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1 Introduction

Our perception of shape is, like all of our perceptions, a product of evolution by
natural selection. This entails that our perception of shape is a satisficing solu-
tion to certain problems faced by our ancestors, e.g., the need to stalk prey, secure
mates, elude predators, and predict outcomes of actions. Natural selection produces
satisficingsolutions, rather thanoptimizingsolutions, because selection favors sur-
vival of thefitter, not of thefittest: A gene need confer only a slight edge over the
competition—a standard far lower than optimality—to proliferate in later genera-
tions.

It is standard in vision research to assume that more accurate perceptions are
fitter perceptions, and that therefore natural selection tunes our perceptions to be
veridical, i.e., to be accurate reflections of the objectiveworld. For instance, Palmer
argues that “Evolutionarily speaking, visual perception is useful only if it is reason-
ably accurate. . . This is almost always the case with vision” [28]. Geisler andDiehl
argue that “In general, (perceptual) estimates that are nearer the truth have greater
utility than those that are wide of the mark” [11].

If perception is indeed veridical, then the world of our visual experience shares
the attributes of the objective world. Our visual world has three spatial dimensions,
a temporal dimension, and contains 3D objects with shapes, colors, textures and
motions. Vision researchers standardly assume that the objective world does also. In
other words, they standardly assume that the language of ourvisual representations
is the correct language for describing objective reality.
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The assumption that the objective world has three spatial dimensions, whereas
the retinal image has just two, leads to the standard conclusion that the retinal im-
age is an optical projection, from 3D to 2D. Such a projectionnecessarily loses
information. Thus it is standard to conclude that human vision must recover this
information by somehow “undoing” the effects of optical projection—a task of-
ten called “inverse optics” (e.g., [1, 29]). It is standard to formulate theories of the
recovery of veridical information using the mathematical framework of Bayesian
decision theory [12, 17, 18, 21, 23, 24].

In this chapter we propose, contrary to standard assumptions, that natural se-
lection does not favor veridical perceptions. The reason, in short, is that fitness is
distinct from truth; it depends not only on the objective world, but also on the organ-
ism, its state, and the action class in question. A gazelle, for instance, offers lots of
“fitness points” to a hungry cheetah seeking to eat, but none to a cheetah seeking to
mate. Natural selection favors fitness, not truth. It is straightforward to produce evo-
lutionary games in which true perceptions are driven to extinction by nonveridical
perceptions that simply report fitness [25].

The consequences of this for shape perception are profound.If our perceptions
of 3D shape are not veridical reconstructions of objective 3D shapes, then a new
framework, entirely different from the standard, is required to properly understand
shape perception. In this chapter we sketch such a formal framework that incorpo-
rates the role of evolution in a fundamental way, and in whichperceived shape is an
adaptive guide to behavior, not a reflection of objective reality. This framework is
consistent with theinterfacetheory of perception [15].

Because natural selection has tuned our perception of shapeto be an adaptive
guide to behavior, our perception of shape has evolved to be tightly coupled with our
actions, a coupling that we formalize here with a commuting diagram that we call
the “perception-decision-action” loop, or PDA loop. Thus the detailed properties of
perceived shapes, such as their symmetries and parts, are not depictions of the true
properties of shapes in an objective world, but simply guides to adaptive action.1

2 Bayesian Decision Theory

A common framework for modeling vision in general, and the “recovery” of 3D
shape from 2D images in particular, is Bayesian decision theory (BDT) [12, 17,
18, 21, 23, 24]. BDT provides a probabilistic framework at the computational (or
competence) level [26], at which visual problems are analyzed in terms input-
output relations (e.g., the formal constraints needed to derive desired outputs from
given inputs)—independently of performance considerations involving specific al-
gorithms or their implementations.

1 We use “action” in the broadest sense of the word—to include not only visually-guided manip-
ulation of objects (“dorsal stream”), but also visual categorizations (“ventral stream”) that inform
subsequent behavior, e.g., whether or not to eat a fruit thathas some probability of being poisonous.
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Given the basic inductive problem that any image is consistent with many differ-
ent 3D interpretations, the visual system can resolve this ambiguity only by bring-
ing additional constraints (or biases) to bear—based on regularities observed in
the terrestrial environment in which our species evolved—and comparing the rel-
ative probabilities of different scene interpretations. For example, in estimating 3D
shape from shading, human vision appears to assume that light comes from above
(e.g., [19, 24]). Similarly, theories of shape-from-contours often assume that the 3D
shapes are symmetric, or maximally compact (e.g., [30]).

Formally, given an imagey0, the visual system must compare the posterior proba-
bility p(x|y0) for different scene interpretationsx. By Bayes’ Theorem, this posterior
probability is proportional to the the product of the likelihood of the scenep(y0|x)
and its prior probabilityp(x). The likelihood term captures the extent to which the
scene interpretationx is consistent with—or can “explain”—the imagey0. In the-
ories of shape-from-X, it is usually taken to be a projectivemapping from 3D to
2D (orthographic or perspective), plus some model of noise.Because many differ-
ent 3D interpretations are typically consistent with any given image, the likelihood
cannot generally resolve the ambiguity by itself (i.e., thelikelihood may be equally
high for a large number of 3D interpretations). The other source of information—the
prior probability—reflects the observer’s internalized beliefs about fact that certain
scenes, shapes, or states of the world are more likely than others—e.g., light tends
to come from above, objects tend to be compact, there is a prevalence of symmetric
objects, etc. [30, 19, 24].

The combined use of the prior and likelihood—via Bayes—yields a posterior dis-
tribution on the space of scene interpretations. It is common to use the maximum-a-
posteriori (MAP) estimate as one’s “best” interpretation.More generally, however,
the choice of “best” point estimate depends on the loss function one assumes—
namely, the consequences of errors, or deviations from the “true” (but unknown)
interpretation. If the loss function is essentially a Dirac-delta function (i.e., no loss
for the correct answer, equal loss for every other answer) the value that minimizes
expected loss is the mode of the posterior distribution, i.e., the MAP estimate. How-
ever, if the loss function is quadratic (i.e., squared-error), the value that minimizes
expected loss is the mean of the posterior distribution. Hence different choices of
loss functions lead to different strategies for picking a single “best” scene interpre-
tation from the posterior distribution (e.g., [24]).

3 A general framework for perception and its evolution

Bayes’ Theorem provides a provably optimal way of combiningthe two probabilis-
tic sources of information embodied in the likelihood and prior [17]. Hence there
is strong, principled justification for using Bayes, once a likelihood model and a
prior have been specified on a fixed space of possible interpretations. However, the
Bayesian framework as it is standardly applied to vision involves important assump-
tions that are ultimately too restrictive.
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Fig. 1 (a) The standard Bayesian framework for vision. (b) The computational evolutionary per-
ception (CEP) framework. In CEP, the objective worldW lies outside of the probabilistic inferential
apparatus for vision. There are perceptual channelsPX andPY to the two representational spacesX
andY, respectively. And there are specific fitness functions onW that assign, for a given organism
o, its states, and the type of actiona in question, “fitness points” to eachw∈W.

Consider the standard Bayesian setup for vision shown in Figure 1a.X is the
space of scene interpretations (say, 3D shapes), with priorprobability distribution
µX. Y is the space of 2D images. The likelihood mappingL is the projective map
from 3D to 2D (possibly with noise).B is the Bayesian posterior map fromY to
X. Technically,L andB are both Markovian kernels [31]. Thus, for eachx∈ X, the
projective mapL specifies a probability distribution onY (in the noise-free case,
this distribution is supported on a single point). And for each y ∈ Y, the Bayesian
posteriorB gives a probability distribution on the spaceX of 3D shapes.

Importantly, note that in this setup the spaceX plays two distinct roles: (i) it cor-
responds to the space of objective world states; and (ii) it corresponds to the space
of possible perceptual interpretations from which the visual system must “choose.”
This dual role is entirely consistent with theinverse opticsapproach to vision—
according to which the goal of vision is essentially to invert or “undo” the effects of
optical projection. It is also consistent with the historical roots of Bayesian meth-
ods, namely, as techniques for computing “inverse probability”—a prototypical case
being to infer the relative probabilities of possible underlying causesp(C|E) given
some observed eventE, when what one actually knows are the probabilities of ob-
taining various eventsp(E|C) from particular causesC [22].

This dual role played byX makes it clear how BDT embodies the common as-
sumption that human vision has evolved to see the truth. It isnot the case, of course,
that a BDT observer always makes veridical perceptual inferences. Indeed, it can-
not. Because a BDT observer embodies specific assumptions about regularities in
the world (“light tends to come from above,” “objects tend tobe mostly convex,”
etc.) it is always possible to place it within a context whereits assumptions are vi-
olated. At a more fundamental level, however, BDT makes the basic assumption
that thelanguageof scene interpretationsX is the correct language for describing
objective reality. In other words, BDT assumes that the representational spaceX
contains somewhere within it a true description of the objective world—even if the
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observer’s estimate misses it in any given instance. It is inthis more fundamental
sense that BDT assumes that human vision has evolved to see the truth.

Consideration of vision in other species, especially thosewith simpler visual
systems, suggests that this implicit identification of the representational spaceX
with the objective world is too restrictive and simplistic.This is especially so if one
wants a formal framework that is general enough to encompassthe evolution of
visual systems. In discussing simpler visual systems, suchas those of the fly and the
frog, Marr [26] noted that they “...serve adequately and with speed and precision
the needs of their owners, but they are not very complicated;very little objective
information about the world is obtained. The information isall very subjective...”;
and that “...it is extremely unlikely that the fly has any explicit representation of
the visual world around him—no true conception of a surface,for example, but
just a few triggers and some specifically fly-centered parameters...” (p. 34). Thus
Marr seemed to acknowledge that visual systems that do not compute objective
properties of the world can serve the needs of their owners well enough for them
to survive, even thrive, in their respective niches. This should not be surprising;
after all, what matters in evolution is fitness, not truth, and even visual systems that
compute only simple, purely “subjective,” properties can confer sufficient fitness.
Despite this, Marr held that the properties computed byhumanvision—such as
object shape—are objective properties of the world that exist independently of any
observer. There is no reason to believe, however, that the representational spaces
that evolved in the speciesHomo sapiensmust correspond to object reality. The
evolution ofHomo sapiensis guided no less by fitness than the evolution of any
other species. And fitness is clearly distinct from objective truth because it depends
not only on the objective world, but also on theorganism(fly vs. elephant), itsstate
(hungry vs. satiated), and thetype of actionunder consideration (eating vs. mating).
Therefore one’s formal framework must be broad enough to include the possibility
thathumanvisual representations also do not capture objective truth.

Thus, rather than simply assuming, or postulating, that thespace of interpreta-
tionsX is identical to (or in one-to-one correspondence with) the objective world—
let’s call it W—one’s formal framework must consider different possible relation-
ships betweenX andW. We make no assumptions aboutW, except that it is mean-
ingful to talk about probabilities inW, governed by some (unknown) probability
measureµ on an event spaceW . We define aperceptual strategyor channelas a
measurable functionP : W → X. One can think ofP as a communication channel
betweenW andX, that allows information to flow from the objective world to the
organism. More generally, in the noisy case,P is a Markovian kernel which speci-
fies, for eachw ∈ W, a probability distribution onX.2 One can then consider four
classes of perceptual strategies corresponding to different relationships betweenX
andW (see [16, 25]): (i) thenäıve realiststrategy assumes thatX = W and thatP
preserves all structures onW; (ii) the strong critical realiststrategy assumes only

2 Hence, in general,P is a mappingP : W×X → [0,1], whereX is the event space onX. One
can viewP as a linear operator that maps probability measures onW to probability measures on
X. In the discrete case, it would be represented by a stochastic matrix whose rows add up to 1. For
more on Markovian kernels see [3, 31].
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that X ⊂ W but requires thatP projects all structures ofW onto X; (iii) the weak
critical realist strategy allows thatX 6⊂W but requires thatP projects all structures
of W ontoX; and (iv) aninterface strategyallows thatX 6⊂W and does not require
that P projects all structures ofW ontoX. The interface strategyneed not see the
truth in the more fundamental sense that the very language of the spaceX may be
the wrong language to capture the structure of the objectiveworld W.

Most vision researchers today are weak critical realists. They recognize—contrary
to the claim of naive realism and strong critical realism—that perceptual represen-
tations are distinct from objective reality, but assume that perceptual representations
are isomorphic, or at least homomorphic, to objective reality. We call these two
versions “isomorphic realism” and “homomorphic realism.”

We generalize BDT to a framework we call Computational Evolutionary Percep-
tion (CEP; [16]). In CEP, the objective worldW lies outside of the Bayesian infer-
ential apparatus (see Figure 1b).X andY are simply two representational spaces—
neither corresponds to the objective worldW (nor are they assumed to be isomorphic
toW). For example,Y may be a lower-level representation (say, a 2D representation
of image structure) that evolved earlier, whereasX may be a higher-level representa-
tion, involving some 3D structure, that evolved later. There are perceptual channels
PX andPY from the worldW to X andY, respectively. As noted above, in the general
case,PX andPY are also Markovian kernels. Thus, for eachw∈ W, PX specifies a
probability measure onX, andPY specifies a probability measure onY. In particu-
lar, the measureµ onW yields, viaPX, a pushdown measureµX onX, and similarly
via PX, a measureµY on Y.3 In the diagram in Figure 1b, therefore, all four map-
pings shown (L,B,PX andPY) are Markovian kernels. It is therefore meaningful to
take their compositions, which are also Markovian kernels (such as the composition
PXL : W →Y).4 An important constraint in the CEP framework is that the diagram
in Figure 1b must commute. As a result, for example,PY = PXL. This is a coherence
constraint on perceptual representations that allows observers to predict the percep-
tual consequences of their actions, despite the fact that they are ignorant about the
objective world itself (see also Section 4).

What shapes the evolution of perception is, of course, fitness. We therefore expect
that natural selection tunes perceptual channels (and their corresponding representa-
tional spaces) to the only signal that matters for evolution, namely, expected fitness.
In order to bring fitness into our formalism, we view organisms as gathering “fitness
points” as they interact with the world. As we noted, fitness depends not only on the
objective world, but also on the organism, its current state, and the type of action in
question. Thus we define aglobal fitness function f: W×O×S×A→ R

+, where
O is the set of organisms,Sof their possible states, andA of possible action classes.
Once we fix a particular organismo∈ O, states∈ S, and action classa∈ A, thespe-

3 Thus, whereas in BDTµX is taken to be the world prior, in CEPµX is the pushdown, via the
perceptual channelPX , of the priorµ on the objective world.
4 Kernel composition is defined as follows: LetM be a kernel from(X,X ) to (Y,Y ), and N
be a kernel from(Y,Y ) to (Z,Z ). Then the composition kernelMN from (X,X ) to (Z,Z ) is
defined,∀x∈ X andA∈ Z , by MN(x,A) =

∫
Y M(x,dy)N(y,A). This is simply a generalization to

the continuous case of the familiar multiplication of (stochastic) matrices. For details, see [31].
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cific fitness function fo,s,a : W → R
+ assigns fitness points to each possiblew∈ W

(say, of a starving lion eating a gazelle).
Given a specific fitness functionfo,s,a, we define aDarwinian Ideal observer

〈X,PX〉 as a representational spaceX plus a perceptual channelPX from W to X
that has been ideally tuned to communicate (i.e., to maximize channel capacity for)
expected fitness. The expected fitness signal is the probability measureF = µ f
onW, defined∀A∈ W by F(A) =

∫
A f (w)dµ . (We assume thatf has been suitably

normalized so thatF = µ f is a valid probability measure.) When given the expected
fitness signalF , the perceptual channelPX produces the output messageFPX, which
is the probability measure onX defined∀C ∈ X by FPX(C) =

∫
W F(dw)PX(w,C).

To say thatPX has been ideally tuned to communicate the expected fitness signal is
therefore to say that the mutual information [6] between themeasuresF andFPX

has been maximized. No other perceptual channelP betweenW andX has greater
mutual information. (In particular, this means that a perceptual strategy tuned to the
truth, i.e., to the measureµ onW, cannot yield greater mutual information.)

Of course, natural selection does not generally produce optimizing solutions—
only satisficing ones—which is why we referred to the maximizing observer above
as ideal. In general, we may view the evolution of a perceptual channel as hill-
climbing toward greater mutual information between the expected fitness signalF
and the output messageFPX of that perceptual channel. We use the termDarwinian
Observerto refer to a perceptual channelPX that has been shaped by natural selec-
tion as a satisficing solution for a specific fitness function.

Rather than tuning a channel to a fixed representational space X, another way to
increase channel capacity is to evolve the representational space itself:X1 → X2 →
. . .. Presumably, there would be selection pressure to evolve a more complex repre-
sentational space (e.g., a representation that captures some 3D structure) when the
maximal channel capacity for expected fitness with the current space is insufficient
to survive or compete, and going to the more complex representational space would
allow a substantial increase in channel capacity.

Our formal framework of Computational Evolutionary Perception is thus more
general than the BDT framework for vision. First, while incorporating the funda-
mental role of probabilistic inference, it allows us to consider different possible re-
lationships between the space of interpretationsX and the objective worldW (rather
than simply assuming thatX =W, or thatX is isomorphic toW). Second, it explic-
itly incorporates the role of fitness into the formal framework, in a way that does not
simply reduce fitness to the gain/loss function of BDT. Third, by using communi-
cation channels to map the relationship betweenW andX, it allows us to articulate
precisely different ways in which perceptual evolution canproceed (e.g., by tuning
a perceptual channel to a fixed representational space, or evolving the representa-
tional space itself). And it allows us to use the tools of coding theory to derive formal
constraints on perceptual evolution.
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4 Shape as a code for fitness

4.1 Implications for shape perception

With our general framework in place, the implications for shape perception now
follow straightforwardly. First, our framework makes it clear that we really have
no basis for assuming—as is standardly done—that shape is anobjective property
of the world. For example, it is fairly standard among shape researchers to speak
of “shape recovery” when referring to the computation of 3D shape from different
2D cues. This nomenclature reflects the identification of therepresentational space
X with the objective worldW that is assumed in theinverse opticsapproach to
vision (and, as noted above, is commonly made in Bayesian approaches to vision).
When one perceives the 3D shape of an object, the undulationsin its surface, etc.,
one assumes that these geometric properties correspond to objective properties of
the world5—properties that exist independently of any observer. However, as we
noted above, this is too simplistic. And it is much more than one can claim based on
available facts. There is surely an objective worldW, but there is no basis for saying
that shapeis a property of that world. Rather, shape is simply a representational
format used by our visual systems to guide interactions withthe objective world.
It is part of the representational spaceX, notW. It should be clear from this that
our position is strictly weaker—not stronger—than the standard inverse opticsor
shape recoveryapproach. Whereas the standard approach assumes, or postulates,
thatX =W or thatX is isomorphic toW, we are open to different possible relations
betweenX andW.

Second, our framework entails thatshape, as a representational format, most
likely evolved because it made possible the development of ahigh-capacity chan-
nel for expected fitness. Thus the property we callshapeis essentially an effec-
tive coding scheme for expected fitness that has been tuned bynatural selection: it
conveys to an organism—in a compact and efficient format—thevarious ways in
which the organism could interact with objects in the world to gain more “fitness
points.” Therefore when we perceive the 3D shape of an object—the undulations on
its surface, its symmetries, its part structure—all of these are different aspects of a
representational format that natural selection has fashioned, one which compactly
summarizes the different possible actions that we could take, and that allows us to
predict what the perceptual consequences of those actions would be (e.g., how the
perception of a 3D object would change were we to rotate it slightly to left, pick it
up in a certain way, etc.), and what the fitness consequences would be (e.g., would
we successfully eat that apple or evade that tiger).

5 One may allow for misperceptions—e.g., that observers tendto perceive an object from a certain
viewpoint as being less elongated in depth than physical measurements of the object tell us it is.
But one nevertheless assumes thatoneof the shapes inX is the “correct” one in the objective world
W. In other words, at a more fundamental level, one assumes that the very property we callshape
is an intrinsic property of the objective worldW itself.
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This last point raises a natural question: How is it possiblefor us to interact suc-
cessfully with the objective world if we are fundamentally ignorant of it, and can as-
sume no simple correspondence between our perceptions and that objective world?
This is where the third implication of our framework comes in, namely, that action
(broadly construed) plays a central role in shape perception. In brief, it is perfectly
possible to interact successfully with a fundamentally unknown objective world be-
cause (i) there is a regularity in the perceptual mapping; (ii) there is regularity in
the consequences of our actions in the objective world; and (iii) these two mappings
are linked in a coherent manner. This is a fundamental point for our framework
and, to develop it fully, we need to introduce some more formalism, namely that of
theperception-decision-action(or PDA) loop. Before we do this in Subsection 4.2,
however, we provide an example that should help fix intuitions.

Consider the desktop interface of a PC. A file’s icon on the desktop might be
green, rectangular and in the middle of the screen. Does thisentail that the file it-
self is green, rectangular and in the middle of the computer?Of course not. The
shape, position and color of the icon are merely conventionsthat allow the user
to interact with the computer despite being ignorant of the complex details of its
diodes, resistors, software, voltages and magnetic fields.The interface is useful not
because it reveals the truth about the computer, but becauseit hides the complex
truth, and instead provides simple symbols that guide useful interactions with the
computer. In like manner, natural selection has shaped our perceptions to be an in-
terface that hides the true nature of the objective world, and guides adaptive behavior
[14, 15, 20]. Spacetime is the desktop, and objects with their shapes, colors, textures
and motions are icons in the desktop. Spacetime and objects are not the objective
truth, and do not resemble the truth. Instead, they are a species-specific adaptation
shaped by natural selection to guide adaptive behaviors andto allow us to survive
long enough to reproduce. Perception has been shaped by the imperative to raise
kids, not to see truth.

4.2 The role of action in shape perception

In this section we incorporate action and decision into our formalism, and draw out
implications for shape perception. Natural selection necessarily couples perception
and action because expected fitness, to which perception is tuned, depends crucially
on the actions of the observer. Different classes of action are, in general, coupled
with different expected fitnesses. The expected fitness points gleaned from an ap-
ple for the action of eating is greater than for the action of mating. Since natural
selection tunes perceptual channels toward maximizing mutual information about
expected fitness, one expects tight coupling between perceptual channels and the
actions they inform.

When an observer receives a perceptual experiencex ∈ X, it must decide what
action to take. We will denote the set of available actions bya setG, where we think
of G as including a group that acts onX. Recall that if a groupG acts onX, then for
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everyg∈ G the mappingx 7→ gx is a bijective map fromX to X. Common examples
are the actions of translation and rotation on Euclidean spaces. We also allow there
to be actions inG other than group actions.

Thus, given a perceptual experiencex ∈ X the observer must decide which ac-
tion g ∈ G to take. The natural formalism to describe such a decision isagain a
Markovian kernel,D, from (X,X ) to (G,G ). We callD the decision kernel.

Once an actiong is chosen, the observer must then act on the objective world
W. We model this action by a Markovian kernelA from (G,G ) to (W,W ), which
we call the action kernel. Given this formalism, we can thinkof action as sending a
message from the observer to the objective world.

Thus we have three kernels:P, D, andA. P maps fromW to X; D maps fromX
to G; A maps fromG back toW (see Figure 2). So together they form a loop, which
we call the PDA loop. We have a PDA loop for each perceptual representation space
X. So, in the CEP example discussed in Section 3, there is a PDA loop for the 2D
image spaceY and another PDA loop for the 3D spaceX.

However, just as we assume that the observer does not know theobjective world
W, and therefore does not know the perception kernelP, so also the observer does
not know the action kernelA. Informally, this means that when we act, we don’t
really know what effects we are having in the objective worldW itself; however we
do know the results of those effects back in our perceptual experiencesX. Formally,
even though the observer cannot know the kernelsP andA, it can know the kernel
AP from (G,G ) to (X,X ), which is formed by the kernel composition ofA andP. It
can also know the kernelDAP from (X,X ) to (X,X ) (i.e., fromX back to itself).
This allows the observer to learn how to interact withW, even while being ignorant
of W. The observer can try different actionsg∈ G and note their consequences for
perceptual experiences inX. If the consequences are unexpected, the observer can
update its decision kernelD to correct this.

This applies to actions with objects and shapes. If, for instance, the observer acts
in a way that leads it to perceive that its body moves through space via an element of
the Galilean group, or that its hand is grasping an object androtating it, then, given
its perceptions of the relative position of an object, and the symmetries and parts of

W X
P

A D

G

Fig. 2 The Perception-Decision-Action (PDA) loop.W denotes the objective world,X a space of
perceptual representations of an organism, andG the related set of actions the organism can take.
P is a perception kernel,D a decision kernel, andA an action kernel. All kernels are Markovian.
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that object, it can predict what the consequences of its action should be for changes
in the relative position and perceived shape of that object.

This also applies to object categorization. Such categorization allows the ob-
server to predict the fitness consequences of various current and future interactions
with the object (such as eating it). We are thus using the word“action” broadly to
include not only “dorsal stream” visually-guided motor behavior, but also “ventral
stream” perception and categorization that inform future behavior.

Let’s return to the desktop metaphor discussed above. A new generation of desk-
tops now employ 3D interfaces. In such a desktop, if the icon of a file has a particular
3D shape, say the shape of a book, and the desktop contains a 3Dbookshelf with a
book-shaped gap, then the user can be guided by the shape and position of the 3D
icon to grasp it and place it in the bookshelf. In one sense, this is unremarkable. But
the key concept here is that the file itself in the computer hasno 3D shape, and in
particular is not shaped like a book. Moreover, the directory system in the computer
has no 3D shape, and in particular is not shaped like a bookshelf. These 3D shapes
are mere conveniences for guiding effective interactions of the user, not insights into
the true nature of files and directories—and certainly not ofthe myriads of voltages
and magnetic fields in the computer.

4.3 Perceptual organization of shape

Apart from computing 3D shape from 2D image cues, another fundamental aspect
of shape perception is the perceptual organization of shape. A great deal of psy-
chophysical work indicates that human vision organizes complex shapes hierarchi-
cally in terms of parts and their spatial relationships (e.g., [5, 7, 13, 32]). This “struc-
tural” approach to shape separates the representation of individual parts from that of
their spatial relationships—thereby allowing a shape to beidentified as comprising
the same parts, but in somewhat different spatial relations(e.g., a sleeping cat vs. a
standing cat). It is also closely related to the axis or skeleton-based approach, which
provides a compact “stick-figure” representation of a complex shape that captures
its structural aspects (e.g., its branching structure) [4]. Indeed, a recent probabilistic
approach to the computation of shape skeletons yields a one-to-one correspondence
between parts and skeletal branches—indicating that partsand skeletons are com-
plementary aspects of the perceptual organization of shape[8].

They key point, for current purposes, is that the perceptualorganization of shape
in terms of parts and axes has no natural interpretation in terms of inverse optics.
There is no objective “ground truth” regarding whether an object “really” has one
part or two, or whether an axis that continues from one portion of a shape to another
is “really” the same or a different axial branch (e.g., consider a U-shape vs. a V-
shape, and a morphing sequence between them). The organization of shape in terms
of segmented parts, or in terms of axes, is something that thevisual systemimposes
on perceptual objects—it is not an objective property of theworld. This does not
mean that a Bayesian analysis of the problem is not possible.However, the likeli-
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hood or the “forward” mapping in that case has a different interpretation; it is not
a projective or rendering map, but the visual system’s owngenerative modelcon-
cerning how objects are formed [8]. This is easily accommodated within the current
framework, since for us the space of interpretationsX is distinct from the world
W. Hence, in this case, the spaceX would consist of all possible interpretations of
a shape as a hierarchical organization using segmented parts (e.g., different parti-
tions of a shape, and different tree structures capturing possible part hierarchies). In
the context of perceptual organization of shape, it is therefore especially clear that
elements ofX have no simple correspondence to the objective worldW.

A natural question is: Why have shape representations basedon parts and axes
evolved, if they have no simple correspondence to the objective worldW? The an-
swer, as expected, has to do with fitness. Organisms that can predict, upon seeing an
object at one time, what that object might look like on other occasions, are likely to
interact with it much more successfully—and thus have greater fitness—than those
that cannot. And a shape representation based on parts and axes goes a long way
in conferring this ability: Upon seeing an animal in one particular articulated pose
(configuration of limbs), for example, it is much easier to predict other possible (un-
seen) articulated poses if one’s shape representation is part-based than, say, if one’s
representation consists simply of an unstructured template of the shape as a whole.
In sum, a framework that allowsX andW to be distinct, and incorporates the role of
fitness, makes it much easier to understand the perceptual organization of shape.

5 Relation to Quantum Bayesianism

One might object: “It is naive for vision scientists to propose that our perceptions
are not veridical, and that therefore the objective world need not be spatiotemporal
and need not contain 3D objects with shapes. Surely physicists know otherwise, and
would dismiss such a proposal out of hand.”

Indeed there are some physicists who might dismiss such a proposal. However
there are others who, in trying to best interpret the formalism of quantum theory,
have been led to a view about quantum states that comports well with our proposal.
These physicists, who call their approach “quantum Bayesianism,” or QBism for
short, claim that quantum states are not objective representations of the external
world, but rather are compendia of beliefs about possible outcomes of measurements
[9, 10, 2]. As Fuchs [9] puts it, “. . . there is no sense in which the quantum state
itself represents (pictures, copies, corresponds to, correlates with) a part or a whole
of the external world, much less a world thatjust is” and “. . . a quantum state is a
state of beliefabout what will come about as a consequence of. . . actions upon the
system.” So, for instance, according to QBism a state function of a quantum system,
represented say in the basis of the position operator, has a particular shape in space
that can be used to predict the consequences of actions on that system.

This is entirely consistent with the view we propose about our perceptual ex-
periences in general, and our experiences of shape in particular. There is no sense
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in which the objects in our perceptual experiences picture,copy, correspond to, or
correlate with a part or a whole of the external world. Instead such objects and their
shapes, and perceived space-time itself, are states of belief about what will come
about as a consequence of our actions (which could include measurement). The rea-
son is that natural selection, which has tuned our perceptions, rewards fitness and
nothing else. Therefore our perceptions have been tuned to inform us of the fitness
consequences of our possible actions, not to copy or picturethe objective world.

6 Discussion

We sketched a formal framework—computational evolutionary perception—that
subsumes and generalizes the standard Bayesian framework for vision. While in-
corporating the role of probabilistic inference, CEP also incorporates fitness in a
fundamental way, and it allows us to consider different possible relationships be-
tween the objective world and perceptual representation spaces. In our framework,
shape is not an objective property of the world. It is simply arepresentational for-
mat employed by our visual systems to guide adaptive interactions with the world.
This representational format evolved because it allows a high-capacity channel for
expected fitness. In other words,shape is an effective code for expected fitness that
has been tuned by natural selection.Because fitness depends crucially on the ac-
tions of an organism, shape representations in our framework are closely tied to
actions. Thus when we perceive the 3D shape of an object—the undulations of its
surface, its local and global symmetries, its part and skeletal structure—these are
various aspects of a code that compactly summarizes the possible actions that one
could take (including future actions based on current categorization), and to predict
the fitness consequences of those actions. To model this formally, we introduced the
perception-decision-action (PDA) loop. Among other things, the PDA loop clarifies
how, even though one cannot know the effects of one’s actionsin the objective world
itself, one can nevertheless know—because of the coherent coupling between per-
ception and action—the results of those effects back in our perceptual experience.
This explains how organisms can interact effectively with afundamentally unknown
objective world. Finally, CEP and the PDA loop provide a new framework for under-
standing the perceptual organization of shape using parts and skeletons—something
that is difficult to accommodate within a standard inverse-optics approach to shape.
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