > Mean = sum(quarters)/length(quarters)
 > Mean

 [1] 5.583333

it still provides multiple opportunities for mistyping the code, particularly if we must
reenter the code every time we need to find an object’s mean. Fortunately, R allows us to
define functions of our choosing.

 1

 Last Modified January 26, 2007

Creating User-Defined Functions in R

Defining a function in R is easy. The general syntax is

 name = function(argument 1, argument 2…) {expression}

where name is the function’s name, argument is an object passed to the function (that is,
an object on which the function will act) and expression is a set of R commands defining
the function. For example,

 > Mean = function(X) {M = sum(X)/length(X); M}

defines the function Mean, which takes a single object that is identified as the argument
X. The function calculates and prints the object M, which is the mean for the object
passed to the function. Now finding the mean is easy.

 > Mean(quarters)

 [1] 5.583333

By saving the function as an .RData file, we can use it in a subsequent session after using
the command load(file = “filename.RData”).

Getting More From a User-Defined Function

Our function for calculating and printing an object’s mean actually calculates two other
properties: the number of elements in the object and the sum of those elements. Having
calculated these properties, we might want to know their values. We might, for example,
try the following code

 > Mean = function(X) { # Because this line ends with an open curly-bracket,…
 + S = sum(X) # …R recognizes that the code continues on the next line
 + L = length(X)
 + M = S/L
 + S # Ask R to print the sum
 + L # Ask R to print the length
 + M # Ask R to print the mean
 + } # The closed curly-bracket means the code is finished

Using the function, however, prints the mean only; that is, the function prints only the last
requested value. To print all three values we must use the command print(object) within
the function; thus

 > Mean = function(X) {
 + S = sum(X)

 2

 Last Modified January 26, 2007

 + L = length(X)
 + M = S/L
 + print(S)
 + print(L)
 + print(M)
 + }

Now our function prints all three values

> Mean(quarters)

 [1] 67
 [1] 12
 [1] 5.583333

Unless we know the order in which the function prints objects, however, the result is not
particularly useful. To improve our function we make the following modifications to our
code

 > Mean = function(X) {
 + S = sum(X)
 + L = length(X)
 + M = S/L
 + s = c(“Sum is:”, S) # creates the character string variable ‘s’ in which S is
 + l = c(“Length is:”, L) # is converted to a character string; ditto for l and m
 + m = c(“Mean is:”, M)
 + print(s, quote = FALSE) # quote = FALSE suppresses the quotes normally placed
 + print(l, quote = FALSE) # around a character string when printing
 + print(m, quote = FALSE)
 + }

> Mean(quarters)

 [1] Sum is: 67
 [1] Length is: 12
 [1] Mean is: 5.583333

There is an important limitation to our user-defined function. Although our function
creates the objects sum (S), length (L) and mean (M), and calculates and prints their
values, the objects do not exist outside of the function. For example, if we try to use the
object S in a subsequent command we get an error message; thus

 > SS = S*S

 Error: Object “S” not found

 3

 Last Modified January 26, 2007

If we wish to use globally an object that we define in a function, then we must assign the
function using the symbol <<- in place of the equals sign, allowing us to write a much
simpler function; thus

 > Mean = function(X) {
 + Sum <<- sum(X)
 + Length<<- length(X)
 + MeanValue <<- S/L
 + }

 > Mean(quarters)

 > MeanValue

 [1] 5.58333

 > Sum

 [1] 67

 > Length

 [1] 12

 4

