
Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 1 of 16

Hardware Abstraction Layer

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 2 of 16

1 Hardware Abstraction Layer

1.1 Introduction
Hardware Abstraction Layer (HAL) provides function API-based service to the higher-level layers (ex:

Application Framework, customer application, Et cetera) that allows them to perform hardware-

oriented operations independent of actual hardware details. This document provides a detailed

description of the Hardware Abstraction Layer, its architecture, components, and usage model.

1.1.1 Architectural Principles and Assumptions

1.1.1.1 Motivation for developing the Hardware Abstraction Layer
Legacy motor control application note source code projects, i.e. published prior to 2015, use very little

hardware abstraction. They have multiple parts of their code sections accessing hardware/peripherals

using inconsistent interfaces. This presented following challenges:

1. Porting code from one hardware to another requires an extensive search-and-replace operation

2. Each combination of PIM and hardware requires a dedicated release of the code project – this is

very resource-intensive to maintain

3. Algorithm-related code is mixed with hardware access – it is very hard to make algorithm

improvements separate from its hardware dependency.

The development of Hardware Abstraction Layer is intended to solve the above challenges.

1.1.1.2 Design goals
The Hardware Abstraction Layer has been designed with following top-level design targets:

1. Hardware Abstraction Layer should allow customers to generate their board-specific Hardware

Abstraction Layer files with minimal effort,

2. Require minimum execution time overhead,

3. Use modular architecture and

4. Utilize MCC for generating the peripheral device drivers (when available).

1.1.1.3 Compatibility with 8-bit and 32-bit device families
The current implementation of Hardware Abstraction Layer is designed to work with 16-bit device

families, specifically the dsPIC33E family. The architecture of device peripherals such as ADC, DMA,

PWM, QEI and System clock tend to vary across different 16-bit device families. Hence, other 16-bit

device families are compatible with this implementation of Hardware Abstraction Layer to varying

extents depending on features and peripheral architecture of the specific device under question.

This implementation Hardware Abstraction Layer was not designed with an intention to work with 8-bit

and 32-bit device families. Also, while the static function driver approach used in this implementation of

Hardware Abstraction Layer works very well with 8-bit device families, it does make it inefficient with

the 32-bit device families where dynamic driver approach would be more appropriate. Nevertheless the

modular architecture of Hardware Abstraction Layer, in theory, will allow it to replace the current set of

peripheral drivers with plibs while working with 32-bit device families.

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 3 of 16

To summarize, with respect to 8-bit and 32-bit device families:

 Actual implementation of Hardware Abstraction Layer – incompatible

 Interfaces of Hardware Abstraction Layer – currently incompatible. However, adding a thin

‘adapter’ layer with wrapper functions can help fix this to a large extent.

 Architecture of Hardware Abstraction Layer – no perceivable incompatibilities.

1.1.1.4 Support for motor control algorithms
The current implementation of Hardware Abstraction Layer is designed to support Field Oriented

Control algorithms in general and sensorless dual-shunt algorithms (ex: AN1078, AN1292, etc.) in

particular.

Nevertheless, a preliminary analysis shows that the interfaces included with this implementation of the

Hardware Abstraction Layer and its architecture, in general, supports the implementation of following:

1. Single-shunt current reconstruction (AN1299)

2. Sensorless BLDC control with Back-EMF Filtering (six-step commutation; AN1160)

3. Sinusoidal control of PMSM i.e. non-FOC (AN1017)

4. Sensored BLDC control (AN957)

In addition to these, current implementation of Hardware Abstraction Layer also supports any other

newer control algorithms (ex: Direct Torque Control, etc.) that use PWM and ADC modules in a similar

manner as the above listed algorithms.

1.1.1.5 Support for General Purpose applications
The core element of Hardware Abstraction Layer, its Peripheral Drivers, was developed starting from a

general purpose set of peripheral drivers from a different 16-bit device family. Hence, Peripheral Drivers

within the Hardware Abstraction Layer are completely compatible with most of the typical General

Purpose applications.

Apart from this, the other two components of the Hardware Abstraction Layer, Board Support Package

and Hardware Access Functions, are designed specifically to cater to the needs of a typical motor control

application. Nevertheless, the basic architecture of these two components does not prevent addition of

general purpose interfaces. Depending on the specifics of the application under question, additional

interfaces may need to be added to the Hardware Abstraction Layer before it can support General

Purpose applications.

1.1.1.6 Optimizations and Assumptions specific to Motor Control usage
The implementation of the Hardware Abstraction Layer uses following features that are specifically

designed for Motor Control use cases:

1. In order to reduce instruction cycle overhead (Design goals #2) while maintaining modularity (Design

goals #3), Hardware Abstraction Layer extensively uses static inline functions instead of the regular

function calls. Regular function calls incur function call overhead and are used only with peripheral

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 4 of 16

driver initialization functions that are typically not called very often, especially within a timing-

sensitive control loop.

2. Instead of using call-back functions from Interrupt Service Routines (ISR), Hardware Abstraction

Layer uses preprocessor macro definitions for ISR function headers that can be used in the

application. This is, again, targeted to reduce instruction cycle overhead due to function calls.

3. With Design goals #2 in mind, some of the basic Hardware Abstraction Layer operations like SFR bit-

set, SFR bit-clear, SFR read and SFR write operations could have been implemented either using

static inline functions or using preprocessor macros. At this decision point, an assumption was made

to use the static inline functions rather than preprocessor macros since the compiler has more

“visibility” into static inline functions compared to a typical preprocessor macro that gets processed

before the compiler has a chance to look at it. This choice of using static inline functions enables the

compiler to make better optimizations in the application compared to the preprocessor macros.

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 5 of 16

1.2 Components of Hardware Abstraction Layer
Figure 1 shows a representative block diagram of the Hardware Abstraction Layer in relation to the MC

Application Framework and the customer application.

Figure 1: Block diagram of Hardware Abstraction Layer

1.2.1 Peripheral Drivers
This module provides simple functions that access the device peripherals directly. Peripheral driver

functions have function names with a prefix correlated to the specific device peripheral that they

service. For example, peripheral driver functions for ADC1 module have function names with a prefix of

ADC1_. A few additional examples are listed below:

ADC1_Initialize()

DMA_SoftwareTriggerEnable(DMA_CHANNEL channel)

OSCILLATOR_Initialize(void)

PWM2_DutycycleSet(uint16_t dutyCycle)

QEI1_PositionCount16bitRead(void)

TMR1_Start(void)

Currently, following system functions and device peripherals are supported by the Hardware Abstraction

Layer :

1. System functions

a. Oscillator configuration

b. Device configuration bits

c. CORCON handling

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 6 of 16

d. GPIO configuration with PPS handling

e. Interrupt management for all HAL-supported peripherals

f. Watchdog timer

2. ADC1 module

3. PWM module

4. Timer1 module

5. QEI1 module

6. DMA module

7. UART1 module

NOTE:

 Peripheral driver functions are currently hand-written. These hand-written peripheral driver

functions maintain a similar look and feel as the MCC-generated functions for devices that are

supported by MCC.

 In future, Hardware Abstraction Layer will include support for additional peripherals and also

additional APIs for the currently-supported peripherals.

 In future, support for the current set of peripheral modules will be extended to more

instantiations of these modules (ex: Timer1 -> Timer2, Timer3, etc.) where it is appropriate.

1.2.2 Hardware Access Functions
This module provides functions to interface low-level peripheral drivers in the Hardware Abstraction

Layer with the higher-level application or the Application Framework. This module is a Facade pattern; it

hosts simple wrapper functions that translate into peripheral driver operations as well as more

complicated functions that utilize peripheral drivers to accomplish device/hardware specific operations.

Hardware Access Functions have function names with a prefix HAL_. A few examples are listed below:

HAL_PwmUpperTransistorsOverrideDisable_Motor1(void)

HAL_PwmUpperTransistorsOverrideLow_Motor1(void)

HAL_PwmSetDutyCyclesIdentical_Motor1(uint16_t dc)

HAL_PwmSetDutyCyclesMotor1(const uint16_t *pdc)

This module also provides a set of macro #define names that are intended to provide abstraction from
actual device-specific Interrupt Service Routine (ISR) and Trap function names. A few examples are listed
below:

#define HAL_MATHERROR_TRAP_FUNCTION _MathError
#define HAL_DMAC_TRAP_FUNCTION _DMACError
#define HAL_ADC1_ISR _AD1Interrupt
#define HAL_DMA0_ISR _DMA0Interrupt

These ISR and Trap function names are intended to be used in the end-application with appropriate
compiler attributes.

1.2.3 Board Support Package
The primary objective of the Board Support Package (BSP) module is to provide one access point for

users to modify the hardware mapping details without requiring an extensive search and replace

operation. In order to achieve this objective, the BSP is divided into two inter-dependent interfaces:

https://en.wikipedia.org/wiki/Facade_pattern

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 7 of 16

Application Interface and Peripheral Interface. This type of an approach localizes the behavioral /

functional mapping to the Application Interface while keeping the actual hardware mapping within the

Peripheral Interface.

1.2.3.1 Application Interface
The BSP provides a generic Application Interface to allow an abstracted access from the application to

specific hardware features without dependency on the actual hardware names or their connections. The

actual names of generic application macros defined here should not be changed and can be used in an

application without any dependency on the actual hardware being used. While porting the application

to a different hardware, the mapping definition can be updated to get the desired hardware behavior

while keeping the application code unchanged.

1.2.3.1.1 GPIO Interfaces
General purpose IOs such as LEDs, switches and test points are interfaced in the application using

generic macro names defined here. These macro names are defined to map into the appropriate

Peripheral Interface macros based on the required application hardware behavior. Following code

snippet shows the Application Interface mapping for the dsPICDEM MCLV-2 development board.

#define BSP_LED_GP1 BSP_LATCH_MCLV2_LED_D2
#define BSP_LED_GP2 BSP_LATCH_MCLV2_LED_D17
#define BSP_TESTPOINT_GP1 BSP_LATCH_PIM_TESTPOINT_RD8
#define BSP_TESTPOINT_GP2 BSP_LATCH_MCLV2_TESTPOINT_CANTX
#define BSP_TESTPOINT_GP3 BSP_LATCH_MCLV2_TESTPOINT_CANRX
#define BSP_TESTPOINT_GP4 BSP_PORT_PIM_TESTPOINT_HOME
#define BSP_TESTPOINT_GP5 BSP_LATCH_PIM_TESTPOINT_PGC
#define BSP_TESTPOINT_GP6 BSP_LATCH_PIM_TESTPOINT_PGD
#define BSP_BUTTON_GP1 BSP_PORT_MCLV2_BUTTON_S2
#define BSP_BUTTON_GP2 BSP_PORT_MCLV2_BUTTON_S3

#define BSP_MOTOR1_ADCCHANNEL_POT ANALOG_CHANNEL_AN13
#define BSP_MOTOR1_ADCCHANNEL_VDC ANALOG_CHANNEL_AN10
#define BSP_MOTOR1_ADCCHANNEL_IM1 ANALOG_CHANNEL_AN1

#define BSP_MOTOR1_ADCCHANNEL_IM2 ANALOG_CHANNEL_AN0

#define BSP_MOTOR1_ADCCHANNEL_ISUM ANALOG_CHANNEL_AN2

#define BSP_MOTOR1_PHASEA_CURRENTSENSE() ADC_SH_CHANNEL2()

#define BSP_MOTOR1_PHASEB_CURRENTSENSE() ADC_SH_CHANNEL1()

#define BSP_MOTOR1_PHASEC_CURRENTSENSE() 0

#define BSP_MOTOR1_SUMPHASE_CURRENTSENSE() ADC_SH_CHANNEL3()

#define BSP_MOTOR1_ADC_OUTPUT_POT() ADC_SH_CHANNEL0()

#define BSP_MOTOR1_ADC_OUTPUT_VBUS() ADC_SH_CHANNEL0()

In the code snippet above, the application interface macro BSP_LED_GP1 can be used directly in the

application while the Peripheral Interface macro BSP_LATCH_MCLV2_LED_D2 is defined in the

Peripheral Interface section of the BSP to provide the required peripheral access method.

In addition to this, BSP also provides static inline functions for implementing simple IO operations (ex:

setting a HIGH / LOW state on an LED or a test point, reading the state of a button). A few of these

functions are listed in the code snippet below.

inline static void BSP_LedGp1Activate() { BSP_LED_GP1 = 1; }

inline static void BSP_LedGp1Deactivate() { BSP_LED_GP1 = 0; }

inline static bool BSP_ButtonIsPressedGp1() { return BSP_BUTTON_GP1; }

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 8 of 16

1.2.3.1.2 Analog Interfaces
The Application Interface supports two different types of Analog Interfaces:

Analog multiplexer interface – this is essentially a mapping from Analog signals on the motor control

board to their corresponding Analog channels on the device. This type of interface is useful for devices

that have ADC peripherals with analog input multiplexers that allow a single sample-and-hold channel to

scan multiple device analog input channels, one at a time. The analog multiplexer interface is intended

to be used with an ADC peripheral driver function such as _ChannelSelectSet(), in order to select the

required channel on the ADC input multiplexer. Next, after the sampling and conversion is complete, a

suitable ADC peripheral driver function such as ADC1_ConversionResultChannel0Get() can be used to get

the analog value for the selected analog signal.

For the example shown in Figure 2, we use this type of analog interface to sequentially sample the

Potentiometer (VPOT) and DC bus voltage sense (VDC) inputs as depicted in Figure 2.

#define BSP_MOTOR1_ADCCHANNEL_POT ANALOG_CHANNEL_AN13

#define BSP_MOTOR1_ADCCHANNEL_VDC ANALOG_CHANNEL_AN10

Here, macros BSP_MOTOR1_ADCCHANNEL_POT and BSP_MOTOR1_ADCCHANNEL_VDC can be directly

used in the application framework while ANALOG_CHANNEL_AN13 and ANALOG_CHANNEL_AN10 are

aliases defined by the BSP helper as numbers 10 and 13 respectively.

See 1.3.3.3.3 ADC channel switching for more details on this use case.

Static analog mapping interface – this interface provides direct mapping from Analog signals on the

motor control board to their corresponding ADC channel buffers. This type of analog interface is useful

in cases where an analog signal on the motor control board is connected to a device analog pin that is

always sampled and converted by a dedicated sample-and-hold channel into one of the ADC buffers.

Figure 2 shows a typical case where this type of analog interface is useful. In this case, the motor phase

current sense inputs are simultaneously sampled using sample-and-hold channels CH1, CH2 and CH3.

The Application Interface defines macros to provide a direct mapping between board signal names and

the appropriate peripheral access methods as shown in the snippet below.

#define BSP_MOTOR1_PHASEA_CURRENTSENSE() ADC_SH_CHANNEL2()

#define BSP_MOTOR1_PHASEB_CURRENTSENSE() ADC_SH_CHANNEL1()

#define BSP_MOTOR1_PHASEC_CURRENTSENSE() 0

Here, the peripheral access methods ADC_SH_CHANNEL2() and ADC_SH_CHANNEL1() are defined by

the BSP as aliases of peripheral driver functions ADC1_ConversionResultChannel2Get() and

ADC1_ConversionResultChannel1Get() respectively.

See 1.3.3.3.5 Phase currents for more details on this use case.

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 9 of 16

Figure 2: Analog channel interfaces in a typical application

1.2.3.2 Peripheral Interface
BSP uses the Peripheral Interface to map hardware specific macro names to their corresponding

peripheral driver/access methods. The macros defined in this interface serve only as a means to define

the mapping and should not be directly used in the application/framework. While porting an application

to a different hardware, the macro names defined in this interface should be updated to match the

signal names on the new hardware.

1.2.3.2.1 GPIO Interfaces
Peripheral Interface provides a mapping between hardware specific GPIO macro names and their

peripheral access methods, which in this case are specific bits of the PORT and LATCH registers.

Following code snippet shows the Peripheral Interface mapping for the dsPICDEM MCLV-2 development

board.

#define BSP_PORT_MCLV2_BUTTON_S2 !PORTGbits.RG7

#define BSP_PORT_MCLV2_BUTTON_S3 !PORTGbits.RG6

#define BSP_LATCH_MCLV2_LED_D2 LATDbits.LATD6

#define BSP_LATCH_MCLV2_LED_D17 LATDbits.LATD5

#define BSP_LATCH_PIM_TESTPOINT_RD8 LATDbits.LATD8

#define BSP_PORT_PIM_TESTPOINT_RD8 PORTDbits.RD8

#define BSP_LATCH_MCLV2_TESTPOINT_CANTX LATCbits.LATC8

#define BSP_LATCH_MCLV2_TESTPOINT_CANRX LATCbits.LATC9

#define BSP_LATCH_PIM_TESTPOINT_HOME LATCbits.LATC10

#define BSP_PORT_PIM_TESTPOINT_HOME PORTCbits.RC10

#define BSP_PORT_PIM_TESTPOINT_RD8 PORTDbits.RD8

#define BSP_LATCH_PIM_TESTPOINT_PGC LATBbits.LATB6

#define BSP_LATCH_PIM_TESTPOINT_PGD LATBbits.LATB5

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 10 of 16

These Peripheral Interface macro names (ex: BSP_LATCH_MCLV2_LED_D2) serve only as a means to

define the mapping and should not be directly used in the application/framework.

1.2.3.2.2 PWM channel to Motor phase mapping
The Peripheral Interface also provides the means to define the mapping between PWM channels and

the motor phases. This mapping is not used by the Application Interface; however, it is used in some of

the Hardware Access Functions to automatically adjust for cross-connected phases while using these

macros as index for accessing a 1x3 array of duty cycle values.

Microchip development boards typically have PWM channels mapped linearly to their corresponding

motor phases i.e. PWM1 -> Phase A, PWM2 -> Phase B and PWM3 -> Phase C. The following code

snippet shows the linear mapping for a MCLV-2 development board.

#define BSP_MOTOR1_PHASEA_PWMCHANNEL PWM_CHANNEL1

#define BSP_MOTOR1_PHASEB_PWMCHANNEL PWM_CHANNEL2

#define BSP_MOTOR1_PHASEC_PWMCHANNEL PWM_CHANNEL3

For a custom board with a PWM channel to motor phase mapping as shown in Figure 3, the application

interface mapping will be as shown below.

#define BSP_MOTOR1_PHASEA_PWMCHANNEL PWM_CHANNEL2

#define BSP_MOTOR1_PHASEB_PWMCHANNEL PWM_CHANNEL1

#define BSP_MOTOR1_PHASEC_PWMCHANNEL PWM_CHANNEL3

Figure 3: Custom board with crisscrossed PWM channel to motor phase mapping

1.2.3.3 Summary of BSP interfaces
Figure 4 shows a top-level interface diagram of the BSP.

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 11 of 16

Figure 4: Summary of BSP interfaces

1.3 Usage Model
This section describes the usage model for the Hardware Abstraction Layer.

 Microchip motor control development boards and their compatible PIMs will be supported out-of-

the-box with pre-defined Hardware Abstraction Layer files

 Each Microchip board-and-PIM combination will have one set of Hardware Abstraction Layer files

 End-users will have to create Hardware Abstraction Layer files for their end-

application/development boards. The following section describes steps required to create Hardware

Abstraction Layer files for any given non-Microchip board.

1.3.1 Creating Hardware Abstraction Layer files for a new board
Following are the recommended steps to create Hardware Abstraction Layer files for a new board:

1. Board Support Package

a. Start with a Microchip-developed BSP file bsp.h

b. Update the Peripheral Interface section of the BSP to re-define the hardware mapping.

Rename the existing macros to match the signal label on hardware. If required, define

new macros to provide access to hardware IOs that are not already covered

c. Update the Application Interface section of the BSP to re-define the behavioral mapping

of the hardware. If required, define new macros to provide access to hardware IOs that

are not already covered; however, do not rename the macros that are already defined.

2. Pin manager

a. Start with a Microchip-developed pin manager file pin_manager.c

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 12 of 16

b. Update the PIN_MANAGER_Initialize() to ensure that all GPIOs required by the

application/framework are appropriately setup and their remap configuration correctly

assigned

3. Peripheral drivers

a. Start with a set of Microchip-developed peripheral driver files

b. Update the driver initialization functions XYZ_Initialize()to initialize the

peripherals as required by the application/framework

4. System driver

a. Start with the Microchip-developed system driver files mcc.c and mcc.h

b. Update the device configuration bits as needed by the application/framework

c. Update the OSCILLATOR_Initialize() as required

1.3.2 Using Hardware Abstraction Layer in an application
In order to use Hardware Abstraction Layer functions within an application, follow these steps:

1. Add the Hardware Abstraction Layer files into the MPLAB X project

2. Include mcc.h file in all application source/header files that reference Hardware Abstraction

Layer functions

3. At the device initialization phase in main(), call SYSTEM_Initialize() function to initialize

device peripherals like oscillator, ADC, PWM, etc. In addition to this, individual peripheral driver

initialization functions can be called from the application at a later point of time.

4. When application needs to access a GPIO, use the macro names defined by the BSP Application

Interface in bsp.h file

5. When the application needs to access device peripheral features, use the Hardware Access

Functions defined in hardware_access_functions.h file and/or peripheral driver functions

defined in the corresponding device driver files along with the BSP defined in bsp.h file.

6. Define ISR and Trap functions using the ISR and Trap helper macros included in the

hardware_access_functions.h file. Use void __attribute__((interrupt)) for this purpose and

include either auto_psv or no_auto_psv attribute in the function definition as required by the

application.

Additional details regarding the peripheral driver functions and hardware access functions are

documented in the API documentation (separate document).

1.3.3 Hardware Abstraction Layer usage excerpts from MC Application Framework
As example, this section provides snapshots of Hardware Abstraction Layer usage within the MC

Application Framework.

NOTE: MC Application Framework source code that is quoted in this section may be out of date. Please

use motorBenchTM Development Tool to obtain the latest version of MC Application Framework.

1.3.3.1 System functions
In the application code snippet shown below, the MCAPP_SystemInit() is calling into the Hardware

Abstraction Layer function SYSTEM_Initialize() in order to initialize the device peripherals.

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 13 of 16

void MCAPP_SystemInit(MCAPP_SYSTEM_DATA *psys)

{

 psys->debugCounters.reset = ++MCAPP_resetCounter;

 SYSTEM_Initialize();

MCAPP_ConfigurationPwmUpdate();

MCAPP_InterruptPriorityConfigure();

 ADC1_ModuleEnable();

 MCAPP_DiagnosticsInit();

}

1.3.3.2 Pin manager
The pin manager function of Hardware Abstraction Layer, PIN_MANAGER_Initialize(), is indirectly

accessed by the application framework using the SYSTEM_Initialize() function. The Hardware

Abstraction Layer pin manager performs the following tasks:

1. Initialize LATx and TRISx registers as needed by the application

2. Configure the PPS settings to assign remap IOs to the appropriate device peripherals

1.3.3.3 ADC module

1.3.3.3.1 Potentiometer
The following application code snippet reads the potentiometer input from ADC buffer0 and calculates

the velocity command based on a scaling factor.

uint16_t unipolarADCResult = ADC1_ConversionResultChannel0Get() + 0x8000;

pmotor->velocityControl.velocityCmd = MCAPP_DetermineVelocityCommand(pmotor,

unipolarADCResult);

1.3.3.3.2 VBUS sense
The following application code snippet reads the VBUS sense input from ADC buffer0 and calculates

scaled value of VBUS.

uint16_t unipolarADCResult = ADC1_ConversionResultChannel0Get() + 0x8000;

pmotor->psys->vDC = unipolarADCResult >> 1;

1.3.3.3.3 ADC channel switching
The following application code snippet switches ADC sample-hold channel #0 to read the analog input

connected to the potentiometer (as defined in the BSP).

ADC1_ChannelSelect(BSP_MOTOR1_ADCCHANNEL_POT);

The above code will set the ADC1 input channel #0 select register (AD1CHS0) to a number defined by the

macro BSP_MOTOR1_ADCCHANNEL_POT.

1.3.3.3.4 ADC interrupt service routine
The following application code snippet implements the ADC interrupt service routine using the ADC

peripheral driver.

ADC1_ISR_FUNCTION_HEADER(void)

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 14 of 16

{

 BSP_TestpointGp1Activate();

#ifdef MCAPP_TEST_PROFILING

 motor.testing.timestampReference = TMR1_Counter16BitGet();

#endif

 ADC1_FlagInterruptClear();

 MCAPP_SystemStateMachine_StepIsr(&motor);

 MCAPP_UiStepIsr(&motor.ui);

 MCAPP_MonitorStepIsr(&motor);

 MCAPP_WatchdogManageIsr(&watchdog);

 /* Test and diagnostics code are always the lowest-priority routine

within

 * this ISR; diagnostics code should always be last.

 */

 MCAPP_TestHarnessStepIsr(&systemData.testing);

 capture_timestamp(&motor.testing, 6);

 MCAPP_DiagnosticsStepIsr();

 capture_timestamp(&motor.testing, 7);

 BSP_TestpointGp1Deactivate();

}

Here, function header for the ADC1 interrupt service routine and the ADC1 interrupt flag access macro

are defined by Hardware Abstraction Layer within the hardware_access_functions.h file.

1.3.3.3.5 Phase currents
The following application code snippet reads motor phase currents using the Analog Interfaces.

void MCAPP_FocReadADC(MCAPP_MOTOR_DATA *pmotor)

{

 pmotor->iabc.a = BSP_MOTOR1_PHASEA_CURRENTSENSE();

 pmotor->iabc.b = BSP_MOTOR1_PHASEB_CURRENTSENSE();

1.3.3.4 PWM module

1.3.3.4.1 PWM fault handling
The following application code snippet implements the PWM fault handling routine using the PWM

peripheral driver function.

inline static bool MCAPP_OvercurrentHWDetect(void)

{

 return PWM1_FaultStatusGet();

}

1.3.3.5 QEI module

1.3.3.5.1 Mode initialization
The following application code snippet initializes QEI1 to operate in modulo-count mode.

void MCAPP_InitQEI(MCAPP_QEI_ESTIMATOR_T *pqei)

{

 QEI1_Initialize();

 QEI1_ModuloMode16bitSet(ENCODER_COUNTS_PER_REV);

 QEI1_ModuleEnable();

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 15 of 16

 MCAPP_TrackingLoopInit(&pqei->trackingLoop);

1.3.3.5.2 Position write
The following application code snippet presets the QEI position value in order to correct the offset in QEI

angle.

void MCAPP_AlignQEI(MCAPP_QEI_ESTIMATOR_T *pqei)

{

 /* Reset QEI position count to the motor zero angle */

 QEI1_PositionCountWrite(MCAPP_QEI_ALIGN_COUNT);

}

1.3.3.6 Hardware Access Functions
The following application code snippet limits the three-phase duty cycle values to MIN_DUTY and writes

them to the appropriate PWM channels of motor #1 using Hardware Abstraction Layer.

inline void MCAPP_MotorControllerOnActiveStates(MCAPP_MOTOR_DATA *pmotor)

{

 MCAPP_FocStepIsrForwardPath(pmotor);

 {

 uint16_t pwmDutyCycle[3];

 pwmDutyCycle[0] = UTIL_LimitMinimumU16(pmotor->pwmDutycycle.dutycycle1,

MIN_DUTY);

 pwmDutyCycle[1] = UTIL_LimitMinimumU16(pmotor->pwmDutycycle.dutycycle2,

MIN_DUTY);

 pwmDutyCycle[2] = UTIL_LimitMinimumU16(pmotor->pwmDutycycle.dutycycle3,

MIN_DUTY);

 HAL_PwmSetDutyCycles_Motor1(pwmDutyCycle);

 }

}

The hardware access function HAL_PwmSetDutyCyclesMotor1() takes the three phase duty cycle

values in pwm_dutycycle and writes them to the PWM channels as defined in the BSP.

Rev 1.0

MCU16 © 2017 Microchip Technology Inc. Page 16 of 16

1.4 Revision History
Version Date Author Description

1 24/Feb/2017
Srikar Deshmukh
- C14317

First revision of the document

	1 Hardware Abstraction Layer
	1.1 Introduction
	1.1.1 Architectural Principles and Assumptions
	1.1.1.1 Motivation for developing the Hardware Abstraction Layer
	1.1.1.2 Design goals
	1.1.1.3 Compatibility with 8-bit and 32-bit device families
	1.1.1.4 Support for motor control algorithms
	1.1.1.5 Support for General Purpose applications
	1.1.1.6 Optimizations and Assumptions specific to Motor Control usage

	1.2 Components of Hardware Abstraction Layer
	1.2.1 Peripheral Drivers
	1.2.2 Hardware Access Functions
	1.2.3 Board Support Package
	1.2.3.1 Application Interface
	1.2.3.1.1 GPIO Interfaces
	1.2.3.1.2 Analog Interfaces

	1.2.3.2 Peripheral Interface
	1.2.3.2.1 GPIO Interfaces
	1.2.3.2.2 PWM channel to Motor phase mapping

	1.2.3.3 Summary of BSP interfaces

	1.3 Usage Model
	1.3.1 Creating Hardware Abstraction Layer files for a new board
	1.3.2 Using Hardware Abstraction Layer in an application
	1.3.3 Hardware Abstraction Layer usage excerpts from MC Application Framework
	1.3.3.1 System functions
	1.3.3.2 Pin manager
	1.3.3.3 ADC module
	1.3.3.3.1 Potentiometer
	1.3.3.3.2 VBUS sense
	1.3.3.3.3 ADC channel switching
	1.3.3.3.4 ADC interrupt service routine
	1.3.3.3.5 Phase currents

	1.3.3.4 PWM module
	1.3.3.4.1 PWM fault handling

	1.3.3.5 QEI module
	1.3.3.5.1 Mode initialization
	1.3.3.5.2 Position write

	1.3.3.6 Hardware Access Functions

	1.4 Revision History

