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Natural Selection and Shape Perception:
Shape as an Effective Code for Fitness

Manish Singh and Donald D. Hoffman

1 Introduction

Our perception of shape is, like all of our perceptions, adpob of evolution by
natural selection. This entails that our perception of shiapa satisficing solu-
tion to certain problems faced by our ancestors, e.g., ted testalk prey, secure
mates, elude predators, and predict outcomes of actiotigralaelection produces
satisficingsolutions, rather thaaptimizingsolutions, because selection favors sur-
vival of thefitter, not of thefittest A gene need confer only a slight edge over the
competition—a standard far lower than optimality—to pesiate in later genera-
tions.

It is standard in vision research to assume that more aepeateptions are
fitter perceptions, and that therefore natural selectioegwur perceptions to be
veridical, i.e., to be accurate reflections of the objeatieeld. For instance, Palmer
argues that “Evolutionarily speaking, visual percept®nseful only if it is reason-
ably accurate. . This is almost always the case with vision” [28]. Geisler &iehl
argue that “In general, (perceptual) estimates that areenéze truth have greater
utility than those that are wide of the mark” [11].

If perception is indeed veridical, then the world of our \@kaxperience shares
the attributes of the objective world. Our visual world hiasee spatial dimensions,
a temporal dimension, and contains 3D objects with shamdsrs; textures and
motions. Vision researchers standardly assume that tleetlg world does also. In
other words, they standardly assume that the language ofisual representations
is the correct language for describing objective reality.
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The assumption that the objective world has three spatmaédsions, whereas
the retinal image has just two, leads to the standard coincltisat the retinal im-
age is an optical projection, from 3D to 2D. Such a projecti@eessarily loses
information. Thus it is standard to conclude that humanowisnust recover this
information by somehow “undoing” the effects of optical jgation—a task of-
ten called “inverse optics” (e.g., [1, 29]). It is standamd@rmulate theories of the
recovery of veridical information using the mathematicalniework of Bayesian
decision theory [12, 17, 18, 21, 23, 24].

In this chapter we propose, contrary to standard assungpttbat natural se-
lection does not favor veridical perceptions. The reasorshort, is that fitness is
distinct from truth; it depends not only on the objective ldpbut also on the organ-
ism, its state, and the action class in question. A gazeltanktance, offers lots of
“fitness points” to a hungry cheetah seeking to eat, but noaecheetah seeking to
mate. Natural selection favors fitness, not truth. It isigtrdiorward to produce evo-
lutionary games in which true perceptions are driven tonekitbn by nonveridical
perceptions that simply report fitness [25].

The consequences of this for shape perception are profdfuoal. perceptions
of 3D shape are not veridical reconstructions of objectibesBapes, then a new
framework, entirely different from the standard, is reedito properly understand
shape perception. In this chapter we sketch such a formmakfneork that incorpo-
rates the role of evolution in a fundamental way, and in wipierceived shape is an
adaptive guide to behavior, not a reflection of objectivdityea his framework is
consistent with thénterfacetheory of perception [15].

Because natural selection has tuned our perception of dbape an adaptive
guide to behavior, our perception of shape has evolved tigbtiyt coupled with our
actions, a coupling that we formalize here with a commutirgychm that we call
the “perception-decision-action” loop, or PDA loop. Thhe tetailed properties of
perceived shapes, such as their symmetries and parts, tadlepiotions of the true
properties of shapes in an objective world, but simply gsiideadaptive actioh.

2 Bayesian Decision Theory

A common framework for modeling vision in general, and thectvery” of 3D
shape from 2D images in particular, is Bayesian decisionrth€éBDT) [12, 17,
18, 21, 23, 24]. BDT provides a probabilistic framework a tomputational (or
competence) level [26], at which visual problems are aralyin terms input-
output relations (e.g., the formal constraints needed tveldesired outputs from
given inputs)—independently of performance considenatiovolving specific al-
gorithms or their implementations.

1 We use “action” in the broadest sense of the word—to incluteonly visually-guided manip-
ulation of objects (“dorsal stream”), but also visual catgzations (“ventral stream”) that inform
subsequent behavior, e.g., whether or not to eat a fruihsome probability of being poisonous.
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Given the basic inductive problem that any image is consistéh many differ-
ent 3D interpretations, the visual system can resolve thisiguity only by bring-
ing additional constraints (or biases) to bear—based onlaéties observed in
the terrestrial environment in which our species evolvedeé-eomparing the rel-
ative probabilities of different scene interpretationst Example, in estimating 3D
shape from shading, human vision appears to assume thattgies from above
(e.g., [19, 24]). Similarly, theories of shape-from-cam®often assume that the 3D
shapes are symmetric, or maximally compact (e.g., [30]).

Formally, given an imagg, the visual system must compare the posterior proba-
bility p(x|yo) for different scene interpretatiornsBy Bayes’ Theorem, this posterior
probability is proportional to the the product of the likedod of the sceng(yo|x)
and its prior probabilityp(x). The likelihood term captures the extent to which the
scene interpretatior is consistent with—or can “explain"—the imageg. In the-
ories of shape-from-X, it is usually taken to be a projectivaepping from 3D to
2D (orthographic or perspective), plus some model of ndseause many differ-
ent 3D interpretations are typically consistent with anyegiimage, the likelihood
cannot generally resolve the ambiguity by itself (i.e.,ltkelihood may be equally
high for a large number of 3D interpretations). The otherseof information—the
prior probability—reflects the observer’s internalizedidfs about fact that certain
scenes, shapes, or states of the world are more likely thearsst-e.g., light tends
to come from above, objects tend to be compact, there is aleree of symmetric
objects, etc. [30, 19, 24].

The combined use of the prior and likelihood—via Bayes—dsel posterior dis-
tribution on the space of scene interpretations. It is comtoaise the maximum-a-
posteriori (MAP) estimate as one’s “best” interpretatiblure generally, however,
the choice of “best” point estimate depends on the loss fomaine assumes—
namely, the consequences of errors, or deviations from tilve™ (but unknown)
interpretation. If the loss function is essentially a Digwlta function (i.e., no loss
for the correct answer, equal loss for every other answery#ue that minimizes
expected loss is the mode of the posterior distribution,the MAP estimate. How-
ever, if the loss function is quadratic (i.e., squared+®ytbe value that minimizes
expected loss is the mean of the posterior distribution.ddetifferent choices of
loss functions lead to different strategies for pickingragie “best” scene interpre-
tation from the posterior distribution (e.g., [24]).

3 A general framework for perception and its evolution

Bayes’ Theorem provides a provably optimal way of combirthegtwo probabilis-
tic sources of information embodied in the likelihood an@pfl7]. Hence there
is strong, principled justification for using Bayes, oncekallhood model and a
prior have been specified on a fixed space of possible intetfpes. However, the
Bayesian framework as it is standardly applied to visiomings important assump-
tions that are ultimately too restrictive.
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Fig. 1 (a) The standard Bayesian framework for vision. (b) The astaijonal evolutionary per-
ception (CEP) framework. In CEP, the objective wafldies outside of the probabilistic inferential
apparatus for vision. There are perceptual charendR, to the two representational spaces
andY, respectively. And there are specific fitness functiong\otiat assign, for a given organism
0, its states, and the type of actioa in question, “fithess points” to eaehe W.

Consider the standard Bayesian setup for vision shown iar€iga.X is the
space of scene interpretations (say, 3D shapes), with pradrability distribution
Ux. Y is the space of 2D images. The likelihood mappinig the projective map
from 3D to 2D (possibly with noiseB is the Bayesian posterior map fromto
X. TechnicallyL andB are both Markovian kernels [31]. Thus, for each X, the
projective mapL specifies a probability distribution ovi (in the noise-free case,
this distribution is supported on a single point). And focles € Y, the Bayesian
posteriorB gives a probability distribution on the spa¥eof 3D shapes.

Importantly, note that in this setup the spacplays two distinct roles: (i) it cor-
responds to the space of objective world states; and (iQritssponds to the space
of possible perceptual interpretations from which the &isystem must “choose.”
This dual role is entirely consistent with tleverse opticsaapproach to vision—
according to which the goal of vision is essentially to in@r‘undo” the effects of
optical projection. It is also consistent with the histaticoots of Bayesian meth-
ods, namely, as techniques for computing “inverse proligbit-a prototypical case
being to infer the relative probabilities of possible uryieg causep(C|E) given
some observed eveRt when what one actually knows are the probabilities of ob-
taining various eventp(E|C) from particular causes [22].

This dual role played byX makes it clear how BDT embodies the common as-
sumption that human vision has evolved to see the truthnktithe case, of course,
that a BDT observer always makes veridical perceptual émees. Indeed, it can-
not. Because a BDT observer embodies specific assumptiang edgularities in
the world (“light tends to come from above,” “objects tendo® mostly convex,”
etc.) it is always possible to place it within a context whigseassumptions are vi-
olated. At a more fundamental level, however, BDT makes tigichassumption
that thelanguageof scene interpretations is the correct language for describing
objective reality. In other words, BDT assumes that the e@sgntational spacé
contains somewhere within it a true description of the dbjeavorld—even if the
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observer’s estimate misses it in any given instance. It ihis more fundamental
sense that BDT assumes that human vision has evolved toestreih.

Consideration of vision in other species, especially thogh simpler visual
systems, suggests that this implicit identification of tBpresentational space
with the objective world is too restrictive and simplistithis is especially so if one
wants a formal framework that is general enough to encomipessvolution of
visual systems. In discussing simpler visual systems, as¢hose of the fly and the
frog, Marr [26] noted that they “...serve adequately anchvgipeed and precision
the needs of their owners, but they are not very complicated little objective
information about the world is obtained. The informatioraikvery subjective...”;
and that “...it is extremely unlikely that the fly has any egiplrepresentation of
the visual world around him—no true conception of a surfdoe .example, but
just a few triggers and some specifically fly-centered patarse.” (p. 34). Thus
Marr seemed to acknowledge that visual systems that do nopete objective
properties of the world can serve the needs of their ownelisemeugh for them
to survive, even thrive, in their respective niches. Thisuti not be surprising;
after all, what matters in evolution is fithess, not truthd @mwen visual systems that
compute only simple, purely “subjective,” properties camfer sufficient fithess.
Despite this, Marr held that the properties computechbynanvision—such as
object shape—are objective properties of the world thagterdependently of any
observer. There is no reason to believe, however, that firesentational spaces
that evolved in the speciddomo sapiensnust correspond to object reality. The
evolution ofHomo sapienss guided no less by fitness than the evolution of any
other species. And fitness is clearly distinct from objextiuth because it depends
not only on the objective world, but also on thiganism(fly vs. elephant), itstate
(hungry vs. satiated), and tiype of actiorunder consideration (eating vs. mating).
Therefore one’s formal framework must be broad enough tudtecthe possibility
thathumanvisual representations also do not capture objective.truth

Thus, rather than simply assuming, or postulating, thasfieece of interpreta-
tionsX is identical to (or in one-to-one correspondence with) thiective world—
let’s call it W—one’s formal framework must consider different possild&tion-
ships betweelX andW. We make no assumptions ab&\t except that it is mean-
ingful to talk about probabilities iV, governed by some (unknown) probability
measureu on an event spac¥’. We define gperceptual strategyr channelas a
measurable functioR : W — X. One can think oP as a communication channel
betweerlW andX, that allows information to flow from the objective world toet
organism. More generally, in the noisy caBdas a Markovian kernel which speci-
fies, for eachw € W, a probability distribution orX.? One can then consider four
classes of perceptual strategies corresponding to diffeetationships betweex
andW (see [16, 25]): (i) thenaive realiststrategy assumes thdt=W and thatP
preserves all structures &; (ii) the strong critical realiststrategy assumes only

2 Hence, in generaP is a mapping® : W x 2~ — [0,1], where.2" is the event space oX. One
can viewP as a linear operator that maps probability measured/do probability measures on
X. In the discrete case, it would be represented by a stochastrix whose rows add up to 1. For
more on Markovian kernels see [3, 31].
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that X C W but requires thaP projects all structures oV onto X; (iii) the weak
critical realist strategy allows thaX ¢ W but requires thalP projects all structures
of W ontoX; and (iv) aninterface strategyllows thatX ¢ W and does not require
thatP projects all structures oV onto X. The interface strategyeed not see the
truth in the more fundamental sense that the very language of teeX¥pmay be
the wrong language to capture the structure of the objewntdréd W.

Most vision researchers today are weak critical realiisyTrecognize—contrary
to the claim of naive realism and strong critical realism-atthberceptual represen-
tations are distinct from objective reality, but assumé pesiceptual representations
are isomorphic, or at least homomorphic, to objective tgalie call these two
versions “isomorphic realism” and “homomorphic realism.”

We generalize BDT to a framework we call Computational Etiohary Percep-
tion (CEP; [16]). In CEP, the objective worlty lies outside of the Bayesian infer-
ential apparatus (see Figure 1K¥)andY are simply two representational spaces—
neither corresponds to the objective wafidnor are they assumed to be isomorphic
toW). For exampleY may be a lower-level representation (say, a 2D representati
of image structure) that evolved earlier, wher¥anay be a higher-level representa-
tion, involving some 3D structure, that evolved later. hare perceptual channels
Px andR, from the worldw to X andY, respectively. As noted above, in the general
casePx andR, are also Markovian kernels. Thus, for eagle W, Py specifies a
probability measure o, andR, specifies a probability measure ¥nln particu-
lar, the measurg onW yields, viaPx, a pushdown measupg on X, and similarly
via P, a measurgty onY.2 In the diagram in Figure 1b, therefore, all four map-
pings shownl(,B,Px andR,) are Markovian kernels. It is therefore meaningful to
take their compositions, which are also Markovian kerr&lgli as the composition
P«L : W — Y).% An important constraint in the CEP framework is that the thag
in Figure 1b must commute. As a result, for examples= PxL. This is a coherence
constraint on perceptual representations that allowsrebsseto predict the percep-
tual consequences of their actions, despite the fact tiegtdlre ignorant about the
objective world itself (see also Section 4).

What shapes the evolution of perception s, of course, Bti&/s therefore expect
that natural selection tunes perceptual channels (anddreesponding representa-
tional spaces) to the only signal that matters for evolytimmely, expected fithess.
In order to bring fitness into our formalism, we view organésas gathering “fitness
points” as they interact with the world. As we noted, fithespehds not only on the
objective world, but also on the organism, its current statel the type of action in
guestion. Thus we definegdobal fitness function fW x O x Sx A — R™, where
Ois the set of organism§,of their possible states, adof possible action classes.
Once we fix a particular organisoe O, states € S, and action clasa € A, thespe-

3 Thus, whereas in BDTuy is taken to be the world prior, in CER is the pushdown, via the
perceptual channél, of the prioru on the objective world.

4 Kernel composition is defined as follows: Lkt be a kernel fromX, 2°) to (Y,#), andN
be a kernel fromY,#") to (Z, 2). Then the composition kerndN from (X, 2") to (Z, %) is
defined,vx € X andA € 2, by MN(x,A) = [, M(x,dy)N(y,A). This is simply a generalization to
the continuous case of the familiar multiplication of (stastic) matrices. For details, see [31].
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cific fitness functionofsa : W — R assigns fitness points to each possible W
(say, of a starving lion eating a gazelle).

Given a specific fitness functiofysa, we define aDarwinian Ideal observer
(X,Px) as a representational spaXeplus a perceptual channBk from W to X
that has been ideally tuned to communicate (i.e., to maxmlimnnel capacity for)
expected fitness. The expected fithess signal is the prayaiiéasureF = uf
onW, definedvA € # by F(A) = [, f(w)du. (We assume thdt has been suitably
normalized so thadt = uf is a valid probability measure.) When given the expected
fitness signaF, the perceptual channl produces the output messdges, which
is the probability measure ox definedvC € 2" by FP«(C) = iy F (dw)Px(w,C).
To say thaPx has been ideally tuned to communicate the expected fitngsal $6
therefore to say that the mutual information [6] betweenrtteasure$ andFPg
has been maximized. No other perceptual chaRisttweenV andX has greater
mutual information. (In particular, this means that a pptaal strategy tuned to the
truth, i.e., to the measuge onW, cannot yield greater mutual information.)

Of course, natural selection does not generally produdengihg solutions—
only satisficing ones—which is why we referred to the maxingzobserver above
asideal In general, we may view the evolution of a perceptual chhaaehill-
climbing toward greater mutual information between theested fithess signdl
and the output messa§d of that perceptual channel. We use the t&arwinian
Observerto refer to a perceptual chanri®] that has been shaped by natural selec-
tion as a satisficing solution for a specific fithess function.

Rather than tuning a channel to a fixed representationaéspaanother way to
increase channel capacity is to evolve the representdpaae itselfX; — X, —
.... Presumably, there would be selection pressure to evolvera acomplex repre-
sentational space (e.g., a representation that captumes 3D structure) when the
maximal channel capacity for expected fithess with the ctigpace is insufficient
to survive or compete, and going to the more complex reptagenal space would
allow a substantial increase in channel capacity.

Our formal framework of Computational Evolutionary Perigep is thus more
general than the BDT framework for vision. First, while imgorating the funda-
mental role of probabilistic inference, it allows us to cioies different possible re-
lationships between the space of interpretatisd the objective worlaV (rather
than simply assuming that = W, or thatX is isomorphic td\). Second, it explic-
itly incorporates the role of fitness into the formal framekyan a way that does not
simply reduce fitness to the gain/loss function of BDT. Thiyg using communi-
cation channels to map the relationship betwdeandX, it allows us to articulate
precisely different ways in which perceptual evolution paaceed (e.g., by tuning
a perceptual channel to a fixed representational space ptvirey the representa-
tional space itself). And it allows us to use the tools of cgdheory to derive formal
constraints on perceptual evolution.
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4 Shape as a code for fitness

4.1 Implicationsfor shape perception

With our general framework in place, the implications foagh perception now
follow straightforwardly. First, our framework makes italr that we really have
no basis for assuming—as is standardly done—that shapedbjactive property
of the world. For example, it is fairly standard among shagsearchers to speak
of “shape recovery” when referring to the computation of 3lae from different
2D cues. This nomenclature reflects the identification ofémeesentational space
X with the objective worldW that is assumed in thimverse opticsapproach to
vision (and, as noted above, is commonly made in Bayesiaroappes to vision).
When one perceives the 3D shape of an object, the undulatiatsssurface, etc.,
one assumes that these geometric properties correspomjettiioe properties of
the worlP—properties that exist independently of any observer. Heweas we
noted above, this is too simplistic. And it is much more thaa oan claim based on
available facts. There is surely an objective wakldbut there is no basis for saying
that shapeis a property of that world. Rather, shape is simply a reprieg®nal
format used by our visual systems to guide interactions thithobjective world.
It is part of the representational spa¥enotW. It should be clear from this that
our position is strictly weaker—not stronger—than the dtadinverse opticsor
shape recovenapproach. Whereas the standard approach assumes, ompestul
thatX =W or thatX is isomorphic td/V, we are open to different possible relations
betweenX andw.

Second, our framework entails thsihape as a representational format, most
likely evolved because it made possible the developmenttridla-capacity chan-
nel for expected fitness. Thus the property we shthpeis essentially an effec-
tive coding scheme for expected fitness that has been tunedthbyal selection: it
conveys to an organism—in a compact and efficient format—vi@®us ways in
which the organism could interact with objects in the woddyain more “fitness
points.” Therefore when we perceive the 3D shape of an ebjdat undulations on
its surface, its symmetries, its part structure—all of ehaee different aspects of a
representational format that natural selection has fagttipone which compactly
summarizes the different possible actions that we could, takd that allows us to
predict what the perceptual consequences of those actiounlsl\we (e.g., how the
perception of a 3D object would change were we to rotateghdly to left, pick it
up in a certain way, etc.), and what the fithess consequenmelsiwe (e.g., would
we successfully eat that apple or evade that tiger).

5 One may allow for misperceptions—e.g., that observers teperceive an object from a certain
viewpoint as being less elongated in depth than physicakorements of the object tell us it is.
But one nevertheless assumes tiraof the shapes iX is the “correct” one in the objective world
W. In other words, at a more fundamental level, one assumesghihaery property we cahape
is an intrinsic property of the objective woMl itself.
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This last point raises a natural question: How is it posdibiess to interact suc-
cessfully with the objective world if we are fundamentagiporant of it, and can as-
sume no simple correspondence between our perceptionhatnabjective world?
This is where the third implication of our framework comesnamely, that action
(broadly construed) plays a central role in shape percepiiobrief, it is perfectly
possible to interact successfully with a fundamentallynown objective world be-
cause (i) there is a regularity in the perceptual mappingthere is regularity in
the consequences of our actions in the objective world; @hthgse two mappings
are linked in a coherent manner. This is a fundamental poinbéir framework
and, to develop it fully, we need to introduce some more fdisrmg namely that of
the perception-decision-actiofor PDA) loop. Before we do this in Subsection 4.2,
however, we provide an example that should help fix intugion

Consider the desktop interface of a PC. A file’s icon on thekidgsmight be
green, rectangular and in the middle of the screen. Doe<tial that the file it-
self is green, rectangular and in the middle of the compu@drourse not. The
shape, position and color of the icon are merely conventibasallow the user
to interact with the computer despite being ignorant of thmglex details of its
diodes, resistors, software, voltages and magnetic fi€lis interface is useful not
because it reveals the truth about the computer, but bedahikes the complex
truth, and instead provides simple symbols that guide Ugeteractions with the
computer. In like manner, natural selection has shaped engeptions to be an in-
terface that hides the true nature of the objective world qarides adaptive behavior
[14, 15, 20]. Spacetime is the desktop, and objects with gigipes, colors, textures
and motions are icons in the desktop. Spacetime and objectsoa the objective
truth, and do not resemble the truth. Instead, they are despspecific adaptation
shaped by natural selection to guide adaptive behaviorsaaalliow us to survive
long enough to reproduce. Perception has been shaped byegative to raise
kids, not to see truth.

4.2 Therole of action in shape perception

In this section we incorporate action and decision into oumfalism, and draw out
implications for shape perception. Natural selection ssagly couples perception
and action because expected fitness, to which perceptionéslf depends crucially
on the actions of the observer. Different classes of actienia general, coupled
with different expected fithesses. The expected fithesspgiraned from an ap-
ple for the action of eating is greater than for the action ating. Since natural
selection tunes perceptual channels toward maximizingiahumformation about
expected fitness, one expects tight coupling between peiadeghannels and the
actions they inform.

When an observer receives a perceptual experigrc¥, it must decide what
action to take. We will denote the set of available actiona bgtG, where we think
of G as including a group that acts &n Recall that if a grougs acts onX, then for



10 Manish Singh and Donald D. Hoffman

everyg € G the mapping — gxis a bijective map fronX to X. Common examples
are the actions of translation and rotation on Euclideanespa/Ne also allow there
to be actions irG other than group actions.

Thus, given a perceptual experience X the observer must decide which ac-
tion g € G to take. The natural formalism to describe such a decisiagan a
Markovian kernelP, from (X, 2") to (G,¥). We callD the decision kernel.

Once an actiory is chosen, the observer must then act on the objective world
W. We model this action by a Markovian kernglfrom (G,¥) to (W, #), which
we call the action kernel. Given this formalism, we can thifilaction as sending a
message from the observer to the objective world.

Thus we have three kerneB; D, andA. P maps fromW to X; D maps fromX
to G; A maps fromG back tow (see Figure 2). So together they form a loop, which
we call the PDA loop. We have a PDA loop for each perceptuabsmtation space
X. So, in the CEP example discussed in Section 3, there is a Be#fbr the 2D
image spac¥ and another PDA loop for the 3D spaxe

However, just as we assume that the observer does not knabjbetive world
W, and therefore does not know the perception kePalo also the observer does
not know the action kernel. Informally, this means that when we act, we don't
really know what effects we are having in the objective waxdtself; however we
do know the results of those effects back in our perceptyseencesX. Formally,
even though the observer cannot know the kerRedsd A, it can know the kernel
APfrom (G,¥) to (X, Z"), which is formed by the kernel compositiondandP. It
can also know the kern®AP from (X, 2") to (X, .Z") (i.e., fromX back to itself).
This allows the observer to learn how to interact Wwitheven while being ignorant
of W. The observer can try different actiogs G and note their consequences for
perceptual experiences M If the consequences are unexpected, the observer can
update its decision kernBl to correct this.

This applies to actions with objects and shapes. If, forinst, the observer acts
in a way that leads it to perceive that its body moves thropgles via an element of
the Galilean group, or that its hand is grasping an objectatading it, then, given
its perceptions of the relative position of an object, arelshmmetries and parts of

G

A D

W > X

P

Fig. 2 The Perception-Decision-Action (PDA) looy. denotes the objective worlX a space of
perceptual representations of an organism, @rible related set of actions the organism can take.
P is a perception kerneD a decision kernel, and an action kernel. All kernels are Markovian.
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that object, it can predict what the consequences of iterastiould be for changes
in the relative position and perceived shape of that object.

This also applies to object categorization. Such categtioz allows the ob-
server to predict the fitness consequences of various ¢wameifuture interactions
with the object (such as eating it). We are thus using the Wactdon” broadly to
include not only “dorsal stream” visually-guided motor betor, but also “ventral
stream” perception and categorization that inform futwgkdvior.

Let’s return to the desktop metaphor discussed above. A eawrgtion of desk-
tops now employ 3D interfaces. In such a desktop, if the id@fibe has a particular
3D shape, say the shape of a book, and the desktop containbad®helf with a
book-shaped gap, then the user can be guided by the shapesitidmpof the 3D
icon to grasp it and place it in the bookshelf. In one sensgjghunremarkable. But
the key concept here is that the file itself in the computerritma8D shape, and in
particular is not shaped like a book. Moreover, the dirgcsystem in the computer
has no 3D shape, and in particular is not shaped like a botlk$hese 3D shapes
are mere conveniences for guiding effective interactidiseuser, not insights into
the true nature of files and directories—and certainly nahefmyriads of voltages
and magnetic fields in the computer.

4.3 Perceptual organization of shape

Apart from computing 3D shape from 2D image cues, anothetdorental aspect
of shape perception is the perceptual organization of shamggeat deal of psy-
chophysical work indicates that human vision organizespgiershapes hierarchi-
cally in terms of parts and their spatial relationships.(¢5g 7, 13, 32]). This “struc-
tural” approach to shape separates the representatiodieidnal parts from that of
their spatial relationships—thereby allowing a shape talbatified as comprising
the same parts, but in somewhat different spatial relafjerts, a sleeping cat vs. a
standing cat). Itis also closely related to the axis or skelbdased approach, which
provides a compact “stick-figure” representation of a carphape that captures
its structural aspects (e.g., its branching structure)lidleed, a recent probabilistic
approach to the computation of shape skeletons yields @amoae correspondence
between parts and skeletal branches—indicating that padskeletons are com-
plementary aspects of the perceptual organization of sfgpe

They key point, for current purposes, is that the perceprganization of shape
in terms of parts and axes has no natural interpretationrimg®f inverse optics.
There is no objective “ground truth” regarding whether ajeob“really” has one
part or two, or whether an axis that continues from one pouita shape to another
is “really” the same or a different axial branch (e.g., cdesia U-shape vs. a V-
shape, and a morphing sequence between them). The orgamizishape in terms
of segmented parts, or in terms of axes, is something thatishal systenimposes
on perceptual objects—it is not an objective property ofwueld. This does not
mean that a Bayesian analysis of the problem is not possilolever, the likeli-
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hood or the “forward” mapping in that case has a differergrptetation; it is not
a projective or rendering map, but the visual system’s generative modeton-
cerning how objects are formed [8]. This is easily accomnediaithin the current
framework, since for us the space of interpretatidhis distinct from the world
W. Hence, in this case, the spa¥evould consist of all possible interpretations of
a shape as a hierarchical organization using segmentesl (pagt, different parti-
tions of a shape, and different tree structures capturisgipte part hierarchies). In
the context of perceptual organization of shape, it is ftoeesespecially clear that
elements oK have no simple correspondence to the objective watld

A natural question is: Why have shape representations lasedrts and axes
evolved, if they have no simple correspondence to the abgwatorld W? The an-
swer, as expected, has to do with fitness. Organisms thateditp upon seeing an
object at one time, what that object might look like on othezasions, are likely to
interact with it much more successfully—and thus have grdéhess—than those
that cannot. And a shape representation based on parts eadjass a long way
in conferring this ability: Upon seeing an animal in one fmartr articulated pose
(configuration of limbs), for example, it is much easier tegict other possible (un-
seen) articulated poses if one’s shape representationtibgsed than, say, if one’s
representation consists simply of an unstructured templethe shape as a whole.
In sum, a framework that allows andW to be distinct, and incorporates the role of
fithess, makes it much easier to understand the percepgatiaation of shape.

5 Relation to Quantum Bayesianism

One might object: “It is naive for vision scientists to prageahat our perceptions
are not veridical, and that therefore the objective worlddcheot be spatiotemporal
and need not contain 3D objects with shapes. Surely phislaiew otherwise, and
would dismiss such a proposal out of hand.”

Indeed there are some physicists who might dismiss suchpogab However
there are others who, in trying to best interpret the forsmalof quantum theory,
have been led to a view about quantum states that compoits/itrebur proposal.
These physicists, who call their approach “quantum Bayésia” or QBism for
short, claim that quantum states are not objective reptasens of the external
world, but rather are compendia of beliefs about possibleaues of measurements
[9, 10, 2]. As Fuchs [9] puts it,.. there is no sense in which the quantum state
itself represents (pictures, copies, corresponds toglades with) a part or a whole
of the external world, much less a world thast is’ and “... a quantum state is a
state of beliefabout what will come about as a consequence .cdictions upon the
system.” So, for instance, according to QBism a state fonaif a quantum system,
represented say in the basis of the position operator, hagiaydar shape in space
that can be used to predict the consequences of actionstosygtam.

This is entirely consistent with the view we propose about merceptual ex-
periences in general, and our experiences of shape in ylartidhere is no sense
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in which the objects in our perceptual experiences picttopy, correspond to, or
correlate with a part or a whole of the external world. Indteach objects and their
shapes, and perceived space-time itself, are states ef bélout what will come

about as a consequence of our actions (which could incluésunement). The rea-
son is that natural selection, which has tuned our percepti@wards fithess and
nothing else. Therefore our perceptions have been tuneddom us of the fithess

consequences of our possible actions, not to copy or pitiierebjective world.

6 Discussion

We sketched a formal framework—computational evolutignaerception—that
subsumes and generalizes the standard Bayesian framewvorision. While in-
corporating the role of probabilistic inference, CEP alscorporates fitness in a
fundamental way, and it allows us to consider different fideselationships be-
tween the objective world and perceptual representatianesp In our framework,
shape is not an objective property of the world. It is simphgpresentational for-
mat employed by our visual systems to guide adaptive intierscwith the world.
This representational format evolved because it allowgyh-bapacity channel for
expected fitness. In other wordshape is an effective code for expected fithess that
has been tuned by natural selecti@decause fithess depends crucially on the ac-
tions of an organism, shape representations in our framewa@ closely tied to
actions. Thus when we perceive the 3D shape of an object—+tielations of its
surface, its local and global symmetries, its part and skkegructure—these are
various aspects of a code that compactly summarizes théjmastions that one
could take (including future actions based on current categtion), and to predict
the fithess consequences of those actions. To model thisfigrmve introduced the
perception-decision-action (PDA) loop. Among other tlsinipe PDA loop clarifies
how, even though one cannot know the effects of one’s actimtie objective world
itself, one can nevertheless know—because of the coheoepting between per-
ception and action—the results of those effects back in eucgptual experience.
This explains how organisms can interact effectively withredamentally unknown
objective world. Finally, CEP and the PDA loop provide a neanfework for under-
standing the perceptual organization of shape using padtslkeletons—something
that is difficult to accommodate within a standard inverptes approach to shape.
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