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Abstract

One of the biases potentially affecting systems engineers is the con-
firmation bias, when instead of selecting the best hypothesis based on
the data, people stick to the previously-selected hypothesis until it is dis-
proved. In this paper, on a simple example, we show how important is to
take care of this bias: namely, that because of this bias, we need twice as
many experiments to switch to a better hypothesis.

1 Formulation of the Problem

Confirmation bias. It is known that our intuitive reasoning shows a lot of
unexpected biases; see, e.g., [2]. One of such biases is a confirmation bias, when,
instead of selecting the best hypothesis based on the data, people stick to the
previously-selected hypothesis until it is disproved. This bias is ubiquitous in
systems engineering; see, e.g., [1, 4, 5, 8].

How important is it to take the confirmation bias into account? Taking
care of the confirmation bias requires some extra effort; see, e.g., [3, 7, 8, 9] and
references therein. A natural question is: is the resulting improvement worth
this extra effort? How better the result will we get?

In this paper, on a simple example, we show that the result is drastically
better: namely, that if we properly take this bias into account, then we will
need half as many experiments to switch to a more adequate hypothesis.
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2 Analysis of the Problem

Description of the simple example. Let us consider the simplest possible
case when we have a parameter a that may be 0 and may be non-zero, and we
directly observe this parameter. We will also make the usual assumption that
the observation inaccuracy is normally distributed, with 0 mean and known
standard deviation σ.

In this case, what we observe are the values x1, . . . , xn which are related to
the actual (unknown) value a by a relation xi = a + εi (i = 1, . . . , n), where
εi are independent normally distributed random variables with 0 means and
standard deviation σ.

Two approaches. In the ideal approach, we select one of the two models – the
null-hypothesis a = 0 or the alternative hypothesis a 6= 0 – by using the usual
Akaike Information Criterion (AIC); see, e.g., [6].

In the confirmation-bias approach, we estimate the value a based on the
observations x1, . . . , xn, and we select the alternative hypothesis only if the
resulting estimate is statistically significantly different from 0 – i.e., e.g., that
the 95% confidence interval for the value a does not contain 0.

What if we use AIC. In the AIC, we select a model for which the difference

AIC
def
= 2k − 2 ln

(
L̂
)

is the smallest, where k is the number of parameters in a

model and L̂ is the largest value of the likelihood function L corresponding to
this model.

The null-model a = 0 has no parameters at all, so for this model, we have
k = 0. For n independent measurement results, the likelihood function is equal
to the product of the values

1√
2π · σ

· exp

(
− x2i

2σ2

)
of the Gaussian probability density function corresponding to these measure-
ment results xi. Thus,

L =

n∏
i=1

1√
2π · σ

· exp

(
− x2i

2σ2

)
and so, for this model,

AIC0 = −2 ln(L) = 2n · ln
(√

2π · σ
)

+
1

σ2
·

n∑
i=1

x2i .

We assume that xi = a + εi, where the mean value of εi is 0 and the
standard deviation is σ. Thus, the expected value of x2i is equal to a2 +σ2. For
large values n, due to the Law of Large Numbers (see, e.g., [6]), the average

1

n
·

n∑
i=1

x2i is approximately equal to the expected value E[x2i ] = a2 + σ2. Thus,
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n∑
i=1

x2i ≈ n · (a2 + σ2) and hence,

AIC0 = 2n · ln
(√

2π · σ
)

+
1

σ2
· n · (a2 + σ2). (1)

The alternative model a 6= 0 has one parameter a, so here k = 1. The
corresponding likelihood function is then equal to

L =

n∏
i=1

1√
2π · σ

· exp

(
− (xi − â)2

2σ2

)
.

We select the parameter a that maximizes the value of this likelihood function.
Maximal likelihood is the usual way of estimating the parameters, which in this

case leads to â =
1

n
·

n∑
i=1

xi. For large n, this estimate is close to the actual

value a, so we have

L̂ =

n∏
i=1

1√
2π · σ

· exp

(
− (xi − a)2

2σ2

)
.

For this model, xi − a = εi, thus,

AIC1 = 2− 2 ln
(
L̂
)

= 2 + 2n · ln
(√

2π · σ
)

+
1

σ2
·

n∑
i=1

ε2i .

For large n, we have
n∑

i=1

ε2i ≈ n · σ2, hence

AIC1 = 2 + 2n · ln
(√

2π · σ
)

+
1

σ2
· n · σ2. (2)

The second model is preferable if AIC1 < AIC0. By deleting common terms
in these two values AICi, we conclude that the desired inequality reduces to

2 <
n · a2

σ2
, i.e., equivalently, to

n >
2σ2

a2
. (3)

What if we use a confirmation-bias approach. In the confirmation-bias
approach, we estimate a – and we have already mentioned that the optimal

estimate is a =
1

n
·

n∑
i=1

xi. It is known (see, e.g., [6]) that the standard deviation

of this estimate is equal to σe =
σ√
n

. Thus, the corresponding 95% confidence

interval has the form [a−2σe, a+2σe]. The condition that this interval does not
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contain 0 is equivalent to |a| > 2σe, i.e., equivalently, to a2 > 4σ2
e . Substituting

the above expression for σe into this inequality, we conclude that a2 > 4 · σ
2

n
,

i.e., equivalently, that

n >
4σ2

a2
. (4)

Conclusion. By comparing the expressions (3) and (4) corresponding to the
two approaches, we can indeed see that the confirmation-bias approach requires
twice as many measurements than the approach in which we select the best
model based on the data.

Thus indeed, avoiding confirmation bias can lead to a drastic improvement
in our estimates and thus, in our decisions.
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