
International Journal of Hybrid Information Technology 

Vol.6, No.6 (2013), pp.127-134 

http://dx.doi.org/10.14257/ijhit.2013.6.6.11 

 

 

ISSN: 1738-9968 IJHIT 

Copyright ⓒ 2013 SERSC 

Discussion on Writing of Recursive Algorithm 
 

 

Song Jinping  

Computer Department, Jining Teachers College, Wulanchabu, China 

jnsongjinping@126.com 

Abstract 

Writing a program with the recursive method is a simple and effective way of program 

design, making the logic of the program concise and clear. This paper will focus on the 

analytical program, writing method of the recursive algorithm, as well as the optimization of 

recursive program. Formula method or mathematical induction can be applied for writing of 

the recursive algorithm more simply. Meanwhile, either of them could provide the method of 

tail recursive to deal with the problem lies in recursive algorithm that massive time and space 

of the system are occupied. 

 

Keywords: formula method; recursive algorithm; mathematical induction; tail recursive 
 

Recursion is widely used as an algorithm in programming language. Recursion refers to the 

repetitive phenomenon that the function, process or subroutine calls itself in the running 

course. As an important concept in computer science, recursion is a simple and 

understandable method often used in program design, and it can make the program concise 

and clear and reduce the amount of code. 

 

1. Features of Recursive Programming 

(1)Recursive exits. Recursive exit has defined the terminal conditions of the recursion. 

When the terminal conditions met during program execution, the recursion will terminate. 

Some issues may include several recursive exits. 

(2)When the conditions are not met, the issue will be divided into several sub-issues 

according to the nature of the issue. The solution of the sub-issues will be achieved by 

revising the parameters to make the function call itself in certain ways. Then, the original 

issue can be solved by combining the solutions of the sub-issues. When the recursion calls 

itself, modification on parameters must be assured to meet the conditions of the recursive 

exits. 
 

2. Key Points of Recursive Programming 
 

2.1. Solve the problem from the overall level 

The difficulty of recursion lies on that the human brain is not suitable to trail the process of 

calling itself in recursion, because the human brain has no stack used to memorize as a 

computer does. However, human beings can induce while computer knows only how to call 

and return. Therefore, we should comprehend and design recursion from the overall level. 

Mathematical induction and recursion are in a symmetrically related: the former constantly 

mailto:jnsongjinping@126.com


International Journal of Hybrid Information Technology 

Vol.6, No.6 (2013) 

 

 

128   Copyright ⓒ 2013 SERSC 
 

expands itself while the latter disintegrates. Recursion is executed by 2 steps: divide the main 

problems into sub-problems, and get the solution step by step by solving the sub-problems. 

The key point is to make the best of assumption of the mathematical induction, i.e., 

assuming the solutions to the sub-issues have been presented. Once you do that, you are 

trying to solve the problem from the overall level without being troubled by the details any 

longer. When designing a recursive program, we should firstly design an algorithm 

framework as a common program, control the program logic and handle the recursive call as 

if we are calling another designed function, about which we need only to know what it does 

and then return. About the details, we can just ignore. It seems to be sort of paradoxical 

because in fact, the function is calling itself, so why we do not need to know how it works? 

That’s the reason why recursion is beyond comprehension. Therefore, we have to put the 

details aside until we have confirm the framework. 

 

2.2. The returned value of a function 

After having designed the framework in the first step, we should pay attention to the details 

including process branch and returned value of a function. Returned value of a function 

directly decides if the function works properly, because the recursive sub-programs will call 

what the function returns, and the returned value of the recursive sub-programs will affect the 

final result. Thus, we must concern with the returned value of a function. When the returned 

result of the sub-program is used by a caller, the caller will return. That’s where the problem 

exists: the consistency of the returned value of the function. Generally, the design of the 

recursive function which is a little complex involves many logic branches whose returned 

values (the solution of the function in different situation) must be in accordance with each 

other. What is error prone is that the recursive theory is based on the sub-issue and the sub-

issue is a small-scale parent issue. Since we assume the sub-issue is solvable and the solution 

to the parent issue comes from the combination of the solution to the sub-issue. In this way, 

we know that both the parent issue and the sub-issue aim to deal with the same problem and 

their result should be identical. 
 

3. Writing Method of Recursive Program 
 

3.1 Using the formula method to write a recursive program 

Programming includes two stages: logic design and implementation stage. Logic design 

relies on the mathematical thinking to define the algorithm regardless of the programming 

language and the implementation environment. The algorithm can be demonstrated using 

natural language or flow chart. If the recursive formula of the algorithm can be obtained in 

the logic stage, at least the following advantages can be produced: 

(1)Clear Separation of logic stage with implementation stage can largely simplify the 

program design. 

(2)The mathematical method can make the derivation of the recursive formula much easier 

than with other methods. 

(3)Since formula is the most accurate and simplest way to describe an algorithm, with the 

help of the recursive formula, coding will be very simple and the readability of the program 

will be better. 



International Journal of Hybrid Information Technology 

Vol.6, No.6 (2013) 

 

 

Copyright ⓒ 2013 SERSC   129 
 

The formula method of the recursive program design should firstly express the issue with 

the recursive function in the mathematical meaning. Then, the writing of the recursive 

program is the direct translation of the formula.  

As in case 1, the mathematical formula of the n!-level to the natural number n is as 

follows: 













1)(n         1)!-(n*nn!

1)(n                       1n!

                                 （1） 

Thus, when n=1, n! = 1, when n > 1, n! = n*(n-1)! 

The recursive program is: 

 1  fac (int n) 

 2  { 

 3  if (n == 1)   return 1; 

4  return n* fac (n - 1) ;  /*  recursive part  */ 

5  } 

Case 2 is for Fibonacci series, and the mathematical formula is as follows: 

A positive integer n is given, 




















) 1n  (        2)-F(n  1)-F(n  F(n)

1)(n                                 1  F(n) 

) 0n (                                0 F(n)

                                       （2） 

That is, the first number is 0, and the second is 1, each latter number is the sum of the two 

previous numbers. 

The recursive program is: 

1  long fib (int n) 

2  { 

3  if ( n = = 0)  return 0; 

4  else if( n = = 1 ) 

5  return 1; 

6  else 

7  return fib (n-1) + fib (n-2); 

8  } 



International Journal of Hybrid Information Technology 

Vol.6, No.6 (2013) 

 

 

130   Copyright ⓒ 2013 SERSC 
 

From the above examples, we can know that formula is a simple and effective designing 

theory which centralizes the difficulties of the programming and the program comprehension 

to the recursive mathematical formula. What else, we know that this programming thought 

can simplify the programming and the given programs are more understandable than the 

common program. This thought possesses universality which can be used in most recursive 

program. The program designed with the recursive formula owns standard branch structure 

which makes the writing and the comprehension much easier. 
 

3.2 Writing a recursive program with mathematical induction  

Mathematical induction is an important proof method in math. When proving a 

mathematical law, the mathematical induction thought follows the following procedure: 

firstly, prove the law by substituting simple numbers; then, in the assumption that a certain 

number N conforms with the law, prove that N+1 is also acceptable. In fact, the mathematical 

induction uses recursive principle, which can be vividly called the Domino Theory. Because 

if N+1 is acceptable, it can be proved that all the numbers are acceptable by recursion forward 

or backward. 

In addition, recursion also uses the recursive law. In the whole program, the same law will 

be used repetitively. In this point, recursion and mathematical induction are essentially 

identical. Therefore, usually the mathematical induction can be used to design the recursive 

program. People usually say, “Computer is a branch of mathematical application”, and this is 

best reflected in this case. 

Similar to the above case which aims to get the n!-level of the natural number n: 

  It is given that n!=n*(n-1)*(n-2)*(n-3)*…*2*1 

   Firstly, we know that when n=1, n!=1 

   Secondly, it is given that R(n)=n!，R(n+1)=(n+1)! 

  Thirdly, solve the relation between R(n+1) and R(n). R(n)=n!,sinceR(n+1)=(n+1)!= 

(n+1)*(n)*(n-1)*…*2*1=(n+1)*n!=(n+1)*R(n)即：R(n+1)=(n+1)*R(n) => R(n)=n*R(n-1)  

   Now, a function is drafted according to this formula: 

1  fac (int n) 

2  { 

3  return n * fac (n - 1) ;  /* recursive part*/ 

4  } 

 Then, the ending part is supplemented. This part will be used only once in the whole 

process, without which the process will recur endlessly. 

  The function is changed as follows: 

1  fac (int n) 

2  { 

3  if (n = = 1) return 1; 

4  return n * fac (n - 1);  /* recursive part */ 

5  } 



International Journal of Hybrid Information Technology 

Vol.6, No.6 (2013) 

 

 

Copyright ⓒ 2013 SERSC   131 
 

From the aforementioned examples, it is learned that we are familiar with the mathematical 

induction when analyzing the problem. When writing a recursive program, we should reach 

the recursive ending part according to the first step of the mathematical induction. Then, we 

can create the recursive part of the function in line with the third step. The recursive solving 

process is to find out the relation between R(n) and R(n+1). 

 Now we are going to use the mathematical induction to write a recursive problem: the 

classical Hanoi Tower. 

Hanoi Tower: there are three uprights (named A, B, C; A is the upright where the disk first 

located, B is the target upright, and C is used as the auxiliary upright), n disks of different 

diameters are moved one after another from A to B. It is required only one disk can be moved 

each time and moved among the three uprights. In addition, the bigger disk cannot be put on 

the small ones. 

Firstly, analysis is conducted using mathematical induction: 

(1)When there is only one disk, we can make sure the unique motion: move the disk 

directly from A to B. 

(2)Assuming that there are 3 disks on A, we can finally move these disks to B (or to C) as 

required, recursive process as shown in Figure 1.   

 

 

Figure 1. Hanoi Algorithm is a recursive process 

(3)Then, we can prove that when there are n+1 disks, we can also move them all to B as 

required: because we can firstly move the n disks to C (the second step has assured), next to 

move the last one left to B, then move the disks on C to B. 

Design the program according to the recursive function design steps we have summarized: 

Firstly, confirm the ending part: when there is only one disk moving, we can move it to B 

directly. That is: if (n = = 1) mov (n, A, B) (the mov here indicates to move the disk 

numbered n from A to B). 



International Journal of Hybrid Information Technology 

Vol.6, No.6 (2013) 

 

 

132   Copyright ⓒ 2013 SERSC 
 

Secondly, confirm the recursive part (the relation between n+1 and n). That is, move n 

disks to C (assured in step two), move the last one left to B, and then move the disks on C to 

B. Now, we are going to transfer the words to program: 

Assuming Hanoi (int n, int A, int C, int B) is the Hanoi function required. It means move 

the n disks piled together from small to big according to their diameter from A to B as 

required, and C is the aid upright. 

The code is as follows: 

Hanoi (n-1, A, C, B); /*firstly, move n-1 disks to C*/ 

mov (n, A, B); /*move the last disk left behind to B*/ 

Hanoi (n-1, C, B, A); /*move the disks on C to B*/ 

The second step is finished, and finally the function is composited： 

1  void  Hanoi (int n, int A, int B, int C) 

2  { 

3  if (n = = 1) 

4  mov (n, A , C); 

5  else 

6  { 

7  Hanoi (n-1, A, C , B);  /*recursive part*/ 

8  mov (n, A, B); 

9  Hanoi (n-1, B,A,C); /*recursive part*/ 

10  } 

11  } 

The greatest advantage of using the mathematical induction to design the recursive 

program is that it can help the designer to get rid of over consideration on recursion, because 

the code you have designed must have implied the recursive steps. You can get the code by 

transforming the words directly. 
 

4. Optimization of the Recursive Program 
 

4.1 Analysis of the working of the recursive or non-recursive program 

Recursive program is not only an effective programming method, but also a valid method 

to analyze problems. However, the recursive process and the information saved in the 

recursive process differ from that in the non-recursive program. In the non-recursive program, 

when calling the non-recursive sub-issues, the system has to save two kinds of information: 

(1)The return address after calling the sub-programs 

(2)The local variable value used to call the sub-programs 

After carrying out the called sub-program and before returning to the main program, the 

system should first recover the local variable value of the called sub-program, and then get 

back to the return address of the called sub-program. 



International Journal of Hybrid Information Technology 

Vol.6, No.6 (2013) 

 

 

Copyright ⓒ 2013 SERSC   133 
 

When calling the recursive function, what the system does is the same in form with what 

the systems does when calling the non-recursive program, but the contents and methods of 

saving the information are totally different. The saved information of each recursive call 

makes up a job stack, usually including: 

(1)The local variable value of the recursive call; 

(2)The return address, i.e., the address of the following ones after the call statements in the 

recursive process; 

(3)The actual parameters which combine with the formal parameters in the calling, 

including function name, reference parameters, numerical values, and etc. 

 

 

Figure 2. Hanoi Algorithm execution work stack profile 
 

When returning to the recursion, the system firstly uses the information saved later. 

Therefore, the system often sets up stacks to save the recursive call information. The 

recursive program has the two following defects when working: on the one hand, the 

recursive program calls too many layers that waste relatively more operating time: on the 

other hand, the recursive program occupies too much storage space, and it may even create 

the system paralysis. Therefore, most programmers are unwilling to use the recursive method. 

 

4.2 Optimization of the recursive program 

We call this recursive method mentioned above linear recursion, and there exists another 

recursive method, i.e. tail recursive method, which can effectively improve the defects of the 

linear recursion. Take the above Fibonacci sequence as an example; here we will not start 

from the definition of the Fibonacci sequence but from the regular process of producing a 

sequence. The sequence produces 0 and 1, which is easy enough and returns directly, and the 

following counting process is to accumulate. In the process of recursion, we should hold the 

mode, and in this mode three numbers must be kept, i.e. the front two numbers a, b and the 

iterated step number c. Thus, our method is defined as follows: 

1  int fib(int n,int a,int b,int c) 

2  {  if (n<3) 



International Journal of Hybrid Information Technology 

Vol.6, No.6 (2013) 

 

 

134   Copyright ⓒ 2013 SERSC 
 

3        return 1; 

4   else 

5        if (n= =c) 

6           return a+b; 

7        else 

8            return fib(n,a=b,b=a+b,c=c+1);/* recursive part */ 

9  }  

Since this method has kept the calculated status of the last time in each recursion, we refer 

it as linear iterative process, also known as tail recursion. That’s to say, the last thing the 

function does is to call the function, this is called ending call. 

Since each calculation has kept the status, eliminating the redundant calculation. The 

efficiency of this method is apparently higher than the former one. No matter how deep the 

recursion goes, the size of the stack will remain the same. It can be found that the process and 

the cycling of the tail recursion is basically equal. Since we can conveniently substitute the 

process of the tail recursion with the cycling, many languages have provided the optimization 

in the write-level to tail recursion, i.e., to transfer tail recursion to cycling codes in the writing 

stage. However, it also makes sense to the language which provides no optimization of the 

tail recursion, for example, in the Fibonacci function which uses tail recursion, the one that 

can be called by Fib(1001) runs fast, and it does not appear stack overflow until it is called by 

Fib(1002) . However, if we use the linear method to calculate the program when n=30, the 

speed shall obviously decrease. When it is above 40, it is going to die. 

From the above discussion, it is learned that not all the recursive programs operate poorly. 

If we adopt tail recursion, the efficiency of the recursive program can also be high. 
 

References 
 
[1] W. Yan and W. Wu, Eds., “Data Structure”, Tsinghua University Press, Beijing, (2002). 

[2] H. Tan, Ed., “C Programming”, Tsinghua University Press, Beijing, (2002). 

[3] X. Dan, et al., Ed., “Application Research on Implementation of Non - Recursive Method for Recursive 

Problem”, Computer and Modernization, (2011). 

[4] Z. Zhu and C. Zhu, “Recursive Algorithm for Non-Recursive Implementation”, Microcomputer System, vol. 

3, (2003). 

 

Authors 

 

Song Jinping  

She received double bachelor’s degrees from Inner Mongolia 

Normal University, China, in 1998, she is an assistant professor in 

Computer Department, Jining Teachers College, China. Her research 

interests include embedded system and computer science education. 

 

 

 


