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The Anatomy of Consonance/
Dissonance: Evaluating Acoustic
and Cultural Predictors Across
Multiple Datasets with Chords

Tuomas Eerola and Imre Lahdelma

Abstract
Acoustic and musical components of consonance and dissonance perception have been recently identified. This study
expands the range of predictors of consonance and dissonance by three analytical operations. In Experiment 1, we identify
the underlying structure of a number of central predictors of consonance and dissonance extracted from an extensive
dataset of chords using a hierarchical cluster analysis. Four feature categories are identified largely confirming the existing
three categories (roughness, harmonicity, familiarity), including spectral envelope as an additional category separate from
these. In Experiment 2, we evaluate the current model of consonance/dissonance by Harrison and Pearce by an analysis of
three previously published datasets. We use linear mixed models to optimize the choice of predictors and offer a revised
model. We also propose and assess a number of new predictors representing familiarity. In Experiment 3, the model by
Harrison and Pearce and our revised model are evaluated with nine datasets that provide empirical mean ratings of
consonance and dissonance. The results show good prediction rates for the Harrison and Pearce model (62%) and a still
significantly better rate for the revised model (73%). In the revised model, the harmonicity predictor of Harrison and
Pearce’s model is replaced by Stolzenburg’s model, and a familiarity predictor coded through a simplified classification of
chords replaces the original corpus-based model. The inclusion of spectral envelope as a new category is a minor addition
to account for the consonance/dissonance ratings. With respect to the anatomy of consonance/dissonance, we analyze
the collinearity of the predictors, which is addressed by principal component analysis of all predictors in Experiment 3.
This captures the harmonicity and roughness predictors into one component; overall, the three components account for
66% of the consonance/dissonance ratings, where the dominant variance explained comes from familiarity (46.2%), fol-
lowed by roughness/harmonicity (19.3%).
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Introduction

The investigation of musical consonance and dissonance—

that is, the relative agreeableness/stability versus disagree-

ableness/instability of simultaneous and successive pitch

combinations—has a long and checkered history (see

e.g., Tenney, 1988). The Pythagorean school in ancient

Greece held that consonance/dissonance (hereafter referred

to as C/D and implying exclusively simultaneous pitch

combinations) can be explained through the simplicity of

number ratios, and this view was upheld well into the 16th

century (e.g., in the work of music theorist Gioseffo

Zarlino). In the 17th and 18th centuries, the origins of

C/D were elaborated by scholars such as Marin Mersenne,

Joseph Sauveur, and Jean-Philippe Rameau, who investi-

gated the role of overtones and their relation to musical
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harmony. In the 19th century, scholars such as Hermann

von Helmholtz (1875) and Carl Stumpf (1898) brought the

knowledge of physics, anatomy, perception, and empirical

testing to characterize C/D as something that depends on

frequencies of the fundamental and the partials of the sound

and how these are interpreted within the musical tradition

that the listener is familiar with. Twentieth-century psy-

choacoustics made large strides in charting the sensory

aspects of phenomena such as dependence on the frequency

(Terhardt, 1984) and critical bands (Plomp & Levelt,

1965). Today, the research field is starting to reach a con-

sensus that the overall perception of C/D in simultaneous

sonorities in the Western musical culture is arguably

based on a combination of roughness, harmonicity, and

familiarity (see e.g., Harrison & Pearce, 2020; McLachlan

et al., 2013; Parncutt & Hair, 2011).

Roughness denotes the sound quality that arises from the

beating of frequency components (see e.g., Hutchinson &

Knopoff, 1978; Kameoka & Kuriyagawa, 1969), and har-

monicity indicates how closely a sonority’s spectrum cor-

responds to a harmonic series (see e.g., Parncutt, 1989).

Familiarity, which has received the least amount of atten-

tion out of these three proposed features, denotes the pre-

valence of sonorities in a given musical culture which

affects how familiar the listeners become with these sono-

rities (see e.g., Johnson-Laird et al., 2012). The order of

importance between these features on the perception of

C/D has remained contentious, and it has recently been the

focus of a large-scale analysis (see Harrison & Pearce,

2020) that brought a number of roughness, harmonicity,

and cultural models under a systematic review and analysis.

This impressive modeling identified the strongest acoustic

models for roughness and harmonicity, and it also demon-

strated that across musical genres, roughness has a more

strong and reliable negative effect on chord prevalence than

harmonicity. However, it is too early to draw strong

conclusions based on these results; these analyses were

typically based on other proxy concepts than actual con-

sonance, such as pleasantness in Bowling et al. (2018), and

this method of assessing C/D has recently been demon-

strated to result in possible confounds (Lahdelma & Eerola,

2020). Moreover, some of the analyzed datasets contained

only a limited selection of chords/intervals (e.g., Schwartz

et al., 2003) or have a large majority of culturally unfami-

liar chords. Smit et al. (2019) found roughness, harmoni-

city, spectral entropy, derived familiarity, and mean pitch

to contribute to C/D ratings in the case of unfamiliar

(detuned) chords. Also, the range of register and timbre

used in previous C/D research has been limited. Even a

cursory analysis of the state-of-the-art literature suggests

that a more thorough assessment of the possible contribu-

tions of the different main theoretical features is needed.

In the current study we aim to estimate which acoustic

and cultural features account for perceptual evaluations of

C/D. We assume that the three categories of features—

roughness, harmonicity, and familiarity—as identified by

Harrison and Pearce (2020) is a solid starting point to refine

the model contributions. We will also add a new feature

category labeled spectral envelope, since descriptors such

as sharpness have been previously implicated in C/D stud-

ies (Zwicker & Fastl, 1990). Since there is a large number

of possible models to include as the predicting features, we

will explore and streamline the models in preliminary steps

to provide robust, independent predictors for the actual

model construction. In Experiment 1, we take a reasonable

number (4–7) of predictors for each feature category and

carry out cluster analysis of a new chord dataset to verify

and possibly redefine the feature categories empirically. In

Experiment 2, we use the confirmed feature categories to

identify the most effective predictor for each category by

comparing the alternative predictors within each feature

category to the predictors in the current state-of-the-art

model (Harrison & Pearce, 2020) using the raw consonance

ratings in three recent studies. To assess the overall contri-

bution of the models, in Experiment 3 we compare the C/D

model that has been optimized via Experiment 2 and the

model by Harrison and Pearce through building linear

models via regression with the mean consonance ratings

across nine datasets. We also evaluate the degree to which

the feature categories contribute independently to the C/D

ratings.

Experiment 1: Analysis of Consonance and
Dissonance Predictors

We want to utilize a solid set of predictors for the stimuli

when exploring the features of C/D. We obtain our predic-

tors mostly from the compilation of models available in the

incon library, an open-source R package by Harrison and

Pearce (2020). Based on their extensive analysis of the

existing datasets, Harrison and Pearce (2020) derive rough-

ness predictions from Hutchinson and Knopoff’s model

(1978), harmonicity from a model created by Harrison and

Pearce (2020), and familiarity from an analysis of Billboard

chart hits (Burgoyne, 2012) encoded by Harrison and

Pearce (2020). The rationale for starting with these three

variables is that they have been shown to be a solid com-

bination for predicting pleasantness ratings (used as a proxy

for consonance) in past research (Bowling et al., 2018;

Harrison & Pearce, 2020). However, we will also explore

the potential of spectral elements that have been put for-

ward as possible contributors to C/D in past research, such

as sharpness (Zwicker & Fastl, 1990). In our analyses, we

will explore 22 variant predictors (four roughness variants,

seven harmonicity variants, six familiarity variants, and

five spectral envelope predictors) including the three pre-

dictors utilized by Harrison and Pearce (2020). Our selec-

tion of predictors is not exhaustive and many possible

candidates, such as those offered by Sethares (2005),

Krimphoff et al. (1994), or Cook (2017), have been left out

due to practical constraints related to reliable implementa-

tion of these models.
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Definition of the Predictors

For roughness, we have four variant models. The model

by Hutchinson and Knopoff (1978), hereafter Hutc78,

sums the dissonance of all harmonics that are based on

distances in critical bandwidths. A roughness model by

Sethares (1993), abbreviated as Seth93, is based on the

beating phenomena, which estimates the interference

between the amplitudes of the partials on the dissonance

curve established by Plomp and Levelt (1965). The rough-

ness model by Vassilakis (2001), hereafter Vass01 is a

variant of Sethares’s model, although it assesses the min-

imum amplitude of each pair of peaks instead of summing

up all amplitudes as in the model by Sethares. The model

by Wang et al. (2013), hereafter Wang13, incorporates an

auditory periphery model (Aures, 1985), derives the crit-

ical bandwidths from the Bark scale, and utilizes non-

linear filtering to represent excitation levels in critical

bands.

For harmonicity, there are seven alternative models:

Parn88,Parn94,Gill09,Miln13,Har18,Stol15
and Bowl18. Parncutt (1988) proposed a model (Parn88)

that builds on Terhardt’s (1984) chord-root model, which

draws from pattern recognition consisting of harmonic

series. The model utilizes pitch classes and assumes octave

equivalence, and considers 10 subharmonics, both of which

simplify the computation of the template matching. In Ter-

hardt’s model, higher subharmonics carry considerably less

weight, but to rectify the problem of minor chord and the

recognition of the right fundamental for it, Parncutt modi-

fies the weight of the harmonics to give more prominence

to the higher harmonics. The second element of the model

deals with pitch classes and assigns the root as the pitch

class that receives the greatest weight based on the harmo-

nics. Harmonicity is taken as the ambiguity of the root of

the chord, which is calculated by dividing the relative

weight of the largest root with the number of possible roots

for the chord. The implementation utilizes updated weights

(Parncutt, 2006). Parncutt and Strasburger (1994)

(Parn94) is an updated model by Parncutt (1989) and

utilizes an idea proposed by Terhardt (1982) that matches

different harmonic templates to the input by expanding the

pitches into the implied partials. The improvements con-

cern masking and other limitations of the auditory system

before carrying out the matching. Miln13 is a model by

Milne (2013) that utilizes pitch classes and supplements the

tones to represent a predefined rich harmonic spectrum.

These spectral templates are added together and further

modified by convolving them with a Gaussian distribution.

The distance between this enriched template and a harmo-

nic template is computed using a cosine similarity to deter-

mine the best fit and the cosine similarity itself is the

estimated harmonicity for the chord.

The model by Gill and Purves (2009) is also based on a

template-matching idea, and has been developed for inter-

vals initially. The algorithm, hereafter Gill09, works out

the common divisor of each note’s fundamental frequency

and builds a template that assumes a harmonic complex

tone, starting from the inferred root tone. The harmonics

created by the actual notes and the template are calculated

as the proportion of the match. Although the initial work

was done with intervals, the model has been shown to

generalize to trichords and tetrachords as well (Bowling

et al., 2018). An additional model that works as a

tie-breaker for the model by Gill and Purves and accounts

for small intervals has been offered by Bowling et al.

(2018). This model (Bowl18) calculates the minimum dis-

tance between the fundamental frequencies of a chord and

has been used to distinguish those chords where the funda-

mentals are within 50 Hz, in which case the chords with the

highest overall minimum distance between the fundamen-

tals are assumed to be more consonant. Here we do not

couple these two models (Gill09 and Bowl18) together

but use them separately, and do not limit the frequency

difference to 50 Hz.

Another variant harmonicity model by Stolzenburg

(2015) is based on ratio simplicity that takes into account

the sensitivity to small tuning deviations in chords that are

not just-tuned. In this model (Stol15), each chord fre-

quency is expressed as a fractional multiple of the bass

frequency and ratio simplicity is then computed as the low-

est common multiple of the fractions’ denominators. As

periodicity and harmonicity are essentially equivalent phe-

nomena (Harrison & Pearce, 2020), this model has a clear

motivation to be implemented as a harmonicity model. To

be consistent with the other models of harmonicity, we

invert the model output as it originally outputs high values

for pitch combinations with high period length, which

implies lower periodicity and consonance. Finally, Harri-

son and Pearce (2018) (Harr18) have proposed a variant

of Milne’s harmonicity model (Milne, 2013) where the

template matching is not done with cosine distance but

rather treating the profile as a probability distribution,

which allows to measure the degree of the violation of the

profile from the uniform distribution using Kullback-

Leibler divergence.

For familiarity, the current model relies on corpus-based

counts as an index of familiarity of the chords and intervals.

This predictor (Har19), implemented by Harrison and

Pearce (2018), derives pitch-class frequencies from the

Billboard corpus (Burgoyne, 2012) consisting of 739

pieces, which is probably currently the best source of infor-

mation to represent common chords in Western popular

music. This model is available in the incon library. We

created five variant models (CorpPop, CorpClas,
CorpJazz, KeyClar, and TonDiss). The first three

corpus-based variants are attempts to mitigate some issues

with the Har19 model. These relate to the encoding of the

chords using pitch-class representation and a root. The full

range of chord inversions cannot be adequately captured

with such a representation: the octave interval will be miss-

ing, and there are plenty of possibilities for misattributing
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chords due to inversions, especially for chords with four

tones or more. For instance, [0,5,9] is an inversion of the

major chord, and in our view, a more robust encoding of the

pitch classes would rely on the fundamental structure of

intervals such as the system presented by Forte (1973). In

previous empirical studies the consonance ratings of the

inversions have only shown marginal differences (Lah-

delma & Eerola, 2016). This approach is also motivated

by music theory, which suggests that inversions of a chord

represent the same chord type as its root position (Rameau

[1722], 1971). We re-encoded the Billboard corpus avail-

able in hcorp (Harrison & Pearce, 2018) as Forte classes

using the conversion routine available in music21 (Cuth-

bert & Ariza, 2010). Forte classes are defined by two num-

bers: the number of pitch classes, and the sequential

number within that number of pitch-class sets. To derive

the pitch-class sets, a chord is expressed as a pitch class

(integers from 0 to 11) and further transformed to the so-

called prime form, which is the transposed and sorted ver-

sion of the pitch classes—for example, a 2nd inversion

major triad contains pitch classes [7, 0, 4] and its prime

form is [0, 4, 7]. The chord’s Forte class is 3-11, which

refers to three pitches and being eleventh in a set of chords

with three pitches. The conversion into Forte classes in the

Billboard dataset results in 72 unique chords being used

instead of 157 unique chords in Harrison and Pearce’s

model. Another problematic issue with the corpus analysis

is the rarity of intervals, which seldom occur by themselves

in this type of music (e.g., in the Billboard corpus, intervals

form 2.1% of chord occurrences, mainly in the form of m2/

M7, which constitutes the majority—1.9%—of these). To

rectify this issue, we estimate the prevalence of the seven

intervals in Forte representation by collapsing the occur-

rence of each pitch class in the Billboard collection and

convert these into their normal forms (seven intervals) as

an estimation of the interval prevalence in the corpus.

These probabilities are not dissimilar to the profiles obtain-

able from Krumhansl-Kessler key profiles (1982) or Hur-

on’s aggregate consonance values (1994), but the

advantage here is that the values reflect the idiosyncrasies

in the corpus. To combine the empirical probabilities of the

chords (chordp) and the inferred probabilities of the inter-

vals (ivp), we first balance the interval probabilities to be

similar in terms of the negative log values to the distribu-

tion of the chord probabilities by iv1:333
p =

P
iv1:333

p . After

this rescaling and normalization operation, the two sources

are combined by a simple weighting scheme, where

chordp � 0:99 and ivp � 0:01 to reflect the rarity of inter-

vals in the corpus and to preserve the sum of the probabil-

ities to 1 before recalculating the negative log values that

are used as the model output. This predictor will be called

CorpPop as it is based on a corpus of popular music. We

also carry out the same operation for the two other corpora

available in hcorp (Harrison & Pearce, 2018), namely

classical and jazz. The classical corpus (n ¼ 1,022) con-

tains an assortment of Mozart, Chopin, Haydn, Bach, and

Beethoven sonatas and string quartets (CorpClas). The

jazz corpus (n ¼ 1,186) consists of jazz standards taken

from fake books (CorpJazz).

We also created two additional predictors of familiarity

reflecting classic work on tonality and C/D. We calculate

the tonal stability of each pitch class as established by

Krumhansl and Kessler (1982), which is known to be a

good estimator of pitch-class prevalence in Western classi-

cal music (Krumhansl, 1990), popular music (Temperley &

Clercq, 2013), and even bebop jazz (Järvinen, 1995). The

correlation between the best key profile and the pitch-class

profile of the input has been used as a measure of key

clarity (KeyClar) (see Lartillot & Toiviainen, 2007) and

as this measure indexes the cultural conventions and shows

higher values for pitch-class distribution with tonic, domi-

nant, and third degree, it is a reasonable link with an aspect

of consonance—perhaps tonal consonance (Huron, 1991).

We also encode the tacit knowledge of tonal principles that

Western listeners share in the form of tonal dissonance.

This idea has been put forward by Johnson-Laird et al.

(2012) and is available in the incon library (Harrison &

Pearce, 2020). According to Johnson-Laird et al. (2012),

the relevant principles of tonality are tacitly represented in

the minds of listeners as a result of their experiences in

listening to tonal music (i.e., enculturation). Their theory

relies on three principles that appear to be embodied in

tonal music: 1) the increasing trend in dissonance of chords

in major scales, in minor scales only, and in neither sort of

scale; 2) the privileged status of the major triad as the most

consonant chord of all; and 3) the construction of tonal

chords out of thirds. As explained by Johnson-Laird

et al., within each of these levels, dissonance depends on

the psychoacoustic factor of roughness. We feel that their

model is aggregating numerous components with separate

weights into one model, even though these separate prin-

ciples and their weights have not been assessed in a wider

context beyond their own research. To prune this model, we

analyzed the three principles with respect to the conso-

nance ratings in a representative dataset (Bowling et al.,

2018). Correlations—and semi-partial correlations

(accounting for other principles present in the Eero21
model, introduced later)—suggested that the first principle

of the model correlates better with the empirical data

(r(296) ¼ 0.574, sr ¼ 0.193) than the other two principles

(principle 2, r ¼ -.303, sr ¼ 0.167 and principle 3, r ¼
-0.424 and sr¼ 0.040) or the aggregated model (r¼ -0.572,

sr¼ 0.152). To take the model parsimony a step further still,

we simplified the model by collapsing minor and other

scales together to create a simple implementation that we

call the tonal dissonance model (TonDiss), which assesses

whether the chord can be constructed from a major scale

(1) or not (0). This was motivated by analyzing the con-

tribution of the three principles of the original model by

testing each principle as a binary coded variable in regres-

sion to predict consonance ratings together with roughness,

familiarity, and spectral envelope predictors (all from the
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Eero21 model without any harmonicity predictor). This

regression showed that only principle 1 contributed to the

consonance ratings (unstandardized b ¼ 0.75, p < .001) and

the other two principles were not significant predictors of

C/D in this dataset (principle 2, b ¼ -0.26, p ¼ 0.25, and

principle 3, b¼ 0.26, p¼ 0.25). This simplified version of

tonal dissonance is better than the original formulation

when the two are compared within the context of existing

models (Eero21, w2 ¼ 15.265, p < .001 or Harr20R,

w2 ¼ 16.144, p < .001). This is in line with both musico-

logical and psychological observations of the special role

of major tonality in Western music as the norm; minor

tonality and atonality are far less frequent compared to

major tonality (Parncutt, 2014), and familiarity has been

shown to affect stimulus perception as per the mere expo-

sure effect (Zajonc, 2001) which postulates that exposure

yields positive valence (in this case, consonance).

We introduce an additional category of predictors that

did not feature in Harrison and Pearce’s (2020) review,

namely spectral envelope. This category is related to the

shape of the energy distribution along the spectrum. For

instance, in sharpness, the energy at high frequencies cre-

ates sharp sounds that are found to be less pleasant, and

therefore sharpness has been implicated as a predictor of

consonance in psychoacoustics studies (Terhardt, 1974;

Zwicker & Fastl, 1990). We utilize Zwicker’s model to

calculate sharpness (hereafter SpecSharp). This model

first calculates the loudness of the signal relying on the

Bark scale using Zwicker’s algorithm (Zwicker & Fastl,

1990) and computes sharpness across these frequency

bands using the formula established by Zwicker, which

emphasizes sounds with high-frequency content as having

sharper timbre. Our calculation of sharpness is based on

Matlab functions replicating Zwicker’s work, created by

Claire Churchill (2004). To widen the field in terms of the

spectro-temporal characterization of the signal qualities

that are not covered by roughness or harmonicity, we out-

line several additional predictors that capture additional

properties of the spectral envelope. Spectral envelope

relates closely to the register (as defined by mean pitch

height) of the chord, which has been implicated as a pre-

dictor of C/D by at least two studies (Lahdelma & Eerola,

2016; Smit et al., 2019), but it could also be indexed with

acoustic measures of spectral center of gravity (spectral

centroid) provided that the timbre is the same. We charac-

terize perceptual brightness with spectral centroid and

spectral roll-off (SpecCentr, SpecRolloff), which

both index the balance of the energy distribution of the

frequency spectrum. Additionally, we calculate the irregu-

larity (SpecIrreg) of the adjoining partials (Jensen,

1999), which may further capture aspects of the spectrum

that could potentially contribute to C/D. We also calculate

the standard deviation of the spectral flux (SpecFlux) of

the Euclidean distance between two successive frames (20

ms) of the spectrum, which has also been suggested to

contribute to C/D in past research (Herbst, 2018; Terhardt,

1984). All spectral envelope predictors were calculated in

Matlab using MIR toolbox (Lartillot et al., 2008). The pur-

pose of these five additional predictors is to explore the role

of spectral envelope-related qualities of the sounds that are

not captured by roughness or harmonicity in terms of their

contribution to C/D.

Cluster Analysis of Predictors

To assess the numerous alternative models for all four

categories of C/D features, we first wanted to establish

whether the predictors represented the assumed categories.

We assume that the predictors from the same feature cate-

gory would be largely collinear and therefore easily clus-

tered into the same cluster. We examine the degree of

collinearity between all predictors by carrying out an anal-

ysis of a separate dataset created for this purpose called the

Durham Chord Dataset (DCD). This dataset contains all

pitch pairings no more than 12 semitones for 2-pitch (12

in total), 3-pitch (66 in total), 4-pitch (220), 5-pitch (495),

and 6-pitch (792) combinations across three registers (start-

ing from E3, E4, and E5), resulting in 4,755 unique pitch

combinations. To obtain predictions for the additional

acoustic predictors, we generated all these pitch combina-

tions using the piano timbre. The sounds were generated

with Ableton Live 9 (a music sequencer software), using

the Synthogy Ivory Grand Pianos II plug-in. The applied

sound font was Steinway D Concert Grand. No reverb was

used, and the intervals and chords had a fixed velocity (65).

The DCD with audio and all predictors is available at

https://github.com/tuomaseerola/DCD.

We first looked at the correlations between the predic-

tors in the DCD dataset. The correlation matrix, shown in

Figure 1, suggests that feature categories operate largely as

surmised; the predictors within the same feature categories

correlate highly positively with each other. To assess the

membership of the two potentially mixed categories of

roughness and harmonicity empirically, we first estimated

the optimal number of clusters that would characterize the

similarity of all predictors. We applied gap statistic (Tib-

shirani et al., 2001) with bootstrapping (1,000 replications)

using the 1� xij where x is the correlation matrix as the

input to the hierarchical clustering algorithm to establish

the optimal number of clusters. This analysis suggested

four clusters as the plausible number of groupings in the

data, which we have shown together with the correlations

and the hierarchical cluster solution in Figure 1.

In this solution, shown in Figure 1, the harmonicity

cluster contains harmonicity-related variables (Miln13,
Har18, Parn88, Gill09, Bowl18, Parn94,
Stol15) but it also has one familiarity predictor (Ton-
Diss). Predictors representing roughness (Hutc78,
Seth93, Vass01, Wang13) are grouped into the same

cluster, although SpecFlux also aligns within this cluster.

The rest of the spectral descriptors of energy balance

(SpecSharp, SpecCentr, SpecRolloff,
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SpecIrreg) form a distinct spectral envelope cluster. The

predictors representing familiarity of the underlying pitch

combinations form their own cluster (KeyClar, Corp-
Pop, CorpJazz, CorpClas, Har19). Although the

tonal dissonance model (TonDiss) that we created out

of the model proposed by Johnson-Laird et al. (2012) was

assumed to represent the acquired conventions of the tonal

system, it is notably absent from this familiarity cluster.

In the subsequent analyses, we will use this empirically

established classification of predictors as the basis of select-

ing predictors for an optimized model. Moreover, it is also

worth pointing out that most acoustic predictors are strongly

impacted by numerosity and register. Analytically, this can

be demonstrated by separate ANOVAs for each predictor

with two factors (numerosity, referring to the number of

pitches in the chord, and register, referring to the three

different octaves in which the chords were created). This

analysis shows the main effect of numerosity for all pre-

dictors (df(4,4740), all F > 4.03) except SpecRolloff
(F ¼ 0.35, p ¼ 0.84) and SpecIrreg (F ¼ 1.19,

p ¼ 0.31), which are unaffected by numerosity. The

majority of predictors display significant main effects of

register (df(2,4740), all F > 690)) except Harr18,
Gill09, Miln13, and Parn88. All of this is clearly

visible in the predictor distributions across numerosity

and register, shown in Figure 2.

Discussion

Using the extensive Durham Chord Dataset we established

how the central models of roughness, harmonicity, famil-

iarity, and spectral envelope correlate highly with each

other within the four categories that emerge through hier-

archical cluster analysis. Some predictors also exhibit high
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Figure 1. Correlations and a hierarchical cluster solution for predictors of roughness, harmonicity, familiarity, and spectral envelope
categories (Durham Chord Dataset, n ¼ 4755).
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correlations between these theoretically derived categories

(e.g., Stolzenburg’s harmonicity model and Hutchinson’s

roughness model demonstrate a correlation coefficient of

r¼ 0.65). This is an important caveat for understanding the

independent contributions of the predictors of C/D in sub-

sequent analyses, as multicollinear predictors hinder the

interpretation of the predictor contributions in linear regres-

sion. The analysis of the dataset also demonstrated that a

host of new predictors representing familiarity and spectral

envelope operate more or less independently of roughness

and harmonicity, although exceptions were observed as

well. Spectral flux and tonal dissonance behave with real

chords more akin to the other predictors of roughness and

harmonicity, respectively. The predictors representing

spectral envelope, which is a notion that has been previ-

ously proposed to account for dissonance across a wide

frequency range, may not have featured strongly in recent

studies such as Harrison and Pearce (2020), since the musi-

cal materials have not spanned a large range in register or

other spectral differences (instrument timbres).

The present analysis also demonstrated how sensitive

the models are as to the number of simultaneous pitches

(i.e., pitch numerosity). This is worth paying attention to,

since several studies have reported that perceptual
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consonance ratings are dependent on pitch numerosity

(Bowling & Purves, 2015; Lahdelma & Eerola, 2020; Lah-

delma et al., 2020). Judging from the results of the present

dataset, the statistical modeling needs to be able to handle

numerosity differences in the models. Also, register could

be an important determinant of C/D, although its role has

remained largely unexplored; we will pay close attention to

the register of the empirical datasets in our modeling and

model comparisons. Although the current research has not

yet extensively manipulated register, this is an important

motivation to incorporate predictors to the consonance

explanation that will be able to account for a wider variety

of register and timbre in future research.

The present analysis, the selection of predictors, and the

dataset were not exhaustive, of course; we did not address

timbre in our dataset or the analysis which in real sounds

has an undeniable contribution to C/D. However, the deci-

sion of leaving out timbre for now is related to the materials

(models and data) available: the majority of the models do

not easily incorporate timbre and the majority of the

empirical data on consonance has been collected with rel-

atively homogenous sounds using piano or sine wave tim-

bres. Theoretically we could have created the Durham

Chord Dataset with a wider range of intervals (2 octaves,

resulting in 166,362 unique pitch combination if the same

generation principles were used) and expanded the register

(2, 3, or 4 octaves above and below) or the number of

simultaneous pitches (to 7 or 8) for a more extensive cov-

erage of these factors, but we felt that the point is already

made and the variant formulations of the dimensions would

yield little additional insight. There might be a small danger

that the current dataset puts too much emphasis on high

numerosity pitch combinations (5- and 6-pitch combina-

tions form 81.1% of the dataset), which might undervalue

the importance of familiarity predictors, since most of the

4-, 5-, and 6-pitch combinations rarely occur outside rare

subgenres of contemporary music.

Next we will evaluate the goodness of individual pre-

dictors within the four categories of predictors using

empirical data on C/D.

Experiment 2: Features of C/D

In the following analyses we will dissect C/D using four

sets of features, namely roughness, harmonicity, familiar-

ity, and spectral envelope. As a starting point, we will rely

on the best three predictors (Hutc78 for roughness,

Harr18 for harmonicity, and Harr19 for familiarity) from

the model by Harrison and Pearce (2020) to probe the

contribution of these three features. We will call this the

Harr20 model. We will apply this model to three high-

quality datasets (Experiments 1 and 2 in Lahdelma & Eer-

ola, 2020; Popescu et al., 2019) where individual ratings

across a range of C/D and numerosity are available. The

advantage of starting with these datasets is that they contain

ratings of actual C/D, whereas several other studies,

including Bowling et al. (2018), have collected ratings for

pleasantness (as a proxy for consonance), which is in fact

not directly equal to consonance (see Lahdelma & Eerola,

2020). In our analysis, we substitute alternative predictors

from each of the three feature categories in the original

model to see whether the predictive rates can be improved

with alternative predictors. We will add the spectral envel-

ope category to the equation and estimate whether any

predictor of the four proposed spectral envelope predictors

is able to further improve the account of C/D beyond the

three categories. We will also examine to what degree a

composite model created by Harrison and Pearce (2020)

(available in the incon package and labeled as Harr20
hereafter) is able to account for consonance; this model

combines roughness, harmonicity, and familiarity based

on the analyses of data from Bowling et al. (2018).

Methods

We construct models with the data from Experiments 1 and

2 by Lahdelma and Eerola (2020) and by Popescu et al.

(2019). The materials in Experiment 1 by Lahdelma and

Eerola (2020) consist of 25 intervals, trichords, and tetra-

chords initially selected from Bowling et al.’s study (2018)

and represent low cultural familiarity. The chords and inter-

vals were presented to participants with piano and sine

wave timbre. The materials of Experiment 2 by Lahdelma

and Eerola (2020) are a balanced selection of 72 chords

again selected from Bowling et al. (2018) representing

high, medium, and low familiarity chords, all of which

were presented with piano sounds. Popescu et al. (2019)

provides rating data for 80 chords taken from real musical

examples representing four distinct styles of music (jazz,

classical, avant-garde, random) presented with piano

sound. For all of these datasets (hereafter lah20a,
lah20b, pop19), we model the individual mean ratings

of each chord by the participants rather than the grand

averages across the chords. This allows the responses to

vary by participants and should offer better statistical infer-

ences using mixed effects models. In these studies, partici-

pants gave C/D ratings using a 5-point interval scale (from

1¼ dissonant to 5¼ consonant in lah20a and lah20b) or

a 7-point scale (from -3 ¼ strong roughness to þ3 ¼ weak

roughness in pop19). We rescaled the ratings in the

Popescu et al. study (2019) to 1–5 before the analyses.

Data Analysis. We use linear mixed models (LMMs) to iden-

tify which acoustic or musical predictors are most consis-

tent with the perceptual ratings of consonance. Analyzing

lah20a, we collapse the repeated ratings (two for each

stimulus) for each participant. Since we are not particularly

interested in the number of pitches or timbre per se, we

incorporate these as random effects. The number of pitches

will have seven levels and timbre two levels. We also con-

sider participants as a random factor. In addition, we define

datasets (with three levels) as a random factor to permit
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slight variations in the use of scales, terms, and interfaces.

In this way, the dataset has 11,260 observations (25 stimuli

� 2 timbre � 62 participants plus 72 stimuli � 80 partici-

pants plus 80 stimuli � 30 participants in lah20a,
lah20a, and pop19, respectively). We also carried out

control analyses where we treated numerosity as a fixed

factor and eliminated datasets and timbre as random factors

due to potential concerns over the small number of levels in

the latter factors and possible masking effects in the former.

However, these control analyses yield basically the same

pattern of results (https://github.com/tuomaseerola/anat

omy-of-consonance).

In our analysis, we will start with the Harr20 model

(three predictors from Harrison and Pearce’s analyses) and

estimate the contribution of each of the three predictors to

the consonance ratings. Next we test whether this model

can be improved by replacing each component of the model

by each variant predictor in turn from the same category.

We start this by testing whether any of the four variant

roughness predictors will improve the model if these

replace the predictor used in the original model (Hutc78).

If a predictor is able to improve the model as indexed by

Wald’s w2 tests, we replace the original predictor in that

category with the new candidate before moving on to the

next category of predictors. In the next iteration, we move

to harmonicity, test seven variant predictors and again if an

alternative predictor is able to improve the model, we

replace the original predictor with the new candidate. In

case we have several candidates capable of improving the

model, we take the strongest one as defined by the unique

contribution to the model (sr). This analysis is sensitive to

the order of the predictor categories. We carried out an

auxiliary analysis with all 24 permutations of the predictor

category orders and this demonstrated that the order does

not affect the choice of the best predictor in any category.

This auxiliary analysis is available in the electronic mate-

rials. In our view, this analysis strategy is cautious and

controlled in comparison to an alternative strategy where

one would start with all the predictors and carry out feature

selection via regression. The alternative strategy would be

prone to problems of multicollinearity, and would not have

a sufficient number of observations to test all possible pre-

dictor combinations. Also, the regression approach cannot

easily incorporate the variation offered by the experimental

and participant factors. It is worth mentioning that we also

checked whether musical expertise, gender, and age imple-

mented as random effects in the analyses using the two

datasets by Lahdelma and Eerola (2020). These extra fac-

tors implemented in this way did not impact the models in a

significant fashion and therefore we leave them out of the

analysis, as they have been reported in detail previously.

Results

First we assessed the previously established features of

consonance (roughness, harmonicity, familiarity) with the

data. This Harr20R model consists of Hutc78 for rough-

ness, Harr18 for harmonicity, and Harr19 for familiarity.

The results are summarized in Table 1, which shows that

two predictors, roughness and familiarity, contribute

beyond the variance explained by the other two predictors

in the model. The semi-partial correlations (sr) provide a

convenient yardstick of the unique contribution of the pre-

dictors. The classic roughness model by Hutchinson and

Knopoff (1978) has a strong contribution to the ratings of

consonance, while the harmonicity model by Harrison and

Pearce (2020) does not add anything to the overall model in

this data when the two other predictors are already in the

model. The strongest predictor, Harr19, is familiarity in

the form of the Billboard corpus probabilities (Harrison &

Pearce, 2018).

For the model improvements within the four predictor

categories, we replaced the predictor of one category of the

original model with each variant predictor of the same

category. For instance, for roughness, we tested whether

replacing Hutc78 with Seth93 would improve the model

when the model still has the two other predictors, Harr18
and Harr19, present. The improvement is tested by

Table 1. LMM results for the original model by Harrison and
Pearce (Harr20R) for consonance ratings across a sample of the
three datasets and a comparison of alternative predictors within
the predictor categories.

Predictor w2 p-value sr

Harr20 model
Hutc78 (Roughness) 446.50 < .001 -0.141
Harr18 (Harmonicity) 2.21 ns 0.047
Harr19 (Familiarity) 509.39 < .001 -0.216

Roughness variants
Wang13 0 ns -0.075
SpecFlux 0 ns -0.060
Seth93 0 ns -0.051
Vass01 0 ns -0.047

Harmonicity variants
Stol15y 148.76 < .001 0.108
TonDiss 124.33 < .001 0.087
Parn88 18.437 < .001 -0.058
Bowl18 72.502 < .001 -0.050
Gill09 7.72 < .01 0.037
Miln13 0 ns 0.034
Parn94 0 ns 0.001

Familiarity variants
CorpPopy 305.15 < .001 -0.228
CorpJazz 0 ns -0.147
KeyClar 0 ns 0.131
CorpClas 0 ns -0.086

Spectral envelope variants
SpecIrregy 16.84 < .001 -0.047
SpecRolloff 0 ns -0.021
SpecSharp 0.70 ns -0.011
SpecCentr 0 ns -0.007

yrefers to the predictor taken forward to the model dubbed Eero21. The
alternative predictors have been sorted based on the magnitude of the
semi-partial correlations (sr).
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comparing the strongest predictors established (which will

be the Harr20 model at the start) to the revised model with

Wald w2 test. We will look at the unique contribution (semi-

partial correlation, sr) of the predictor when comparing

several predictor contributions to the model. Table 1 shows

the breakdown of this iterative process, starting from the

Harr20 model. For the sake of comparability to the fixed

weight composite model (Harr20), we display the unstan-

dardized beta coefficients for the two new models and other

diagnostic values, including the random effects, in Table 2.

Looking at the breakdown of the variant predictors in

Table 1, roughness variants indicate that none of the variant

formulations of roughness increase the Harr20R model

significantly. For harmonicity, several harmonicity predic-

tors are able to improve the Harr20 model; the strongest

contribution is offered by Stol15, which shows a signif-

icant improvement over the original model when Harr18
is replaced by this variant predictor. A variant familiarity

model (CorpPop) is able to improve the model that has the

best roughness (Hutc78) and harmonicity component

(now Stol15) with largest unique contribution of the har-

monicity variants to the model (sr ¼ -0.238). Finally, add-

ing separately each new predictor in the category titled

spectral envelope suggests that SpecIrreg has the high-

est w2 value and the largest unique contribution to the

model, albeit a modest one (sr ¼ 0.047). From this analysis

we can tentatively draw together a new model labeled as

Eero21 that will consist of the best predictor from each

category, namely Hutc78 as the best roughness predictor,

Stol15 as the most robust harmonicity predictor, Corp-
Pop as the superior familiarity predictor, and SpecIrreg
as the best new spectral envelope predictor. The order of

the analysis sequence followed the logic of the original

model (roughness, harmonicity, familiarity). Spectral

envelope was added as the final category when identifying

the optimal predictors. This theory-driven sequential order

of the analysis categories may have had an impact on the

outcome of the analysis. We also conducted auxiliary anal-

ysis, available in the digital supplementary materials,

including all 24 permutations of the predictor category

orders. The results of this alternative analysis do not chal-

lenge the conservative analysis procedure reported here.

The overall performance of the Eero21 model in com-

parison to the Harr20R model is shown in Table 2. This

table also shows the random factors, which account for an

additional variance, particularly numerosity, dataset, and

participant factor in all datasets. Overall, Harr20 and

Eero21 models achieve healthy marginal R squared value

(see Nakagawa et al., 2017): 0.210 for the Harr20R model,

0.250 for the Eero21 model that account for variance

explained by the fixed effects. The difference between the

Harr20R and the Eero21 models is highly statistically

significant (Wald w2 ¼ 470.75, p < .001) even when the

addition of one extra predictor is accounted for using

Akaike Information Criterion, which shows the lowest

value for the Eero21 model (Table 2). It is worth noting

that in both models, all predictors are statistically signifi-

cant (b 95% confidence intervals do not cross the zero).

The Harr20R model, which is now fitted with this dataset,

is statistically better than than the implementation of the

same model with fixed beta weights (Harr20, w2 ¼
184.86, p < .001), which is no surprise as the model

coefficients have been adjusted for this dataset by the

LMM analysis. Nevertheless, the Harr20 model and its

re-weighted version Harr20R have similar model coeffi-

cients (Harr20 model has Hutch78 ¼ -1.62, Har18 ¼
1.78, and Har19 ¼ -0.09; see Table 2 for coefficients for

the Harr20R model in the present data). The major excep-

tion is the lower unstandardized beta coefficient for harmo-

nicity, which may not stem from the inclusion of the

Table 2. Summary of the LMM results for predicting consonance ratings with different models across three datasets. The
unstandardized beta coefficients are shown and the random effect significance testing is displayed with Likelihood Ratio Test (LRT). The
two measures of overall fit refer to variance related to fixed factors (R2

m) and to both random and fixed factors (R2
c ). Akaike Information

Criteria (AIC) is reported to allow comparison of model complexity. The asterisks refer to p-values for the significance of the random
factors where * is p < .05, ** is p < .01, and *** is p < .001.

Null model Harr20R model Eero21 model

Fixed effects b [95% CI] b [95% CI] b [95% CI]
Intercept - 4.40 [3.92, 4.88] 4.97 [4.52, 5.42]
Roughness - -2.14 [-2.34, -1.94] -1.32 [-1.55, -1.09]
Harmonicity - 0.22 [0.03, 0.41] 0.17 [0.14, 0.20]
Familiarity - -0.11 [-0.11, -0.10] -0.10 [-0.11, -0.09]
Spectral Envelope - - -0.20 [-0.29, -0.12]

Random effects LRT LRT LRT
Dataset 10.50** 28.66 *** 28.79 ***
Timbre 0.82 1.32 1.42
Numerosity 201.81 *** 65.97 *** 62.81 ***
Participant 896.47 *** 1210.88 *** 1276.34 ***

R2
LMMðmÞ 0.000 0.210 0.250

R2
LMMðcÞ 0.172 0.397 0.435

AIC 34485 31876 31407

10 Music & Science



numerosity in the Harr20 model but rather could simply

reflect the differences of chord choices in the data. Despite

this difference, the broad similarities suggest that the model

by Harrison and Pearce (2020) has appreciable capacity to

generalize to other materials.

Discussion

An analysis of three datasets using LMMs was utilized to

probe the merits of several alternative predictors to the

composite model offered by Harrison and Pearce (2020).

This model (Harr20R) operates relatively well and in a

stable fashion in these datasets. However, the shortcoming

of the model seems to be harmonicity, where it fails to

contribute significantly to the overall model. Substantial

improvements could be identified by substituting another

harmonicity predictor (Stol15) to the model. Another sig-

nificant improvement was seen to come from familiarity

and a revised corpus model, which utilizes a simpler

account of the chord classifications (CorpPop). It seems

that revising the calculation of the chord frequencies in the

Billboard data by recoding them with unambiguous classes

that do not make a distinction for chord inversions is able to

capture more variation in the data than the previous encod-

ing of the chord frequencies.

Adding a predictor of the regularity of the energy in the

partials of the sounds (SpecIrreg) also improved the

model significantly, albeit this contribution was the weak-

est overall. This finding is in line with theorizing by

Zwicker and Fastl (1990) and previous empirical findings

by Lahdelma and Eerola (2016). It is worth noting that in

these analyses numerosity was treated as a random effect

and we did not explore the impact or interactions with the

predictors. We also ran the same analyses where we took

numerosity, timbre, and datasets as fixed factors to the

models but without observing any material changes to the

results. When interactions between numerosity and the

other predictors were tested, most of these were significant

and suggest that building the models with an explicit

numerosity predictor could lead to different results.

Next we will probe the contribution of the predictor

categories across a larger selection of datasets to investi-

gate the shortcomings and advantages of the models.

Experiment 3: Assessing C/D Features
with Multiple Datasets

To explore the contribution of the acoustic predictors to C/

D thoroughly, we compiled nine relatively recent datasets

that contain consonance ratings (or one of its variant proxy

terms, e.g., pleasantness) of intervals and chords. Our pur-

pose is to apply the two variant models (Harr20R,
Eero21) established in Experiment 2 to these datasets.

Three of the datasets (lah20a, lah20b, pop19) are

those that were sampled in Experiment 2 to identify the

optimal predictors. Some of the datasets are small and may

only contain intervals or trichords, but the overall diversity

in numerosity, register, rating scales as well as the countries

and institutions in which these datasets have been collected

should be an asset and guard against over-fitting and offer

at least some level of generalizability of the results.

Datasets

The oldest dataset is from Schwartz et al. (2003), who

compiled historic rankings of consonance of all intervals

within an octave. Johnson-Laird et al. (2012) organized two

experiments where they collected pleasantness (conso-

nance) ratings for trichords and tetrachords organized

according to their theory of dual-process theory of disso-

nance. Lahdelma and Eerola (2016) collected ratings of

consonance for a small set (15) of trichords, tetrachords,

pentachords, and hexachords. Likewise, Arthurs et al.

(2018) carried out an experiment with a collection of tri-

chords and tetrachords (n ¼ 12) which were presented in

two timbres and rated in terms of consonance, pleasantness,

stability, and relaxation. Bowling et al. (2018) established

the consonance (pleasantness) ratings for all 2-, 3-, and 4-

pitch combinations within an octave (n ¼ 298). Popescu

et al. (2019) expanded the choice of chords by deriving

them from real music spanning four styles (jazz, classical,

avant-garde, random); the chords spanned a wide range in

pitches and each style had 20 exemplars (n ¼ 80 in total).

Finally, Lahdelma and Eerola (2020) collected two sub-

stantial datasets of ratings of variant concepts of conso-

nance for chords that were selected from the extensive

collection established by Bowling et al. In most experi-

ments, participants were Western, young, and educated,

also the subject pools in many of these studies are relatively

small; we have summarized the studies in Table 3. To make

the datasets comparable, we have made sure that the ratings

are in the same direction (high ratings indicate high con-

sonance), reversing some of the scales (Johnson-Laird

et al., 2012; Schwartz et al., 2003). We also have rescaled

the ratings within the datasets to a range between 1 and 10

for consistency and comparability.

Data Analysis

We will carry out two linear regression analyses—

unpooled and pooled—to probe the model performance

within (unpooled) and across (pooled) the datasets. In the

unpooled analysis, we explore the generalizability of the

models by training each model within a dataset utilizing a

cross-validation and applying the constructed model to a

testing portion of the dataset. The performance of the

model is indexed with prediction rate (R2) in the unseen

data (training portion). This diagnostic operation aims to

outline the differences in the datasets and the ways in which

the models pick these up. In the pooled analysis, however,

we aggregate all observations across the datasets and assess

the model fit using regression across the data. In the
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construction of the models, we utilize a cross-validation

scheme and predict the responses in the unseen part of the

data. For the unpooled analyses, we utilize a 80/20% ran-

dom split between training and prediction subsets and con-

struct the model using a 10-fold cross-validation with 10

repeats. For pooled analysis, we have a similar split

between training and testing data, but we increase the ran-

dom repeats of the 10-fold cross-validation to 50. Again,

the overall success of the model is captured with R2 in the

unseen portion of the data. To index the unique contribu-

tion of each predictor category within the models, we report

semi-partial correlations (sr) between the predictor and C/

D ratings when the contribution of all other predictors in

the model have been partialled out. In contrast to the anal-

yses in the previous section, we operate with mean data and

relatively low number of observations for each dataset (see

Table 4).

In addition, we carried out an auxiliary analysis where

we identify the principal components of the predictor

matrix and use either the component scores or the predic-

tors that best represent the components as predictors in the

regression. The purpose of this analysis is to offer a reliable

assessment of the predictor contributions to C/D, as several

of the feature categories are known to be highly collinear

and hinder the interpretation of the model components.

Results

Unpooled Analysis Results. The results of the linear regression

where both models have been trained and assessed on each

dataset separately are shown in Table 4 with model fits,

standardized beta coefficients, semi-partial correlations,

and weighted means.

Table 3. Description of the datasets including concepts, number of unique chords/intervals (N), numerosity, and pitch range in the
stimuli.

Study Abbrev. N Concept Numerosity Range

Schwartz (2003) sch03 12 Consonance 2 C4–C5

Johnson-Laird (2012) (Exp. 1) jl12a 48 Pleasantness 3 A2–G5

Johnson-Laird (2012) (Exp. 2) jl12b 55 Pleasantness 4 G2–D5

Lahdelma (2016) lah16 15 Smoothness 3, 4, 5, 6 G4–C6

Arthurs (2018) art18 12 Consonance 3, 4 C4–B4

Bowling (2018) bow18 298 Pleasantness 2, 3, 4 D3–G4

Popescu (2019) pop19 80 Roughness 3, 4, 5, 6, 7, 8 E1–C7

Lahdelma (2020) (Exp. 1) lah20a 25 Consonance 2, 3, 4 F3–F4

Lahdelma (2020) (Exp. 2) lah20b 72 Consonance 2, 3, 4 E3–G4

Table 4. Results from two models showing prediction rates (R2), standardized betas and semi-partial correlations (sr) for each
predictor category for each dataset. �x stands for weighted mean of the column.

Dataset R2 bc bR bH bF bS srR srH srF srS

Harr20R
sch03 1.00 -1.88 -1.02 0.44 -0.06 – 0.52 0.17 0.00 –
jl12a 0.62 -0.15 -0.52 0.43 0.14 – 0.29 0.19 0.21 –
jl12b 0.32 0.75 -0.40 0.56 0.30 – 0.17 0.38 0.21 –
lah16 0.95 -0.47 -0.33 0.54 0.53 – 0.10 0.22 0.23 –
art18 1.00 -0.81 0.53 0.21 0.93 – 0.04 0.03 0.66 –
bow18 0.60 -0.04 -0.30 0.16 0.49 – 0.22 0.10 0.38 –
pop19 0.73 0.24 -0.18 0.39 0.62 – 0.10 0.16 0.45 –
lah20a 0.85 0.24 -0.61 -0.22 0.85 – 0.35 0.10 0.33 –
lah20b 0.67 -0.24 -0.82 -0.06 0.41 – 0.38 0.04 0.49 –
�x 0.64 -0.03 -0.38 0.22 0.47 – 0.23 0.13 0.37 –

Eero21
sch03 1.00 -2.11 0.00 1.41 -0.25 -0.21 0.10 0.25 0.18 0.03
jl12a 0.47 -0.01 -0.02 0.71 -0.18 -0.03 0.02 0.46 0.11 0.02
jl12b 0.79 0.67 -0.10 0.96 -0.15 -0.14 0.01 0.52 0.14 0.07
lah16 0.99 -0.46 -0.31 0.58 -0.47 0.03 0.11 0.15 0.20 0.07
art18 1.00 -1.19 -0.94 0.32 -0.59 0.58 0.13 0.12 0.20 0.18
bow18 0.78 -0.06 -0.06 0.35 -0.48 0.11 0.04 0.21 0.37 0.11
pop19 0.82 0.03 -0.19 0.21 -0.63 -0.07 0.10 0.08 0.43 0.07
lah20a 0.96 0.25 -0.64 0.00 -0.49 0.52 0.23 0.02 0.19 0.19
lah20b 0.88 -0.26 -0.33 0.37 -0.52 -0.04 0.17 0.17 0.54 0.11
�x 0.79 -0.10 -0.15 0.42 -0.45 0.06 0.07 0.22 0.34 0.10
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Table 4 indicates that both models are able to produce

adequate (R2 ¼ 0.32 for jl12b) to near-perfect fit

(R2 ¼ 1.00 for scho3 and art18) to different datasets,

the weighted average being �R
2 ¼ 0.64 in the Harr20R

model. Also, the model coefficient directions and ampli-

tudes are consistent, although some notable exceptions can

be observed. For instance, in the Harr20R model, the

standardized beta coefficient for roughness in art18 is not

in an inverse relationship to consonance ratings (b ¼ 0:53),

whereas the roughness coefficient is negative in all other

models for different datasets. Such minor discrepancies

may be traced to the unique combinations of the pitch

collections the experiment contains, the case in point being

the study by Arthurs et al. (2018), which contained a small

set of familiar chords. The semi-partial correlations in the

Harr20R model suggest that familiarity is carrying the

bulk of the predictions (the weighted mean srF of 0.37) and

harmonicity the least (srF ¼ 0.13), consistent with the anal-

ysis of the three datasets in the previous section. In the

Eero21 model, the model prediction rates are generally

higher ( �R
2 ¼ 0.79) than the rates obtained by the Harr20R

model, although one exception is evident as well (jl12a).

Interestingly, there are some inconsistencies in the way the

predictor weights operate between the datasets in the

Harr20R model. For example, harmonicity does have a

negative sign for two datasets (lah20a, lah20b) in the

Harr20R model, perhaps linked to the overall familiarity

of the chords used those studies.

The semi-partial correlations spell different stories

between the two models. In the Eero21 model, familiarity

is still one of the strongest predictor categories (srF ¼ 0.34)

and harmonicity comes close second (srH ¼ 0.22), whereas

roughness has lesser contribution to the ratings (srR ¼ 0.07).

The new predictor category of spectral envelope has about

the same unique contribution as roughness (srS ¼ 0.10) to

the regression models. One way of looking at the differences

between the two models is to examine the variation with

semi-partial correlations between models in specific data-

sets; for instance, in the small dataset art18 that can be

perfectly predicted by both models, familiarity seems to

deliver all variance (srF ¼ 0.66) with the Harr20R model,

whereas in Eero21, the harmonicity predictor also contri-

butes individually (srH ¼ 0.15) to the C/D ratings. One

might assume that the contribution of familiarity is related

to the question of whether a dataset has used familiar

chords (e.g., art18, lah20a) in comparison to datasets

comprised largely of unfamiliar stimuli (e.g., bowl18,

pop19). However, the picture emerging from the sr val-

ues does not suggest that the differences in contributions

of familiarity are related to the use of familiar chords in

the datasets. The other noteworthy difference between the

predictors is the shifting of the balance from roughness in

Harr20 to harmonicity in Eero21. This probably reflects

the change of the harmonicity predictor in the model, but

we will return to this question when we address the multi-

collinearity of the predictors that may impact the inter-

pretation of these individual contributions.

Pooled Analysis Results. Turning our attention to how well the

models operate across the datasets, we ran separate linear

regressions for the Harr20R and Eero21 models. For

these analyses, the datasets were pooled together (n ¼
617) and a 10-fold cross-validation with 50 random repeats

was carried out with a random 80% of the data to estimate

the model coefficients. Again, the model prediction rates

were estimated by applying the model relying on the coef-

ficients from the training data to predict the unseen data.

Table 5 summarizes these sets of analyses with the pooled

data and also offers the baseline performance with the com-

posite model (Harr20).

The baseline comparison is to the composite model

(Harr20) by Harrison and Pearce (2020), which is the

model without adjustable components (except constant),

since the three predictors it contains (Hutch78, Har18,
Har19) have predetermined coefficients based on the anal-

ysis of the data of Bowling et al. (2018). It can explain 57%
(R2 ¼ 0:572) of the variance in the data, which is a solid

and respectable quantity considering the overall challenge

of being able to capture the C/D ratings in nine separate

studies done with slightly different stimuli, raters, con-

cepts, and participant backgrounds. The Harr20R model,

which has the same three components but with optimized

beta coefficients, is able to improve the model significantly

(w2 ¼ 68.34, p < .001) although the increment is modest in

variance explained (R2
D ¼ 0.043). The coefficients of the

Harr20R model resemble the ones in Harr20, which is

the one with fixed beta coefficients (Hutch78 ¼ -1.62,

Har18 ¼ 1.80, Har19 ¼ -0.089). The latter model puts

more emphasis on roughness and less emphasis on the

familiarity predictor. It is also worth pointing out that the

familiarity predictor carries the dominant unique contribu-

tion in the model (sr ¼ 0.38) whereas harmonicity plays a

relatively small role (sr ¼ 0.10), consistent with the anal-

yses presented with the three datasets earlier. Looking at

Table 5. Model summaries across the pooled data showing unstandardized beta coefficients, semi-partial correlations, and Akaike
Information Criterion (AIC) for model parsimony.

Model R2 bR bH bF bS srR srH srF srS AIC

Harr20 0.57 - - - - - - - - 1757
Harr20R 0.62 -4.89 1.86 0.41 - -0.24 0.10 0.38 1725
Eero21 0.73 -2.41 0.66 -0.28 -3.22 -0.05 0.24 -0.35 -0.05 1643
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the Eero21 model, the prediction rate has increased to

73% (R2 ¼ 0:729) and this improvement stems from a sub-

stantially higher unique contribution of the new harmoni-

city predictor (Stol15, sr ¼ 0.24) and the new predictor

category (spectral envelope, sr ¼ 0.05) represented by

spectral irregularity. Puzzlingly, the contribution of rough-

ness has dwarfed (sr ¼ -0.05) in this model, which could

imply that the model components are volatile due to high

multicollinearity. We will address this in the next analysis.

Even though the model now has one more component, the

improvement to the Harr20R model is statistically highly

significant (w2 ¼ 144.25, p < .001) and exhibits lower AIC

(1643) than the Harr20R model (1725).

Pooled Analysis with Principal Components. A close look at the

models, and particularly the unique contributions of the

feature categories, suggests that roughness and harmonicity

may be highly collinear and this would hamper the inter-

pretation of the component contributions. In the Harr20R
model, the correlation between the roughness (Hutc78)

and harmonicity (Harr18) predictors is -0.67 (p < .001).

In a regression equation, this transforms into a variance

inflation factor (VIF) of 2.08, which indicates that the var-

iance of the predictor coefficient is over two times greater

than it would be otherwise. In the Eero21 model, the

correlation between the Hutch78 and the Stol15 predic-

tors is -0.81 and the VIF in the regression is 3.16. There are

different rules of thumb for the threshold of VIF values

such as 2.5, 3, 5, and 10 (see Graham, 2003; Johnston

et al., 2018; O’Brien, 2007) or correlations above 0.80

(e.g., Abu-Bader, 2016) that spell problems for separating

out the independent contributions of the predictors. Here

we take heed of the lower end of the recommendations

(VIF> 3 and r > j0:80j) and also consider the conspicuous

changes in the signs of the betas and the large variations in

the unique contribution of the model categories related to

harmonicity and roughness observed above (Tables 4

and 5). These variations are surprising, lead to drastically

different interpretations of the model, and may signal that

the predictor contributions are not well defined (O’Brien,

2007). To assess the contributions of the predictors repre-

senting these feature categories more robustly, we carried

out a principal component analysis of all 22 features with

the 617 chords. We started with the correlation matrix and

estimated the number of components with parallel analysis

that compares the eigenvalues from the principal compo-

nent analysis to the similarly sized matrix of random data to

estimate the chance level of eigenvalues (Zwick & Velicer,

1986). This analysis yielded three components as sufficient

that accounted for 69% of the variance (34%, 21%, and

14% by each component) of the original correlation matrix.

The first component captures both the roughness and har-

monicity predictors, where harmonicity has high negative

loadings while roughness has high positive loadings with

the first component. The second component is related to the

familiarity predictors and the third encapsulates the spec-

tral envelope predictors (see Table 6).

We used the scores of the three principal components as

predictors in regression to predict C/D ratings in the pooled

dataset using the same evaluation routine as with the other

models (cross-validation and assessment of model predic-

tion rate with the unseen data). This yields a model, labeled

as PCA components, reported in Table 7, which puts the

prediction rate at R2 ¼ 0.67. It is better than the Harr20R
model (w2 ¼ 49.22, p < .001), but poorer than the Eero21
model. However, the most interesting part of this analysis is

the unique contribution of the model components (sr) as

there is zero correlation between the predictors. The semi-

partial correlations suggest that familiarity accounts for the

largest part of the variance in the model (sr ¼ -0.68, 46.2%
of variance), whereas the combined roughness and harmo-

nicity component is the second major element (sr ¼ -0.44,

or 19.3% of variance). The spectral envelope component is

left with negligible contribution (sr ¼ 0.04, less than 0.2%
of variance). The purpose of this analysis was to rethink the

predictor category contributions and find a solution to han-

dle the collinear feature categories of roughness and har-

monicity. However, as a model of C/D, the model with

PCA components is not a convenient one despite the lucra-

tive independence of the components, as it needs a linear

combination of all 22 predictors to create the model. An

often used strategy (Jolliffe, 2002) is to represent the prin-

cipal components with predictors that receive the highest

loadings with the components. In this case, this would

Table 6. Loadings of the predictors from the principal
component analysis (n ¼ 617). Loadings under 0.55 are not
shown.

Predictor PC1 PC2 PC3

Vass01 0.90 - -
Seth93 0.90 - -
Wang13 0.87 - -
Parn94 -0.86 - -
Harr18 -0.80 - -
Hutc78 0.77 - -
Stol15 -0.74 - -
Parn88 0.74 - -
Miln13 -0.74 - -
Bowl18 -0.63 - -
Gill09 -0.56 - -
SpecFlux 0.56 - -
TonDiss - - -
CorpClas - 0.75 -
CorpJazz - 0.80 -
Harr19 - -0.89 -
CorpPop - 0.93 -
SpecIrreg - - -
SpecCentr - - 0.93
KeyClar - -0.63 -
SpecRolloff - - 0.89
SpecSharp - - 0.89
Var. expl. 34% 21% 14%
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suggest a model where Vass01,CorpPop, and SpCentr
are used as the proxies for the three components. The model

with these predictors, called PCApredictors in Table 7,

is able to achieve R2 of 0.65 with minimal correlations

between the predictors (all under r ¼ j0:19j), although the

model offers no improvement in terms of performance

compared with the Harr20R model (w2 ¼ 0).

Going back to the most successful model, a visualization

of the model prediction of the C/D ratings is shown in

Figure 3, where the Eero21 model is taken from the

pooled analysis. The general pattern reflects the success

of the model in picking up the variation in C/D ratings,

although there are some curious and potentially systematic

errors that none of the predictors are able to pick up. The

visualization displays only the chords with unique Forte

classes within each dataset. The chords predicted with an

absolute error over 2 in the C/D ratings are shown with

black labels for easier interpretation. Overall, the figure

underscores that generally the model predicts the ratings

reasonably well but there are specific failures. The first

Table 7. Results from two models related to principal component analysis showing prediction rates (R2), standardized b, and semi-
partial correlations (sr) for each predictor category.

R2 bc bR=H bF bS srR=H srF srS

PCA components 0.67 5.06 -1.02 -1.48 -0.10 -0.44 -0.68 -0.04
PCA predictors 0.65 5.05 -0.69 -0.24 -1.48 -0.27 -0.68 -0.10
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observation is that these failures are not concentrated on

one or two datasets. An analysis of the errors suggests that

some of these may relate to familiarity, since several errors

relate to intervals (m2/M7, M2/m7) that could probably be

assessed more robustly than was done in the CorpPop
model. Beside these failures, at this point we can only

conclude that no other systematic errors are clearly appar-

ent, but a more systematic analysis of the errors is prob-

able the best way to explore any future gains when

modeling C/D.

Discussion

The two regression analyses demonstrated a consistent pat-

tern where the model proposed by Harrison and Pearce

(2020) explains about 64% and 62% of the variance in

C/D ratings in unpooled and pooled data, respectively,

whereas the revised model with new predictors is able to

account for about 10% more variance. Although the

Harr20R model is satisfactory in many ways and com-

bines the acoustic and cultural elements of C/D, the revi-

sion of the model is a clear improvement that arrives

through better formulation of predictors related to familiar-

ity as well as adding one missing element—spectral envel-

ope—to the model.

A recent experiment by Lahdelma and Eerola (2020)

also found roughness to be a more important predictor of

C/D than harmonicity, corroborating the results of Harrison

and Pearce (2020), but also found that cultural familiarity

has a strong contribution to C/D ratings. Also, somewhat

surprisingly, replacing the harmonicity predictor by Harri-

son and Pearce with another harmonicity model (i.e., Stol-

zenburg’s model) had a large impact on the model and

decreased the unique contribution of roughness in particu-

lar. This has an important implication here; a fairly small

change in the actual predictors can have a knock-on effect

on how the overall model operates, which in this case

seemed to relate to an increased collinearity between

roughness and harmonicity.

The additional analysis of the predictor matrix with the

principal components addressed the problematically high

collinearity between predictors representing roughness and

harmonicity. Although the ensuing models with principal

components or predictors best capturing the components

scores did not improve the model beyond the level already

offered with the Eero21 model, the model with PCA com-

ponents or predictors representing the components

removed the collinearity of the predictors and allowed to

estimate the independent contributions of the revised fea-

ture categories (roughness/harmonicity, familiarity, spec-

tral envelope) to the variance in the C/D ratings. It

remains to be seen whether the problematic multicollinear

predictors can be set apart in other ways in future analyses

or datasets. Manipulating the intonation of the intervals

such as done with Bohlen-Pierce tuning could be one solu-

tion (Smit et al., 2019), and recent empirical data suggests

that harmonicity and roughness exhibit lower correlations

(r(89) ¼ .36) in a sample of BP chords (Friedman et al.,

2021). It might also be possible to postulate models that

selectively apply to extremes of dissonance (roughness) or

consonance (harmonicity) to try to avoid this conundrum.

The alternative approach is to embrace the partial collinear-

ity of these main elements of C/D and concede that rough-

ness, harmonicity, and familiarity all undoubtedly reflect

similar source constraints, namely the physics of natural,

harmonically complex sounds and the properties of the

auditory system, and how both have shaped musical con-

ventions (Parncutt et al., 2019). The assumption that fully

independent predictors can be developed is a challenge, but

if the alternative is to keep working with two influential

feature categories (roughness and harmonicity) that have

avid proponents, conflicting accounts are bound to rise.

We revised and improved the familiarity measure by

simplifying the classification of the chords. We believe that

the elimination of chord inversions made the frequency

distribution of the chords in the corpus more consistent and

closer to the perceptual assessment of the chords. It remains

to be seen whether a better corpus could be established, and

even better if the unit of analysis in the tabulation of chords

corresponds to the way listeners recognize the familiarity

of the chords and intervals. It would be beneficial for future

endeavors in modeling C/D if familiarity could also rely on

acoustic properties, as it would eliminate any need for sym-

bolic representation in the models and would allow for a

greater range of tunings, timbres, and musical conventions

to be readily applied to the model.

We brought the spectral envelope as a new element to C/

D and it turned out to be a significant, albeit small, addition

to the model. However, we think that spectral envelope

might play a more pronounced role once the stimulus mate-

rials in future empirical work span a wider range of regis-

ters and different timbres. This assumption is based on

previous literature where, for instance, sharpness has been

implicated as an important factor contributing to conso-

nance/dissonance perception in addition to roughness and

tonalness, that is, periodicity/harmonicity (see Zwicker &

Fastl, 1990, p. 313). Moreover, Lahdelma and Eerola

(2016) have empirically demonstrated that chords played

in a higher register tend to be perceived as more dissonant

than chords in a lower register. In their study, this observa-

tion was explained indeed with the effect of sharpness: the

higher-register chords were lower in roughness but higher

in sharpness compared to the lower-register chords, where

the ratio between these two acoustic factors was the

opposite.

Conclusions

The musical and acoustical aspects of C/D have not yet

been fully accounted for. Despite the impressive and sys-

tematic work by Harrison and Pearce (2020), the present

study is able to offer novel elements to this question and
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also to expose some shortcomings in the state-of-the-art

C/D research. We do this using an unprecedented amount

of data that consists of three individual-level datasets

and nine datasets with mean ratings encompassing 600þ
stimuli which together span an excellent variety of chords

and intervals. In the process, we offer several new predic-

tors of C/D representing familiarity and a new category of

predictor in the form of spectral envelope. The new pre-

dictors, namely CorpPop (familiarity) and SpIrreg
(spectral envelope), made their way into the new model

and offered substantial improvements over the past predic-

tors in a rigorous series of statistical comparisons. We also

release a new dataset, labeled the Durham Chord Dataset

(DCD), which helped us to assess the underlying structure

behind the large set of proposed predictors. We believe this

dataset can also stimulate future research and we encourage

its use by researchers interested in the research topic at

hand.

In all of these datasets, the central problem for modeling

C/D is the high collinearity between the predictors, mainly

between roughness and harmonicity. When roughness was

represented with the model by Hutchinson and Knopoff

(1978) and harmonicity with Stolzenburg’s model (2015),

the correlations between these two variables was -0.65,

-0.83, and -0.81 in Experiments 1, 2, and 3. The attempt

to untangle their unique contribution to C/D ratings with

partial and semi-partial correlations in Experiments 2 and

3 needs to keep in mind the caveat relating to the collinear-

ity between the variables, which renders the interpretation

of the unique contributions of the predictors rather volatile.

In this study, the decision was to take the feature categories

as given and analyze the feature category membership with

hierarchical cluster analysis in Experiment 1, which pre-

served the separation of roughness and harmonicity mainly

because the predictors in these two categories have the

opposite signs in the correlations. In Experiment 2, any

predictor that improved the prediction rate within the fea-

ture category was taken as a better alternative predictor of

that feature category. In Experiment 3, an alternative fea-

ture reduction was carried out, which first identified three

independent principal components that captured 69% in the

covariance of the original 22 predictors. When these three

components were used in linear regression, they explained

66% of the variance in C/D ratings. Most importantly, the

component contributions in the regression analysis sug-

gested that the component that captures familiarity

accounts for 46.2% (sr ¼ 0.68) of the variance, whereas

roughness/harmonicity represented by a single component

accounted for 19.4% of the variance (sr ¼ -0.44). The

results of this alternative analysis offer an interesting sim-

plification of the feature categories that allows to keep the

categories unassociated from each other. However, the

model based on the principal component analysis is not too

elegant, simple, nor is it the best model in this data, but it

points to a possible way to eliminate redundant categories

of C/D features in future analyses. Further research might

identify other ways to segment C/D into meaningful

elements.

While it is early to decisively conclude the exact anat-

omy of C/D, the current investigation has offered new per-

spectives to the topic. If future research wishes to pursue

the independent feature categories, we may have come full

circle in identifying the anatomy of C/D; as Johnson-Laird

et al. (2012) point out, von Helmholtz drew the conclusion

that the perception of C/D is dependent both on a psychoa-

coustic and on a cultural factor. Also, excluding spectral

envelope from future models of C/D might be ill-advised,

and there is still a host of additional factors to be explored,

including loudness, which might influence dissonance rat-

ings (see Kameoka & Kuriyagawa, 1969; Mashinter, 2006).

We hope that the present findings inspire the field to inves-

tigate the topic with a more versatile set of stimuli (e.g.,

multiple registers, dynamics, timbres) and to continue to

use open datasets and libraries to further tease apart the

roles of acoustic and cultural predictors in the fascinating

question of consonance and dissonance.
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