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ABSTRACT 
 
Confirmation bias—the tendency to overweight information that matches prior beliefs or 
choices—has been shown to manifest even in simple reinforcement learning. In line with 
recent work, we find that participants learned significantly more from choice-confirming 
outcomes in a reward-learning task.  What is less clear is whether asymmetric learning 
rates somehow benefit the learner. Here, we combine data from human participants and 
artificial agents to examine how confirmation-biased learning might improve performance 
by counteracting decisional and environmental noise. We evaluate one potential 
mechanism for such noise reduction: visual attention—a demonstrated driver of both 
value-based choice and predictive learning. Surprisingly, visual attention showed the 
opposite pattern to confirmation bias, as participants were most likely to fixate on “missed 
opportunities”, slightly dampening the effects of the confirmation bias we observed. 
Several million simulated experiments with artificial agents showed this bias to be a 
reward-maximizing strategy compared to several alternatives, but only if disconfirming 
feedback is not completely ignored—a condition that visual attention may help to enforce.  
 
 
INTRODUCTION 
 

Thriving in complex environments requires efficiently learning from the 
consequences of our actions. By this standard, decision making often appears persistently 
suboptimal due to various biases. Especially pervasive is confirmation bias, a tendency to 
learn from new information in a way that confirms prior beliefs (Nickerson, 1998). 
Confirmation bias is thought to explain an array of socially significant phenomena, 
including political polarization (Kaplan et al., 2016; Lord et al., 1979; Nyhan and Reifler, 
2010; Taber and Lodge, 2006), radicalization (Rollwage et al., 2018), and the 
underestimation of risks posed by threats such as climate change (Kahan et al., 2012).  
 

Recently, several studies have indicated that confirmation bias may influence even 
basic cognitive functions (Bronfman et al., 2015; Fontanesi et al., 2019; Palminteri et al., 
2017; Urai et al., 2019), including processes as fundamental as reinforcement learning 
(Fontanesi et al., 2019; Palminteri et al., 2017). Participants have shown higher learning 
rates for outcomes that reinforce a choice—outcomes reflecting either that the choice was 
rewarded or that the unchosen option would have gone unrewarded if selected. This work 
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suggests that confirmation bias, famous for its social and political significance, may in fact 
have its roots in the basic mechanics of reinforcement learning (Palminteri et al., 2017).  
 

One largely unexplored possibility is that confirmation bias, like social-projection 
bias (Tarantola et al., 2017), benefits decision making by counteracting the effects of noise 
in both the environment (options with high reward rates sometimes yield neutral or bad 
outcomes) and the agent’s choice process (neural noise may cause less desirable choices). 
We interrogated this possibility by testing two related hypotheses. First, given the 
suggested noise-reducing role of visual attention during value-based choice (Krajbich & 
Rangel, 2012; Krajbich et al., 2010, 2011; Towal et al., 2013), we tested whether 
confirmation-biased reward learning stems from biased attention to choice-confirming 
feedback. And second, we tested whether confirmation bias leads to better performance 
during reward learning compared to other strategies (see Qiu et al., 2020; Rollwage et al., 
2020). To address these questions, we collected eye-tracking and choice data from 
participants during a reinforcement learning task. We then compared performance data 
from different populations of artificial agents programmed with various combinations of 
choice- and outcome-contingent learning rates.  
 

In line with recent work (Palminteri et al., 2017), participants showed substantially 
higher learning rates for choice-confirming outcomes than for choice-disconfirming 
outcomes. However, these differences were not driven by differences in visual attention. 
Rather, participants fixated the most on outcomes indicating missed opportunities—
rewards accruing to unchosen options on trials where the chosen option went unrewarded. 
While it drew the most attention, this was the feedback from which participants learned 
the least. But despite this stark difference, we nevertheless found a positive main effect of 
fixation times on learning rates. In other words, more time spent looking at the outcome 
associated with a specific choice option on a given trial predicted higher learning rates for 
that choice option. In this way, visual attention may serve to dampen the opposing effects 
of an independently acting confirmation bias.  
 

In addition, artificial agents that exhibited confirmation bias earned significantly 
more rewards on average than unbiased or differently biased actors. But agents that 
completely ignored choice-disconfirming outcomes did not fare as well. These results show 
that certain levels of confirmation bias—but not total blindness to disconfirming 
evidence—can help optimize reward learning in noisy environments. When, as in the real 
world, choices and rewards are stochastic, using previous choices as a kind of evidence 
may improve performance by counteracting some of this noise. These results may also 
shed light on the benefits and dangers of confirmation bias in more complex contexts, such 
as the consumption of false news stories and the perpetuation of filter bubbles (Knobloch-
Westerwick, Mothes, & Polavin, 2020; Spohr, 2017).  
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RESULTS 
 
Confirmation Bias in Learning Rates 
 

We first tested whether participants would exhibit the same confirmation bias in 
reinforcement learning that others have observed (Palminteri et al., 2017). Thirty 
participants underwent eye tracking while completing a standard two-armed bandit 
reinforcement learning task. One participant was excluded for failing to learn (see 
Methods). Participants were asked to choose between two symbols, each with an 
independent probability of yielding a fixed monetary reward. After each choice, either an 
orange or a purple box was displayed around each symbol for three seconds (Fig. 1). The 
color of the box indicated whether a reward was (or, in the case of the unchosen symbol, 
would have been) earned.  
 
 

 
 
Figure 1. Learning task. Participants were asked to choose between one of two symbols on each trial, 
each with their own independent probability of yielding a reward. Once a choice was made, outcomes 
were displayed for both symbols after the participant fixated on a center marker for one second. Because 
the symbols’ reward probabilities were independent, sometimes both options yielded a reward, 
sometimes only one did, and sometimes neither did. The color of the box indicated the outcome (or, for 
the unchosen symbol, the foregone outcome). The color assigned to each outcome was counterbalanced 
across participants. Four different symbols were arranged in six unique pairs, and each pair was 
presented 40 times for a total of 240 trials. Each pair was roughly evenly spaced and left-right 
counterbalanced within blocks of 12 trials (see Methods). 
 

 
Because participants were shown the outcomes of both options they had the 

opportunity to learn the value of each symbol regardless of their choice. Thus the task 
structure allows for the possibility of one fixed learning rate independent of choices and 
outcomes, and makes exploration unnecessary, allowing participants to focus exclusively 
on reward maximisation.  Each symbol’s actual reward probabilities were independent and 
changed throughout the course of the task according to a random walk (Fig. 2). Across all 
trials, participants chose the better option—the option with the higher reward 
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probability—three quarters of the time (mean=0.75; SEM=0.005, clustered by participant). 
Participants’ choices were rewarded an average of 62 percent of the time (mean=0.62; 
SEM=0.006, clustered by participant). We noted that participants tended to spend a 
substantial portion of the three-second feedback period fixating on the center of the screen 
rather than the outcomes (see Fig. 5). This reduced the risk of a ceiling effect, since 
fixations on outcomes were less likely to be cut short by the end of the feedback period. 
 

 
Figure 2. Actual reward probabilities (left) and modeled Q values (right) for Participant 25, shown as an 
example. Actual reward probabilities for the four symbols were initialized at 0.2, 0.4, 0.6, and 0.8, 
assigned randomly to different symbols. Each time the symbol was displayed during a trial, its actual 
reward probability increased or decreased randomly by 0.03, but was constrained within 0 and 1. The 
right-hand plot shows each trial’s mean Q value estimates from Model 6. All Q values were initialized at 0. 

 
 
 We modeled participants’ learning using a standard reward prediction-error 
reinforcement learning algorithm (Bush and Mosteller, 1951; Wakins and Dayan, 1992; 
Rescorla and Wagner, 1972) in which participants independently update the expected 
value of each symbol based on previously observed feedback. We compared five models 
with different learning-rate functions (Fig. 3). Model 1 used a fixed learning rate, and 
Models 2 through 4 allowed a symbol’s learning rate on a particular trial to vary based on 
whether the symbol was rewarded (Model 2), chosen (Model 3), or an additive 
combination of both (Model 4). Model 5, the confirmation-bias model, allowed learning 
rates to vary based on the confirmatory nature of the feedback. (See Methods for model 
specifications.) An outcome was confirmatory when it showed a reward for a chosen option 
or no reward for an unchosen option. An outcome was non-confirmatory when it showed 
no reward for a chosen option or a reward for an unchosen option. Model 5 was the most 
predictive (ELPD=-2550.5, SE=47.2) compared to the second-best, Model 4 (ELPD=-2596.7, 
SE=47.0; difference=46.2, SE=18.2; see Methods for model-fitting and model-comparison 
procedures).  
 

To test whether learning rates were sensitive to visual attention, we then added 
outcome fixation times to Model 5. This model (Model 6) was significantly more predictive 
than Model 5 (ELPD=-2510.0, SE=47.1; difference=40.4, SE=10.4; see Methods for model 
specification). The parameters estimated from Model 6 yielded two main findings. First, 
consistent with previously published work (Palminteri et al., 2017), learning rates were 
highest for confirmatory outcomes—that is, for chosen symbols when they were rewarded 
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(mean=0.14, SE=0.03 clustered by participant) and for unchosen symbols when they were 
not rewarded (mean=0.16, SE=0.03 clustered; Fig. 4, left). Learning rates were much lower 
for rewarded unchosen symbols (mean=0.05, SE=0.03 clustered) and unrewarded chosen 
symbols (mean=0.05, SE=0.02 clustered).  
 

Second, the time spent fixating on a symbol during the feedback period had a 
positive effect on learning rates, as indicated by the group mean parameter estimate (group 
mean estimate=1.86, SE=0.56). In other words, fixating on a symbol’s outcome predicted 
greater learning from that outcome. 

 

 

 

Figure 3. Learning model comparisons and parameter estimates. (top) Model 5 was significantly more 
predictive than the runner-up, as measured by the expected log predictive density for data from a new 
experiment. Model 6 was significantly more predictive than Model 5. *p<0.05, two-tailed. (bottom) 
Distributions indicate the uncertainty around the group mean parameter estimates for Model 6 and are 
kernel density smoothed.    

 
Fixation patterns 
 

Fixation times themselves showed a strikingly different pattern from participants’ 
learning rates. When they were shown feedback, participants fixated most on rewarded 
unchosen symbols (mean=508ms, SE=58 clustered by participant) and fixated least on 
unchosen symbols that were not rewarded (mean=252 ms, SE=35 clustered; Fig. 4, right). 
In other words, despite a positive effect of fixation time on learning rates, fixations 
themselves seemed to concentrate most on the outcomes from which participants learned 
the least. 
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Figure 4. Learning rates and fixation times during feedback. (left) Learning rates were highest for chosen 
symbols when they were rewarded and for unchosen symbols when they were not rewarded. (right) By 
contrast, mean fixation times during the feedback phase were highest for unchosen symbols when they 
were rewarded and lowest for unchosen symbols when they were not rewarded. Learning rates are based 
on the mean estimates from Model 6 for each trial. Error bars indicate bootstrapped standard errors 
clustered by participant. Fixation data reflect 6,894 trials, which exclude 66 trials due to recording errors; 
these missing values were interpolated for the learning model. 

 
Closer inspection revealed that the difference observed in fixation times was driven 

by trials in which the outcomes for the two items differed. Participants were more likely to 
look at a symbol’s outcome if it was rewarded and the other symbol was not (Fig. 5, top 
panels). (Because each symbol’s outcome was independent, there were many trials in 
which neither symbol [23%] or both symbols [24%] were rewarded; see Fig. 5, bottom 
panels.) Participants were also more likely to fixate on at least one item during feedback if 
both outcomes disconfirmed their choice—that is, when the chosen symbol was 
unrewarded and the unchosen symbol was rewarded (a “missed opportunity” trial; Fig. 5, 
top right). We ran a multi-level logistic regression analysis predicting whether a participant 
fixated on a symbol’s outcome, treating each participant as a random effect with respect to 
the intercept. This analysis showed significant positive fixed effects of reward difference (-
1 or 1) between an item and the other item on the screen (𝛽=0.35, SE=0.02, z=14.5, p<10-

15) and whether feedback indicated a missed opportunity (𝛽 =1.51, SE=0.06, z=23.3,  p<10-

15). There was also a small positive effect of the absolute value of the Model 6 prediction 
error for that symbol (𝛽 =0.26, SE=0.06, z=4.2, p<10-4), suggesting that the magnitude of 
surprise can independently draw attention to an outcome.  Collectively, these results 
suggest that participants paid most attention to trials where the outcome between the two 
options differed. In these situations, visual attention shows a disconfirmation bias, the 
opposite pattern from what we see in the learning rates. 
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Figure 5. Probability of fixating on a symbol when its outcome was presented. Participants were more 
likely to look at a symbol’s outcome when it was rewarded and the other symbol presented was not (top 
panels, top left 38% of trials, top right: 15% of trials), compared to trials in which rewards accrued to both 
symbols (bottom left: 24% of trials) or neither symbol (bottom right: 23% of trials). In addition to this effect, 
participants were more likely to look at either symbol’s outcome in missed-opportunity trials, in which the 
chosen item was unrewarded and the unchosen item was rewarded (top right). Error bars indicate 
bootstrapped standard errors clustered by participant. Fixation data reflect 6,894 trials, which exclude 66 
trials due to recording errors. 
 

We also examined how long participants spent fixating on an outcome in the 52 percent of 
trials in which they fixated on either outcome at all. Fixation times in these cases showed a 
similar pattern (see Supplementary Materials). 
 
 These sets of fixation results stand in stark contrast to the learning rates revealed by 
our most predictive choice model. While participants’ attention was drawn most to 
feedback suggesting they made a mistake, this was the feedback that updated learned 
values the least. 
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Effects on performance 
 

As in recent studies, our results showed participants to be strikingly asymmetrical 
in how they learned from the outcomes of their choices. They learned roughly three times 
as much from outcomes that seemed to confirm their choices—rewards for chosen symbols 
and non-rewards for unchosen symbols—than from outcomes that did not. Is this a 
reward-maximizing strategy, or does it lead to worse performance? 
 

To answer this question, we ran a series of simulated experiments and compared 
the average number of rewards earned by artificial agents programmed to exhibit one of 
three different learning strategies. In the first, observed strategy, agents adopted the 
learning strategy observed in our human participants. We programmed the agents to use 
the four mean learning rates observed in each of the choice-reward conditions (chosen 
rewarded=0.14, chosen unrewarded=0.05, unchosen rewarded=0.05, unchosen 
unrewarded=0.16) and apply them in the same way during our simulated experiments. In 
the second, highest learning strategy, agents applied the highest of these observed learning 
rates (0.16) equally to all choice-reward conditions. In the third, average learning strategy, 
agents used the average observed learning rate (0.11) and applied it equally to all choice-
reward conditions. The softmax inverse temperature for all agents was set to 8.07, the 
mean of the group mean parameter estimate recovered from our human participants using 
Model 6. This ensured that all agents exhibited the same amount of stochasticity in 
converting learned Q-value differences into choices. 

 
We first ran 100,000 simulated experiments for each of the three agent populations 

and compared the mean number of rewards they earned over the course of learning. We 
found that the observed strategy, while disadvantaging agents’ performance at the 
beginning of learning compared to the alternative strategies, quickly led to a sustained 
performance advantage (Fig. 7), suggesting that the strategy we observed in our human 
participants may be tuned to maximize long-term reward rates.   

 
 

  
Figure 6. Performance of artificial agents using different learning strategies. (left) Mean rewards per trial 
from agents using the choice- and reward-dependent learning rates observed in our participants (red) 
compared to agents applying single learning rates equally to all outcomes (𝛼 = 0.16, yellow; 𝛼 = 0.11, 
blue). Performance plateaued at a higher level for the observed compared to the other two strategies 
(inset shows means for the last 120 trials). (right) The mean reward from the highest (yellow) and 
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average (blue) minus the observed strategy. While the observed strategy disadvantaged performance at 
the beginning of learning, it quickly led to a sustained advantage. Each strategy was simulated 100,000 
times. 

  
 

We then compared the mean asymptotes—the average performance during the last 
120 trials—of a number of different combinations of confirmatory (chosen 
rewarded/unchosen unrewarded) and non-confirmatory (chosen unrewarded/unchosen 
rewarded) learning rates (Fig. 8). We found that the observed strategy yielded the best 
sustained performance of any combination tested. We also noted a stark asymmetry along 
the diagonal, indicating that learning more from confirmatory than non-confirmatory 
outcomes—in other words, exhibiting a confirmation bias—provides clear advantages for 
many different learning-rate combinations. 
 

 

Figure 7. Mean sustained performance for different combinations of confirmatory and non-confirmatory 
learning rates. The observed strategy (black border) outperformed all others in the task. Each cell 
represents the mean reward outcome for 100,000 simulated participants in the last 120 trials. 

   
 
While the differences in reward probabilities appear small, we note that the total 

range of potential rewards was fairly constrained due to the design of the experiment. A 
test run of 100,000 simulated experiments showed that in only 67 percent of trials did the 
option with the higher actual reward probability yield a reward outcome. In other words, a 
perfect learner—an agent who chose the better option on every trial—would be rewarded 
only 67 percent of the time. And in 24 percent of trials, neither option was rewarded, 
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meaning that even an omniscient agent would be rewarded only 76 percent of the time. By 
comparison, agents who chose at random (with learning rates set to 0) were rewarded 50 
percent of the time.  

 
While confirmation-biased agents showed clear performance advantages, these 

results also showed that completely ignoring non-confirmatory outcomes can hurt 
performance. Agents with non-confirmatory learning rates set to zero performed worse 
than many others, including some unbiased agent populations. This suggests that, while a 
confirmatory asymmetry in learning rates may be beneficial, learned values should still be 
somewhat sensitive to evidence that a previous choice was incorrect. The eye-gaze patterns 
we observed in our human participants may help to enforce this kind of open-mindedness, 
since visual fixations, which were drawn to choice-disconfirming evidence, also boosted 
learning rates for that evidence. 

 
Lastly, we simulated the performance of two alternative types of learning strategies 

explored in previous literature: one in which learning rates differed depending on whether 
an item was rewarded or not, regardless of whether it was chosen (Cazé and Van Der Meer, 
2013; Lefebvre et al., 2017; Palminteri et al., 2017; Perez and Dickinson, 2020); and one in 
which learning rates differed depending on whether an item was chosen or not, regardless 
of whether it was rewarded (Boorman et al., 2011; Li & Daw, 2011). In neither of these 
cases did any combination tested outperform a strategy using a single learning rate of 0.10 
for all outcomes (Fig. 9). These strategies were even outperformed by several 
confirmatory/non-confirmatory strategies that performed worse than the strategy 
observed in our participants. 

 

  

Figure 8. Mean sustained performance for different combinations of rewarded/non-rewarded learning 
rates (left) and chosen/non-chosen learning rates (right). In none of the combinations tested did 
performance exceed that of an unbiased learner with a simple learning rate of 0.10 for all outcomes. 
Consequently, none of these strategies reached the level of performance of many of the 
confirmatory/non-confirmatory strategies shown in Figure 8. Each cell represents the mean reward 
outcome for 100,000 artificial agents in the last 120 trials. 
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DISCUSSION 
 

Our results reveal a surprising dissociation between the drivers of learning and the 
drivers of visual attention during the feedback period. While visual attention toward an 
outcome was positively associated with increased learning from that outcome, it was not 
the primary driver of learning. Participants were most likely to look at outcomes during 
trials in which the chosen item was not rewarded and the unchosen item was—the 
outcomes from which they learned the least. Fixation probabilities and fixation times for an 
outcome were also predicted by the reward difference between that outcome and the other 
outcome presented on the screen. Participants’ eyes were drawn more to the rewarded 
outcome than the unrewarded one. When neither or both items were rewarded, there was 
no difference.  

 
These effects suggest that visual attention in this context may serve chiefly to orient 

participants toward salient features in the visual field, including evidence that they made a 
mistake. This is supported by the additional positive effect we observed of prediction 
errors on fixation probabilities. In this way, given the effect of fixation time on learning 
rates, visual attention may serve to tamper the confirmation bias, helping to ensure that 
participants do not unduly ignore choice-disconfirming outcomes.  

 
These results offer some new insight into the role of attention in learning more 

generally. To our knowledge, this is the first study to examine the relationship between 
learning and visual attention toward outcomes. Of course, attention in Pavlovian and 
instrumental learning has been a topic of inquiry for many decades (Beesley et al., 2015; 
Mackintosh, 1975; Pearce and Hall, 1980; Pearce and Mackintosh, 2010; Le Pelley, 2004; Le 
Pelley et al., 2011; Thrailkill et al., 2018). But this previous work has focused on the 
attention paid to stimuli that predict outcomes—and how human and non-human animals 
learn to discriminate important cues in the environment from irrelevant ones—rather than 
the attention paid to the outcomes themselves. Our results suggest that visual attention 
toward outcomes may help to store reward associations, much like fixations during value-
based choice may help to retrieve them (see Cavanagh et al., 2014; Krajbich et al., 2010, 
2012; Krajbich & Rangel, 2011; Towal et al., 2013). But our results also call into serious 
question the notion that visual attention during feedback is a primary driver of 
reinforcement learning. An apparently independent confirmation bias was much more 
impactful.  
 

Results from our artificial agents revealed that this bias—being more sensitive to 
choice-confirming outcomes—can lead to a sustained performance advantage compared to 
neutral learning strategies. A key reason for this might be that exaggerating differences in 
learned values helps counteract the noise inherent in the choice process (Cazé and Van Der 
Meer, 2013; Tarantola et al., 2017; Tsetsos et al., 2016). Because choices are stochastic, the 
agent does not choose the option with the higher learned value one hundred percent of the 
time. Rather, the probability of choosing the option with the higher value increases as the 
difference in the values increases. For this reason, exaggerating this difference through a 
learning bias might result in better choices more often (Cazé and Van Der Meer, 2013; 
Tarantola et al., 2017). For this reason, biasing value updates in the direction of prior 
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choices—which are correct more often than not—may help to reduce the incidence of 
stochastic errors. It may also help minimize the effect of external noise caused by the 
natural stochasticity in choice outcomes, allowing agents to downplay the effect of 
misleading feedback, such as the occasional foregone reward from a normally bad choice or 
a missed reward from a normally good choice. In essence, participants may be using their 
prior choices as useful evidence when updating learned values.  

 
This explanation may also apply to the more complex yet fundamentally similar 

findings in the psychological literature on confirmation bias. Just as there is noise in the 
reward environment—sometimes a bad choice yields a good outcome, and vice versa—
there might be noise in the social and political environment, where some information may 
be similarly unreliable. In the same way that we use prior choices as evidence to inform 
subsequent choices, we might use prior attitudes as evidence to inform future attitudes and 
insulate them against noise. Consequently, the type of political polarization observed in 
previous studies (Lord et al., 1979; Taber and Lodge, 2006) also resembles the polarization 
of 𝑄 values that leads to better performance (Cazé and Van Der Meer, 2013).  
 

But our results also yield an important caveat. While they show a clear advantage of 
confirmation bias in reinforcement learning, they also show that choice-disconfirming 
outcomes should not be ignored altogether. Agents with non-confirmatory learning rates 
set to zero achieved worse asymptotic performance compared to many other learning-rate 
combinations, including the best-performing unbiased strategy. This makes intuitive 
sense—while treating prior choices as evidence can help us cut through noise, we should 
not be totally blind to evidence suggesting that our choices might have been wrong. The 
same could be said for decisions of social and political importance. While confirmation bias 
in these more complex contexts might still offer some advantages, total insulation from 
disconfirming evidence—caused by filter bubbles, for example—can hinder collective 
responses to significant public risks. 

 
 
 
METHODS 
 
Experimental procedure 
 

Participants completed a two-armed bandit task with the aim to maximize their 
earnings. Each bandit symbol had the same reward magnitude (2.08 pence), but the 
underlying rate of reward differed. On each trial, two symbols were shown and participants 
made their choice with a key press. Following the choice, a circle appeared at the center of 
the screen to cue participants to fixate on the center before receiving feedback. Once 
participants fixated on the center circle for one second, the circle disappeared and boxes 
appeared around the symbols. The boxes were either orange or purple, the color indicating 
whether or not the bandit was rewarded. (The colors associated with reward and non-
reward were counterbalanced across participants). The reward probabilities of the bandits 
were independent, so for any given trial both symbols could yield a reward, neither symbol 
could yield a reward, or one could yield a reward but not the other. To control for possible 
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generalization effects, the symbols were chosen from a previous study that demonstrated 
little to no generalization between pairs of these stimuli (Pérez et al., 2018). Participants’ 
eye movements were recorded during all phases of each trial. Participants first completed 
20 practice trials with two symbols that had stable reward rates (0.75 and 0.25) in order to 
familiarize themselves with the task structure and to make sure they understood the aim of 
the task. The practice trials did not count toward their earnings. 
 

After the practice block, 240 main trials were administered. These trials had four 
different symbols, making six unique pairs that were each shown 40 times. The position of 
the bandits on the screen was counterbalanced for each pair within each 12-trial block. The 
four bandits started with reward rates of 0.2, 0.4, 0.6 and 0.8, assigned to random symbols 
at the beginning of the session. The reward rates for the main symbols were not stable 
throughout the experiment. Each time a symbol was shown, its reward rate changed by 
0.03. If the reward rate of a bandit reached 0 or 1, it bounced to 0.03 or 0.97, but otherwise 
they were equally likely to increase or decrease. Participants were informed that the 
reward rates of the bandits would change over time. 
 
 
Participants 

 
Thirty participants took part in the study. One participant was excluded for failing to 

meet our a priori inclusion criterion, which required that a logistic model including each 
trial’s difference in actual reward rates significantly predict each participant’s choices 
better than an intercept-only model. (This was not the case for the excluded participant, 
p=.70.)  The final sample therefore included 29 participants (20 female) with a mean age of 
26 (sd=6.37). All participants gave informed consent and were paid a £10 show-up fee and 
2.08 pence per reward (a maximum of £5). The protocol was approved by the internal 
ethics committee of the Department of Psychology at the University of Cambridge. 
 
 
Eye tracking 

 
Eye movements were recorded at 1,000Hz with an EyeLink 1000 Plus eye-tracker 

(SR-Research, Ontario). Interest areas were predefined as two rectangular areas (400 x 329 
pixels) containing the symbols. These areas had the same dimensions and positions as the 
outcome boxes but were only visible when outcomes were presented.  
 
 
Computational modeling  
 

We modeled participants’ learning using a simple Q-value update algorithm: 
 
 

𝑄𝑡+1 = 𝑄𝑡 + 𝛼𝑡(𝑟𝑡 − 𝑄𝑡) 
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where 𝑡 is the trial number for that particular symbol (equal to the number of times that 
particular symbol has been presented so far), 𝑟 ∈ {0, 1} is a Kronecker delta indicating 
whether that symbol yielded a reward on trial 𝑡, and 𝛼 is the learning rate. The learning 
rate indicates the extent to which a participant’s perceived expected value of a particular 
symbol, 𝑄, is updated with each new outcome. A higher learning rate means that a 
participant updates her estimate of the symbol’s value to a greater degree based on a new 
piece of information. The learning rate also defines the magnitude with which participants 
weight recent feedback more heavily than less recent feedback. 
 

We used a softmax choice rule to model each response as a function of differences in 
𝑄 values: 
 

𝑃(𝑙𝑒𝑓𝑡)𝑇 =  
1

1 + 𝑒−𝜏(𝑄𝑇
𝑙𝑒𝑓𝑡

−𝑄𝑇
𝑟𝑖𝑔ℎ𝑡

)
 

 
where the probability of a participant choosing the left symbol on experimental trial 𝑇 is a 
logistic function of the difference in 𝑄 values at that trial, weighted by an inverse 
temperature parameter 𝜏, which describes how sensitive choices are to 𝑄 value differences. 
A high inverse temperature means that even a small 𝑄 value advantage makes choosing a 
symbol much more probable, while a low inverse temperature means that the probability 
of choosing a symbol will be less affected by differences in 𝑄 values. In this way, 𝜏 operates 
as an index of noise in the choice process. 
 

We tested five combinations of choice and reward effects on the learning rate, 
defining each learning rate for a particular symbol on trial 𝑡 as a logistic function: 
 

Model 1 𝛼𝑡 =  
1

1 + 𝑒−𝛽0
 

Model 2 𝛼𝑡 =  
1

1 + 𝑒−(𝛽0+ 𝛽𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑 𝑟𝑡)
 

Model 3 𝛼𝑡 =  
1

1 + 𝑒−(𝛽0+𝛽𝑐ℎ𝑜𝑠𝑒𝑛𝑐𝑡)
 

Model 4 𝛼𝑡 =  
1

1 + 𝑒−(𝛽0 + 𝛽𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑 𝑟𝑡 + 𝛽𝑐ℎ𝑜𝑠𝑒𝑛𝑐𝑡)
 

Model 5 𝛼𝑡 =  
1

1 + 𝑒−(𝛽0+ 𝛽𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑 𝑟𝑡 + 𝛽𝑐ℎ𝑜𝑠𝑒𝑛𝑐𝑡 + 𝛽𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑟𝑡𝑐𝑡)
 

 
where 𝑐 and 𝑟 are Kronecker deltas indicating whether the symbol was chosen or 
rewarded, respectively, and 𝛽 terms are their logistic regression coefficients with 𝛽0 
representing the intercept. Model 5 includes their interaction. We defined 𝛼 as a logistic 
function in order to constrain it neatly to between 0 and 1. 
 

Model 6 then added fixation times to the specification for Model 5: 
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Model 6 𝛼𝑡 =  
1

1 + 𝑒−(𝛽0+ 𝛽𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑 𝑟𝑡 + 𝛽𝑐ℎ𝑜𝑠𝑒𝑛𝑐𝑡 + 𝛽𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑟𝑡𝑐𝑡+𝛽𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑓𝑡)
 

 
where 𝑓𝑡 ∈ [0, 1] is the portion of the feedback period spent fixating on the item, and 
𝛽𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 is its logistic regression coefficient. 

 
Learning models were fit using the No-Uturn Sampling (NUTS) algorithm in Stan 2.9 

(Stan Development Team, 2016), a Bayesian sampling method that estimates the most 
likely parameter values while providing a distribution of each value’s likelihood given the 
data. Models were estimated hierarchically, meaning that each participant had their own 
parameter value that was assumed to result from a group distribution defined by 
hyperparameters. This served to constrain participant-level outliers and provide group 
mean estimates for each parameter, an indicator of the likely generative value in the 
sample. We estimated the predictiveness of each model using a leave-one-out cross-
validation procedure, which generates an expected log pointwise predictive density (ELPD) 
for data from a new experiment, as well as a standard error for each ELPD estimate. ELPDs 
were estimated and compared using the LOO package for R (Vehtari et al., 2015)  
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