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In this article, we examine posterior probability judg-
ment, which involves one’s assessing the likelihood of
an event by updating a prior probability in light of new
evidence. A normative model for calculating posterior
probabilities is Bayes’s theorem. This theorem states that
p(H |D), the posterior probability that hypothesis H is
true given datum D, can be calculated as follows:

(1)

where p(D |H) and p(D |,H) refer to the conditional
probabilityof observingD, given that hypothesisH is true
and given that the mutually exclusive, alternative hypoth-
esis, ,H, is true, respectively. In Bayesian terms, these
probabilitiesare called likelihoods,whereas the probabil-
ities p(H) and p(,H) are called prior probabilities. Pos-
terior probability judgments are fundamental to belief re-
vision and are involved in many consequential real-world
situationssuch as medical diagnosisor juror decisionmak-
ing. Consider, for example, a physicianwho knows, prior
to the examinationof an individual patient, the probability
that a person will have disease X. If the patient presents

a diagnostic symptom, she will have to update the prob-
ability that he has the disease, given this new observation.
Suppose the physician knows that (1) only 5% of the over-
all population suffers from disease X, (2) 85% of patients
who have the disease show the symptom, and (3) 25% of
healthy patients show the symptom. According to Bayes’s
theorem, the posterior probabilitythat a patientwho shows
the symptom has the disease can be calculated as follows:
p(disease | symptom)= (.853 .05) / [(.853 .05)1 (.253
.95)]5 .15. Thus, there is only a 15% chance that the pa-
tient examined has the disease even though he presents a
highly diagnostic symptom.

The Inverse Fallacy
That both lay and expert judges often confuse a given

conditionalprobabilitywith its inverse probabilityhas been
noted in many studies. This tendency has been alterna-
tively labeled the conversion error (Wolfe, 1995), the con-
fusionhypothesis (Macchi, 1995), theFisherianalgorithm
(Gigerenzer & Hoffrage, 1995), and the inverse fallacy
(Koehler, 1996a). In the present article,we adoptKoehler’s
term to refer to the tendency for judges to confuse any of
the following: p(H |D) with p(D |H), p(,H |D) with
p(D |,H), p(H | ,D) with p(,D |H), or p(,H |,D)
with p(,D |,H). Although there are other algorithms that
participants can use when they estimate posterior proba-
bilities (see, e.g., Gigerenzer & Hoffrage, 1995), the in-
verse fallacy is often the most frequent error observed.
As early as 1955, Meehl and Rosen reported that clin-

icians considered that the probability of the presence of a
symptom given the diagnosis of a disease was on its own
a valid criterion for diagnosing the disease in the presence
of the symptom.This result was later experimentallydem-
onstrated by Hammerton (1973), who observed that me-
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dian judgmentsof p(disease |symptom)were almost equal
to the presented value of the inverse probability, p(symp-
tom | disease). Liu (1975) replicated those results by vary-
ing the value of p(D |H) in a between-subjects design.
Similarly, Eddy (1982) investigated how physicians esti-
mated the probability that a woman has breast cancer,
given a positive result of a mammogram. Approximately
95% of clinicians surveyed gave a numerical answer close
to the inverse probability.
In Kahneman and Tversky’s (1972) taxicabproblem (see

also Bar-Hillel, 1980; Lyon & Slovic, 1976; Tversky &
Kahneman, 1980), participantswere asked to estimate the
probability that a cab had been involved in an accident
given that it was Blue rather than Green. When asked to
estimate p(H |D), most participantsansweredwith a value
that matched the inverse probability, p(D |H). More re-
cently, Dawes, Mirels, Gold, and Donahue (1993) demon-
strated that this fallacy extended to individuals’beliefs in-
herent to their implicit personality theory.
Some researchers have interpretedthese findingsin terms

of a base-rate fallacy. The inverse fallacy is then under-
stood to be the result of people’s tendency to consistently
undervalue, if not ignore, the base-rate information pre-
sented as a proxy for prior probabilities (e.g., Bar-Hillel,
1980; Dawes et al., 1993; Kahneman & Tversky, 1973;
Pollard & Evans, 1983). Other researchers, however, have
proposed that the base-rate effect was in fact originating
from the inverse fallacy and not the reverse (e.g., Hamm,
1993;Koehler, 1996a;Wolfe, 1995). In support of this no-
tion, Wolfe (1995, Experiment 3) found that participants
who were trained to distinguish p(D |H) from p(H |D)
were less likely to exhibit base-rate neglect comparedwith
a control group. We agree that base-rate and inverse fal-
lacies are different. The inverse fallacy entails not only the
neglect of the base-rate information but also that of p(D |
,H). To illustrate this argument, consider the diagrams
shown in Figure 1. Each diagramdepicts two categoriesH
and ,H. Their base rates are the proportion of space oc-
cupied by each category, respectively. The sample space
delimited by the hatched areas represents the proportion
of elements having the feature D. These diagrams indicate
that the inverse fallacy relies on a different representation
and integration of available information than does the
base-rate fallacy. Moreover, as shown in Diagram 2, the
integration of base rates into the final judgment is unnec-
essary when they are equal. Therefore, if judgment accu-
racy were only undermined by the neglect of base-rate in-
formation, judgments involving equal base rates should
be normative.
If people commit the inverse fallacy in judging poste-

rior probabilities, one would expect that posterior prob-
ability estimateswould be systematicallybiased as a func-
tion of the deviationbetween the posteriorprobabilityand
its inverse probability. Consider the physician who needs
to estimate p(disease | symptom). If she commits the in-
verse fallacy, she will answer with the value of the inverse
probability p(symptom | disease) = .85, rather than the

Bayesian value of p(disease | symptom) = .15. In this case,
the deviationbetween the estimate and the Bayesian value
of p(disease | symptom) is .70.Althoughsome preliminary
research indicates that the inverse fallacy is a distinct con-
tributorto deviationsfromBayesian judgment,no study has
yet examined whether the deviations between posterior
probabilitiesand their inverse probabilitiescan be used to
predict people’s deviationsfrom Bayesian judgment. This
was a key objective of the present study.

The Additivity Principle
The additivityprinciple states that the judged probabil-

ities for complementaryevents should sum to unity. For in-
stance, if one judges that p(disease | symptom) is .75, one
also should judge that p(no_disease | symptom) is .25.
From a descriptivestandpoint,there is disagreementwithin
the literature as to whether we should expect that judg-
ments of two complementaryprobabilitieswill be additive.
Some researchers (e.g., Rottenstreich & Tversky, 1997;
Tversky & Koehler, 1994) have reported that the judged
probabilityof a hypothesis and that of its complement are
additive. Other researchers (e.g., Ayton, 1997) have re-
ported that people’s probability judgments tend to be sub-
additive (i.e., the sum of the individualestimates is greater
thanone).And evidenceof superadditivityin the case of bi-
nary complementarity also has been found (see, e.g.,Mac-
chi, Osherson, & Krantz, 1999).
Althoughprevious research has examinedunconditional

probabilityjudgments, the additivityprinciple also applies
to conditional probabilities because p(H |D) and p(,H |D)
always add to one when H and ,H are exhaustive and
mutually exclusive. In the domain of conditional proba-
bility judgments,Baratgin and Noveck (2000) suggested
that the participants in Kahneman and Tversky’s (1973)
lawyer–engineerproblemviolated the additivityprinciple.
The authors demonstrated that the participants integrated
base rates more efficiently when they were induced to
make complementary estimates. In the present study, we
tested a stronger, empiricallyverifiable claim.Namely, that
participants’complementaryestimateswill not be additive,
mainly because people commit the inverse fallacy. Fur-
thermore, the inverse fallacy offers a basis for a systematic
prediction of the patterns of deviation from additive judg-
ment. Our second objective, then,was to examinewhether
people’s estimates of complementary posterior probabil-
ities, and any deviations from the additivityprinciple, can
be predicted on the basis of the inverse conditional prob-
abilities.

EXPERIMENT 1

In this experiment, we examined whether evidence for
the inverse fallacy would emerge even when base rate ne-
glect could be ruled out.We used a problem adapted from
Slowiaczek, Klayman, Sherman, and Skov (1992, Exper-
iment 1A) in which participantswere asked to estimate the
posterior probability that an encountered alien creature
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Figure 1. Sample-space representations of the information provided in textbook problems.

was one of two mutually exclusive types in light of the
presence or absence of a diagnostic feature. Skov and
Sherman (1986) noted that the use of natural groups im-
poses restrictions on the likelihoodof a particular feature

in these groups. In such cases, diagnosticity and likeli-
hood are often confounded: A diagnostic trait (e.g., likes
parties) would be frequent in the focal group (e.g., extro-
verts) and infrequent in the alternative group (introverts).
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Thus, the use of unnatural categories allowed us to control
for the likelihood of the features.
Our first hypothesis was that the majority of partici-

pants would commit the inverse fallacy. Second, we hy-
pothesized that the deviation between the participants’
estimates and Bayesian answers could be predicted by
the deviation between p(D |H) and p(H |D). Thus, par-
ticipants were expected to overestimate p(H | D) when
p(D |H) . p(H |D), and they were expected to under-
estimate the Bayesian posteriorwhen p(D |H), p(H |D).
Moreover, by experimentally manipulating the size of
the deviationbetween posterior and inverse probabilities,
we were also able to predict the magnitude of the partic-
ipants’ judgment inaccuracies. The third hypothesis tested
was that when p(D | H) and p(D |,H) sum to less than
one, the sums of participants’ judgments of p(H |D) and
p(,H |D) would be superadditive. Conversely, the sums
of their judgments of p(H |D) and p(,H |D) were ex-
pected to be subadditive when p(D |H) and p(D |,H)
exceeded one.
Our experimental design also allowed us to distinguish

between the inverse fallacy and a simpler,matchingheuris-
tic. In the domain of logical reasoning, Evans (1998) de-
fined a matching bias as a tendency to only consider as
relevant the information whose lexical content matches
that of the information presented in the propositional rule
to be tested. By extension, the tendency to equate p(H |D)
with p(D |H) could be defined as the tendency to esti-
mate p(H |D) on basis of the match between the experi-
mental question and the information presented. Such a
strategy, however, would lead people to answer with the
displayed value of p(D |H), when that value was explic-
itly provided, even when they were asked to estimate
p(H |,D). By contrast, the inverse fallacy account pro-
poses that people will estimate p(H |,D) with the value
of p(,D |H). We therefore expected to be able to distin-
guish between the inverse fallacy and thematchingheuris-
tic in cases in which diagnostic response information in-
dicated the absence of D (i.e., via no responses).

Method
Forty-five University of Hertfordshire undergraduates participated

in the experiment for course credit. The participants were provided

with a 13-page questionnaire. The first page presented their task as
follows:

Imagine you are visiting a planet called Vuma. There are two and only
two types of invisible creatures that live on this planet. There are 1 mil-
lion Gloms, and 1 million Fizos.

You will randomly meet 12 creatures. Imagine you are particularly in-
terested in guessing their identity. Each time you meet one of the invis-
ible creatures, you want to know whether it is a Glom or a Fizo. You will
walk with an interpreter who will ask each creature whether or not it
possesses a certain feature. Each time, you will be provided with the
percentages of Gloms and Fizos on Vuma possessing the target feature.
The creatures cannot help but to tell the truth, so you can be sure you
will get a truthful answer, which will provide you with some informa-
tion about the creature’s identity.

The participants were then provided with an example and were told:
“On the basis of the creature’s answer, you will be asked to estimate
both the likelihood that it is a Glom and the likelihood that it is a Fizo.
Turn the page for your first encounter.” The participants “met” 12
creatures one by one on the subsequent pages. For each of these 12
encounters, the creature was asked about a different feature, and the
participants were provided with a reminder of the number of Gloms
and Fizos on the planet as well as the percentages of each type of crea-
ture that possessed the feature. In order to be consistent with Slo-
wiaczek et al. (1992), posterior probability judgments were elicited
by using a frequency question, and the participants were asked to
estimate the “chances in 100” rather than the “probability” that H
(or,H) was true. A summary of the stimuli is presented in Table 1.
Figure 2 shows the questionnaire layout corresponding to the first
line of Table 1.

Stimuli and Design. Each of the 12 encounters represented a
unique stimulus condition in a 2 (creature’s response: no, yes) 3 2
[expected direction of deviation: p(D |H) , p(H |D), p(D |H) .
p(H |D)]3 3 (expected magnitude of deviation: small, medium, large)
fully crossed repeated-measures design with two dependent variables
measured for each stimulus. Each of the 12 stimuli required two es-
timates, and each single estimate corresponded to distinct Bayesian and
inverse values (see Table 2). The diagnostic probabilities presented

Table 1
Percent of Gloms and Fizos Presenting Each of Twelve Features

and Encountered Creature’s Answer

Gloms Fizos Features Response

98 58 plays the harmonica Yes
92 42 exhales fire No
90 50 wears hula hoops Yes
10 50 gurgles a lot No
80 40 have a flying license Yes
20 60 gulp bluebottles down No
42 92 smokes maple leaves Yes
58 98 drinks petrol No
50 10 has gills Yes
50 90 eats iron ore No
60 20 breeds scampi Yes
40 80 climbs walls No

Figure 2. Representation of one of the stimuli used.
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were chosen so that the creature’s response would have no effect on
the participants’ estimates. Thus, the set of yes stimuli were perfectly
matched to the set of no stimuli in terms of the Bayesian and inverse
values. The order of stimulus presentation was randomized, and ques-
tion order was counterbalanced across participants.

Results
Classification of estimates. In order to test whether the

participants committed the inverse fallacy, each estimate
was compared with the value of its corresponding inverse
and Bayesian probability, respectively. An estimate was
classified as Bayesianor as inverse if it was equal to its cor-
respondingBayesian or inverse value, respectively, within
a margin of error of6.02. Figure 3 shows the distribution
of participantsaccording to the number of their estimates
classified as Bayesian or as inverse. The vast majority
(80%) of participants provided no more than 4 Bayesian
estimates out of a total of 24. By contrast, and in support
of our first hypothesis, as many as 51% of the participants
had 20 or more estimates that were equal to the corre-
sponding inverse value. This is a powerful result that dem-
onstrates the prevalenceof committing the inverse fallacy
in judgingposterior probabilities.Finally, as expected, the
participants did not rely on a matching heuristic, since
most estimates of p(H |,D) and p(,H |,D) relied on the
values of p(,D |H) and p(,D |,H), respectively. Within
the set of no stimuli, 55% of the participants provided at
least 7 (out of 12) estimates equal to the inverse value,
whereas only 1 participant provided 7 estimates consis-
tent with a matching heuristic.

Deviations from Bayesian judgment. The partici-
pants’ estimateswere converted to deviation scores, d, by
subtracting the corresponding Bayesian value. Thus, d =
0 for accurate Bayesian estimates, d . 0 for overestima-
tions of Bayesian probabilities, and d , 0 for underesti-
mations of Bayesian probabilities. Analyses including
order of stimulus presentation and order of question pre-
sentation as between-subjects variables revealed no sig-

nificant effect of this manipulation,and the data were col-
lapsed across order. The deviationscoreswere subjected to
a 2 (creature’s response)3 2 (expected direction of devi-
ation)3 3 (expectedmagnitudeof deviation)doublymul-
tivariate repeated-measuresanalysisof variance (ANOVA).
Hypothesis 2 stated that the participants’deviationsfrom
Bayesian judgmentwould be predictedby the deviationbe-
tween the inverse and the Bayesian values. Accordingly,
a significant two-way (expected direction of deviation3
expectedmagnitudeof deviation) interactionwas observed
[multivariate F(4,41) = 47.29, p , .0005]. Univariate F
tests revealed that this interaction was statistically sig-
nificant only for the Glom measure [F(2,88) = 106.69,
MSe = 0.02, p, .01,h2 = .71]. The 2 (expected direction
of deviation) 3 3 (expected magnitude of deviation)
interaction is shown in Table 2 (in the “Bayes’s theorem-

Table 2
Summary of Stimuli, Design, and Results: Bayesian and Inverse Probabilities, Expected and Observed

Deviations as a Function of Magnitude and Direction of Deviation for Glom and Fizo Measures

Deviations

Expected
Probabilities Bayes’s Theorem

Magnitude Bayesian Inverse Glom Fizo Additivity

of Deviation Glom Fizo Glom Fizo Exp. Obs. Exp. Obs. Exp. Obs.

Expected Overestimation of Bayesian Values
Large .63 .37 .98 .58 .35 .14 .21 .09 1.56 1.23
Medium .64 .36 .90 .50 .26 .10 .14 .06 1.40 1.16
Small .67 .33 .80 .40 .13 .00 .07 .05 1.20 1.05

Expected Underestimation of Bayesian Values
Large .96 .04 .42 .02 2.54 2.53 2.02 .05 .44 .56
Medium .83 .17 .50 .10 2.33 2.33 2.07 .00 .60 .72
Small .75 .25 .60 .20 2.15 2.22 2.05 .10 .80 .78

Note—Bayesian probabilities refer to p(type | response) and inverse probabilities refer to p(response | type). Exp.,
Expected; Obs., Observed. The expected deviations from Bayes’s theorem are given by the deviations between
Bayesian and inverse values. The expected deviations from additivity are given by the deviations between the sum
of the inverse values for Gloms and Fizos, and unity.

Figure 3. Distribution of participants as a function of the num-
ber of their estimates equating either the inverse probability or
the Bayesian probability.
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Glom-Observed” column).Deviation scores were positive
and negative when overestimation and underestimation
was expected, respectively. Moreover, the magnitude of
these deviations varied as predicted. The multivariate
analysis also revealed a significant main effect of re-
sponse on deviation scores [multivariate F(2,43) = 5.45,
p, .01]. It has already been suggested and observed that
participants tend to bemore influencedby positiveanswers
than by negativeanswers (see Sherman& Corty, 1984;Slo-
wiaczek et al., 1992), leading to a higher level of confir-
mation of the hypothesis tested.

Deviations from the additivity principle.Our third hy-
pothesiswas that the observed patterns of additivitywould
be a function of the sum of inverse probabilities.The sum
of each participant’s estimates of the complementaryprob-
abilities p(Glom | response) and p(Fizo | response) was
computed.These sumswere subjected to a 2 (creature’s re-
sponse)3 2 (expecteddirectionof deviation)3 3 (expected
magnitude of deviation) repeated-measures ANOVA. As
expected, response did not significantly affect the scores
[F(1,44) = 0.12,MSe = 0.05,p. .05]. The significantmain
effects of expected direction and expected magnitude of
deviation from unity are better explainedby the predicted
two-way (expecteddirectionof normdeviation3 expected
magnitudeof normdeviation)interaction[F(2,88) = 36.09,
MSe = 0.05, p , .001, h2 = .45]. This interaction is illus-
trated in the last column of Table 2. As predicted, the par-
ticipants’estimateswere subadditivewhen complementary
inverse probabilities summed to more than 1, and their
estimates were superadditive when these probabilities
summed to less than 1. The magnitudeof these deviations
also varied as predicted by the sum of inverse probabilities.
Finally, a significant two-way (expected direction of norm
deviation3 creature’s response) interactionwas obtained
[F(1,44) = 5.96,MSe = 0.14, p , .02]. Further analyses
revealed that this effect was due to a significant effect of
response when superadditivity was expected [Myes = .65,
SD = .22 vs. Mno = .73, SD = .24, Bonferronni t(88) =
14.44, MSpooled error = .11, p , .001, with a corrected a
level of .025].

DISCUSSION

Consistentwith previous research (e.g., Bar-Hillel, 1980;
Eddy, 1982; Hamm, 1993; Wolfe, 1995), the results ob-
tained in the present study reveal that roughly half of the
sample equated the posterior and inverse probabilitieson
over 80% of the judgment trials. This is a powerful find-
ing because, in past studies demonstrating the inverse fal-
lacy, typically only one judgment per participant was so-
licited. By contrast, we have demonstrated that a sizeable
proportionof judgesconsistentlyused an inverse fallacy al-
gorithmover a set of judgment tasks that varied in terms of
both the question asked and the available probability infor-
mation.Wewere able to demonstrate that the directionand
magnitude of deviations of participants’ estimates from
both Bayesian judgment and the additivity principlewere

successfullypredictedby the deviationbetween the inverse
and posteriorprobabilities, thus supportingour second and
third hypotheses, respectively. Furthermore, deviations
from normative benchmarks could not be accounted for by
the base-rate fallacy because base rates for the two relevant
categories were always equal.

Methodological Implications
Girotto and Gonzalez (2001) showed that some of Cos-

mides and Tooby’s (1996) observationswere erroneously
classified as accurate judgments by these authors on the
basis of parity between participants’ posterior probability
estimates and the numerical values computed by Bayes’s
theorem. In the present study, the collectionof multiple es-
timates for each participantmilitated against such unwar-
ranted conclusionsresulting from a confusionbetween the
outcome of a test and the computational process leading
to this outcome. Such methodological precautions pre-
vented us from mistakenly concluding that judgments of
p(Fizo | response) demonstrated normative judgment (as
they showed little deviation from the Bayesian norm, see
Table 2). A more likely explanation, supported by the re-
sults observed for the Glom measure, is that those judg-
mentswere basedon the inverse fallacy, whose outputshap-
pened to be similar to those arising from Bayes’s theorem.
The fact that the inverse fallacy is associatedwith non-

additive posterior probability judgments also has signif-
icant methodological implications. For instance, Slowia-
czek et al. (1992, Experiment 1A) assumed that their
participants’ judgments were additive and combined es-
timates of p(H |D) with estimates of p(,H |D) sub-
tracted from 1. This recoding procedure may have in-
duced a bias in their results. For instance,when p(D |H) =
.5, p(D |,H) = .10 and D is present (a stimulus that was
also used by Slowiaczek et al., 1992), p(H |D) = .83 and
p(,H |D) = .17. A judge committing the inverse fallacy,
would estimate p(H |D) and p(,H |D) to be .50 and .10,
respectively. Recoding p(,H |D) as a .90 (1 2 .10) esti-
mate of p(H |D) results in a near-normative answer,
whereas the judge committing the inverse fallacy would
have been more likely to estimate p(H |D) to be .50 [the
value of p(D |H)], thus underestimating the normative
value by more than a 30% difference.

Theoretical Implications
Additivity. The present experiment extended the study

of additivityto conditionalprobability judgments. Specif-
ically, we demonstrated that the pattern of subadditivity
and superadditivity observed for the participants’ judg-
ments could be predicted from the sum of the inverse prob-
abilities.Rottenstreich and Tversky (1997) specified that
the binary complementarity predicted by support theory
(Tversky & Koehler, 1994) applies to cases in which the
alternativehypothesis is explicitlydescribed as such. This
precision implies that, in the present study, support theory
would only predict additivity for measures of p(Glom |
response) and p(,Glom | response). Still, in the present
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context, it was made clear to the participants that the crea-
ture could only be a Glom or a Fizo (and obviously, not
both). Rottenstreich and Tversky suggested that “additiv-
ity is likely to hold” (p. 407) in such a case. Our results,
however, strongly indicate that the latter propositiondoes
not hold, at least in the context of conditional probability
judgment.Future research might examine the effect of im-
plicitly versus explicitlynegating the alternative hypoth-
esis on the additivityof posterior probability judgments in
cases of binary complementarity.

Origin and extent of the inverse fallacy.The question
of the underlyingbases and the scope of the inverse fallacy
still require investigation. The sample-space framework
(Gavanski & Hui, 1992;Hanita, Gavanski, & Fazio, 1997;
Sherman,McMullen,&Gavanski,1992)proposes that the
inverse fallacy is the result of a memory-based process.
People access sets of information (sample spaces) from
memorywhen judgingprobabilities.When participantsare
asked to estimate p(H |D), they are required to base their
judgmentson the sample space defined by feature D. Ga-
vanski and Hui argued that this sample space is unnatural
because knowledge is partitionedby categories rather than
by features. So, peoplemay replace the unnatural sample
space with a more readily accessible one—namely, the
sample space of categoryH. This process would result in
the inverse fallacy. The sample-space explanation, how-
ever, cannot fully account for the present results because
the categories used were hypothetical, and judgments
could not be based on sample spaces stored in memory.
Alternatively,Macchi (1995, 2000) proposed that the

formulation of diagnostic information plays a key role in
the interpretation of the data. Consider the following for-
mulations: (1) The percentage of elements presenting the
feature D is three times higher among H elements than
among ,H elements. (2) In the group of elements pre-
senting the feature D, the percentage of H elements is
three times higher than the percentage of ,H elements.
(3) The feature D is present in x% of H elements, the fea-
ture D is present in y%of,H elements, and x is three times
higher than y. Macchi (1995) proposed that a formulation
such as (1) is interpretedas (2) by participants,as opposed
to what it logically implies—namely formulation (3). It is
this misinterpretation, Macchi argued, that leads to the
inverse fallacy. Consequently, the tendency to estimate
p(H |D) with p(D |H) results from the lack of clarity of
the independenceof base rate p(H) and p(D |H). Macchi
recommended the use of formulations such as (3) to
avoid ambiguity and demonstrated that it could reduce
the proportionof inverse fallacies.Yet, this explanationfor
the origin of the inverse fallacy has its shortcomings. It is
not clear why it is the ambiguousindependenceof p(D |H)
and p(H) that would lead people to mistake p(D |H) for
p(H |D), given that the combination of the base rate and
the diagnostic information [ p(D |H).p(H)] results in
p(Dù H), which is not the formal equivalentof p(H |D),
as is demonstrated by the diagrams presented in Fig-

ure 1. Furthermore, this explanation conflicts with the
sample-space account because Macchi’s suggestion that
participants’ interpretations [i.e., formulation (2)] rely on
the sample space defined by feature D. Yet, according to
the sample-space explanation, this is an unnatural and un-
likelybasis for probabilityjudgments.Finally, even though
our formulation of the diagnostic information was in line
with Macchi’s (1995) recommendations for reducing the
inverse fallacy, we still found that 51% of participants
made almost all their judgments in accordancewith the in-
verse fallacy.
An alternative account relies on the frequency hypoth-

esis. Gigerenzer and Hoffrage (1995; see also, e.g., Cos-
mides& Tooby, 1996)demonstrated that Bayesian answers
can be elicitedwith the use of a frequency format for both
the informationand the questionasked.Moreover,Thomp-
son and Schumann (1987) showed that frequency formats
reduced the number of inverse fallacies committed. A
probabilitypresentation format might increase the use of
heuristics, but that still does not explainwhy most people
tend to commit the inverse fallacy rather than use another
heuristic (e.g., the joint-occurrence algorithm described
in Figure 1). Finally, it is plausible that people simply
confuse p(H |D) with p(D |H) because the latter sounds
a lot like the former (J. J. Koehler, personal communica-
tion, April 2001). However, at present, no empirical re-
search has tested this account.

Concluding Remarks
The present study demonstratedhow the inverse fallacy

can account for deviations from Bayes’s theorem and the
additivity principle. This fallacy might also explain other
results on probabilistic reasoning observed within the lit-
erature. Koehler (1996b) showed that people confuse pos-
terior odds ratios with likelihood ratios. Such confusion
could be explained by the tendency to commit the inverse
fallacy. Doherty,Mynatt,Tweney, and Schiavo (1979) dem-
onstrated that people tend to choose diagnosticallyworth-
less information such as p(D1 |H) and p(D2 |H) to revise
the probability that hypothesis H is true. This “pseudo-
diagnosticity” phenomenonmay be explained by the fact
that participants seeking p(D1 |H) and p(D2 |H) think
that they are given p(H |D1) and p(H |D2). Finally, the
present research spotlighted the need to distinguish judg-
ment output from the judgment process and demonstrated
that the examination of judgment over multiple trials was
an effective method to do so.
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