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ABSTRACT 

An analysis is performed to study the effect of uniform wall transpiration on non-
Darcy free convection boundary-layer flow over a permeable vertical cone embedded in a 
porous medium saturated with a nanofluid. The model used for the nanofluid incorporates 
the effects of Brownian motion and thermophoresis.  

The governing partial differential equations are transformed into a set of non-similar 
equations and solved numerically by an efficient implicit, iterative, finite-difference 
method. Comparisons with previously published work are performed and excellent 
agreement is obtained.  

Numerical results are obtained for the velocity, temperature and nanoparticles 
volume fraction profiles, as well as the friction factor, local Nusselt number and the local 
Sherwood number for several values of the parameters, namely, the Ergun number Er 
ranging from 0.0 to 0.6, Lewis number Le ranging from 1.0 to 20, buoyancy ratio 
parameter Nr ranging from 0.1 to 0.7, Brownian motion parameter Nb ranging from 0.1 
to 0.7, thermophoresis parameter Nt ranging from 0.1 to 0.7 and the transpiration 
parameter ξ ranging from 0.1 to 0.7.  

The obtained results are presented graphically and in tabular form and the physical 
aspects of the problem are discussed.  

It is found that an increase in either of the Ergun number, buoyancy ratio parameter, 
thermophoresis parameter or the transpiration parameter leads to a decrease in the local 
Nusselt number and the local Sherwood number whereas the opposite behavior occurs 
with increasing the Lewis number. In addition, increasing of the Brownian motion 
parameter causes a decrease in the local Nusselt number and an increase in the local 
Sherwood number. 
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NOMENCLATURE 

C nanoparticle volume fraction [nm]  
Cw nanoparticle volume fraction at the vertical plate [nm] 
C∞ ambient nanoparticle volume fraction attained as y tends to infinity [nm] 
d the pore diameter [m] 
DB Brownian diffusion coefficient [m-2 s-1] 
DT thermophoretic diffusion coefficient [m-2 s-1] 
Er Ergun number (non-Darcy number) (equation 7) 
ƒ dimensionless stream function  
g gravitational acceleration vector [m s-2]  
K permeability of porous medium [m2] 
K* porous medium inertial coefficient [m-1] 
kf thermal conductivity [w m-1K-1] 
Le Lewis number (equation 9)  
Nr Buoyancy Ratio (equation 7) 
Nb Brownian motion parameter (equation 8,9)  
Nt thermophoresis parameter (equation 8,9) 
Nux local Nusselt number 
r radius of the cone [m]  
Rax Modified local Rayleigh number 
Shx local Sherwood number  
T temperature [K]  
TW temperature at vertical plate [K] 
T∞ ambient temperature attained as y tends to infinity [K] 
Vw wall suction or injection velocity [ms-1] 
u,v velocity components [ms-1] 
(x,y) Cartesian coordinates [m]  

Greek Symbols 

α thermal diffusivity of porous medium [m2 s-1] 
β volumetric expansion coefficient of fluid [K-1] 
γ half angle of the cone [o] 
μ dynamic viscosity [N s m-2] 
η similarity parameter 
θ dimensionless temperature  
φ dimensionless nano-particle volume fraction 
ψ stream function (m3 s-1)  
ρf fluid density (Kg m-3) 
ρp nano-particle mass density (Kg m-3) 
(ρc)f heat capacity of the fluid (J Kg-1 K-1) 
(ρc)p effective heat capacity of nano-particle material (J Kg-1 K-1) 
τ parameter defined by equation  
ξ the transpiration parameter  
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Subscripts 

w conditions at the wall 
∞ conditions in the free stream 

1. INTRODUCTION 

Convective heat transfer from surfaces embedded in porous media has been the topic of 
several studies in recent year. This interest in the subject stems from various engineering 
applications in geothermal reservoirs, petroleum industries, transpiration cooling, storage of 
nuclear waste materials, separation processes in chemical industries, building thermal 
insulation, and solar heating systems. Early work on porous media used the Darcy law that 
neglects important effects such as boundary and inertia effects. Vafai and Tien [1] have 
reported a pioneering work on the boundary and inertia effects of porous media on convective 
flow and heat transfer situations. In recent years, enhanced models of porous media have been 
reported. These models have been applied for simulating more generalized situations such as 
flow through packed and fluidized beds and liquid metal flow through dendritic structures in 
alloy casting (Nithiarasu et al. [2]). Some of these models deal with variable porosity effects 
near the boundary in which the porosity distribution exhibits a peak value there and then 
decays asymptotically beyond that value. The basis for these models was the early 
experimental work of Benenati and Brosilow [3] on void fraction distribution in packed beds. 
Examples of such models are reported and employed by Vafai [4], Vafai et al. [5], Poulikakos 
and Renken [6] and Nithiarasu et al. [2]. Other models have dealt with thermal dispersion or 
secondary flow effects in porous media which result from mixing and recalculation of local 
fluid particles through tortuous paths formed by the spherical particles in packed beds. 
Examples of these models have been reported by Cheng and Vortmeyer [7] and Amiri and 
Vafai [8]. Also, Darcy’s law has been the momentum equation used in many studies of fluid 
flow in porous media. Because Darcy’s law is of order one less than the Navier–Stokes 
equation, only the impermeable boundary condition at a surface can be satisfied; the no-slip 
boundary condition cannot. In contrast with rocks, soil, sand, and other media that do fall 
within this category, certain porous materials, such as foam metals and fibrous media, usually 
have high porosities. In these media, the boundary and inertia effects not included in Darcy’s 
model may alter the flow and heat transfer characteristics. It is therefore, necessary to 
determine the conditions under which these effects are important. When the Reynolds number 
based on the pore size is greater than unity and there is an impermeable boundary or wall, the 
non-Darcy effects (the inertia and boundary effects) should be included in the momentum 
equation. The inertia effects can be accommodated through the so-called Forchheimer’s 
extension, while the boundary effects can be modeled, in a formalization known as 
Brinkman’s extension, through the inclusion of a viscous shear stress term. 

Nanofluids are prepared by dispersing solid nanoparticles in fluids such as water, oil, or 
ethylene glycol. These fluids represent an innovative way to increase thermal conductivity 
and, therefore, heat transfer. Unlike heat transfer in conventional fluids, the exceptionally 
high thermal conductivity of nanofluids provides for exceptional heat transfer, a unique 
feature of nanofluids. Advances in device miniaturization have necessitated heat transfer 
systems that are small in size, light mass, and high-performance. Several authors have tried to 
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establish convective transport models for nanofluids. Xuan et al. [9] have examined the 
transport properties of nanofluid and have expressed that thermal dispersion, which takes 
place due to the random movement of particles, takes a major role in increasing the heat 
transfer rate between the fluid and the wall. This requires a thermal dispersion coefficient, 
which is still unknown. Brownian motion of the particles, ballistic phonon transport through 
the particles and nanoparticle clustering can also be the possible reason for this enhancement 
[10]. Das et al. [11] has observed that the thermal conductivity for a nanofluid increases with 
increasing temperature. They have also observed the stability of Al2O3–water and CuO–water 
nanofluid. Experiments on heat transfer due to natural convection with nanofluid have been 
studied by Putra et al. [12] and Wen and Ding [13]. They have observed that heat transfer 
decreases with increase in concentration of nanoparticles. The viscosity of this nanofluid 
increases rapidly with the inclusion of nanoparticles as the shear rate decreases. Chamkha et 
al. [14] have studied mixed convection MHD flow of a nanofluid past a stretching permeable 
surface in the presence of magnetic field, heat generation or absorption, thermopherosis, 
Brownian motion and suction or injection effects. Chamkha et al. [15] have also analyzed 
natural convection past a sphere embedded in a porous medium saturated by a nanofluid. 
Gorla et al. [16] have studied steady boundary layer flow of a nanofluid on a stretching 
circular cylinder in a stagnant free stream. Gorla et al. [17] have analyzed mixed convection 
past a vertical wedge embedded in a porous medium saturated by a nanofluid. 

In this study, the effect of uniform wall transpiration on non-Darcy free convection 
boundary-layer flow over a permeable vertical cone embedded in a porous medium saturated 
with a nanofluid is considered. The model used for the nanofluid incorporates the effects of 
Brownian motion and thermophoresis. Numerical solutions of the boundary layer equations 
are obtained and discussion is provided for several values of the nanofluid parameters 
governing the problem. The dependency of velocity, temperature and nanoparticles volume 
fraction profiles as well as the local Nusselt number and local Sherwood number on these 
parameters are discussed.  

2. GOVERNING EQUATIONS 

 Consider the problem of free convection boundary-layer flow of a Newtonian nanofluid 
over a permeable vertical cone embedded in a porous medium in the presence of uniform wall 
transpiration effects. The model used for the nanofluid incorporates the effects of Brownian 
motion and thermophoresis. It assumed that the cone surface is maintained at a constant 
temperature Tw and a constant nanoparticles volume fraction Cw and the ambient temperature 
and nanoparticles volume fraction far away from the surface of the cone T∞ and C∞ are 
assumed to be uniform. For Tw>T∞ and Cw>C∞ an upward flow is induced as a result of the 
thermal and nanoparticle volume fraction buoyancy effects. 

Figure 1 shows the flow model and the physical coordinate system. The origin of the 
coordinate system is placed at the vertex of the cone, where x and y are the Cartesian 
coordinates measuring the distances along and normal to the surface of cone, respectively. 
For the flow in the porous medium, the non-Darcy model proposed by Ergun [18] is adopted 
in this work. The governing equations for the problem under consideration with the boundary 
layer and Boussinesq approximations and the modified non-Darcy law can be written as (see 
Yih [19]): 
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,  (1) 

,  (2) 

,  (3) 

,  (4) 

 
where x and y denote the vertical and horizontal directions, respectively. u, v, T and C are the 
x- and y components of velocity, temperature and nanoparticles volume fraction, respectively. 
K, β, g, DB and DT are the permeability of the porous medium, volumetric expansion 
coefficient of fluid, gravitational acceleration, Brownian diffusion coefficient and the 
thermophoretic diffusion coefficient, respectively. K*, γ, µ, ρf and ρp are the porous medium 
inertial coefficient, half angle of the cone, fluid dynamic viscosity, fluid density and 
nanoparticles mass density, respectively. and are the 

effective thermal diffusivity of the porous medium and the ratio of heat capacities, 
respectively. km, (ρc)f and (ρc)p are the effective thermal conductivity, heat capacity of the 
fluid and the effective heat capacity of the nanoparticles material, respectively.  

 

 

Figure 1. Flow model and physical coordinate system. 
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The boundary conditions suggested by the physics of the problem are given by 
 

, , , (5a) 
 

,  (5b) 
 

where Vw, T∞ and C∞ are the uniform transpiration velocity, temperature and nanoparticles 
volume fraction, respectively. It is assumed that the boundary layer is sufficiently thin in 
comparison with the local radius of the cone. Therefore, the local radius to a point in the 
boundary layer can be replaced by the radius of the cone r, i.e., . Introducing the 
stream function such that: , and substituting 
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into Eqs. (1) through (5) produces the following non-similar equations and boundary 
conditions: 
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are the buoyancy ratio, Brownian motion parameter, thermophoresis parameter, Ergun 
number (non-Darcy number) based on the pore diameter d, Lewis number and the modified 
local Rayleigh number for the flow through the porous medium, respectively. It should be 
noted that the transpiration parameter ξ= 0 (Vw = 0) corresponds to an impermeable cone 
surface while ξ> 0 (Vw > 0) corresponds to the case of fluid injection and ξ< 0 (Vw < 0) 
corresponds to the case of fluid suction. It is important to note that the most nanofluids 
examined to date have large values for the Lewis number Le > 1 (see Nield and Kuznetsov 
[20]). For water nanofluids at room temperature with nanoparticles of 1-100 nm diameters, 
the Brownian diffusion coefficient DB ranges from 4×10-4 to 4×10-12 m-2/s. Furthermore, the 
ratio of the Brownian diffusivity coefficient to the thermophoresis coefficient for particles 
with diameters of 1-100 nm can be varied in the ranges of 2-0.02 for alumina, and from 2 to 
20 for copper nanoparticles (see Buongiorno [21] for details). Hence, the variation of the non-
dimensional parameters of nanofluids in the present study is considered to vary in the 
mentioned range.  

Of special significance for this problem are the local Nusselt and Sherwood numbers. 
These physical quantities can be defined as: 

 
,  (12) 

 
.  (13) 

3. NUMERICAL METHOD AND VALIDATION 

The non-similar equations (7) through (9) are nonlinear and possess no analytical solution 
and must be solved numerically. The efficient, iterative, tri-diagonal, implicit finite-difference 
method discussed by Blottner [22] has proven to be adequate for the solution of such 
equations. The equations are linearized and then descritized using three points central 
difference quotients with variable step sizes in the η direction and using two-point backward 
difference formulae in the ξ direction with a constant step size. The resulting equations form a 
tri-diagonal system of algebraic equations that can be solved by the well-known Thomas 
algorithm (see Blottner [22]). The solution process starts at ξ=0 where Eqs. (10) through (12) 
are solved and then marches forward using the solution at the previous line of constant ξ until 
it reaches the desired value of ξ. Due to the nonlinearities of the equations, an iterative 
solution with successive over or under relaxation techniques is required. The convergence 
criterion required that the maximum absolute error between two successive iterations be 10-6. 
The computational domain was made of 196 grids in the η direction and 101 grids in the ξ 
direction. A starting step size of 0.001 in the η direction with an increase of 1.035 times the 
previous step size and a constant step size in the ξ direction of 0.01 were found to give very 
accurate results. The maximum value of η (η∞) which represented the ambient conditions was 
assumed to be 35. The step sizes employed were arrived at after performing numerical 
experimentations to assess grid independence and ensure accuracy of the results. The 
accuracy of the aforementioned numerical method was validated by direct comparisons with 
the numerical results reported earlier by Yih [19] at various values of ξ in the absence of the 
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inertial effect, nanoparticles volume fraction, Brownian motion and thermophoresis effects 
(Er=Nr= Nb=Nt=0). This comparison is presented in Table 1. It can be seen from this table 
that excellent agreement between the results exists. This favorable comparison lends 
confidence in the numerical results to be reported in the next section. 

 
Table 1. Values of  for various values of ξ in the absence of nanoparticles 

volume fraction, Brownian motion and thermophoresis effects (Nr= Nb=Nt=0) 
 
ξ Yih [19] Present results 
0 0.7686 0.7686 
2 0.3537 0.3537 
4 0.1342 0.1342 
6 0.0400 0.0400 

4. RESULTS AND DISCUSSION 

In this section, representative numerical results are displayed with the help of graphical 
illustrations. Computations were carried out for various values of the physical parameters 
such as the Ergun number (non-Darcy number) Er, buoyancy ratio parameter , Brownian 
motion parameter Nb, thermophoresis parameter Nt, and the Lewis number . 

Figures 2-4 present the effects of the Ergun number (non-Darcy number) Er on the 
longitudinal velocity, temperature, and the nanoparticles volume fraction profiles, as well as 
the axial distributions of the Nusslet number and the Sherwood number, respectively. It is 
observed that, as the Ergun number Er increases, both of the temperature and the 
nanoparticles volume fraction profiles increase, while the velocity profiles within the 
boundary layer decrease. This causes the value of the wall velocity gradient to increase 
whereas the negative values of the wall temperature and nanoparticles volume fraction slopes 
decrease yielding corresponding decreases in all of the local Nusselt and Sherwood numbers 
as evident from Figures 3 and 4. In addition, it is predicted that both the local Nusselt and 
Sherwood numbers decrease with increasing values of the transpiration parameter ξ. 

Figures 5-7 show the effects of the buoyancy ratio parameter Nr on the longitudinal 
velocity, temperature, and the nanoparticles volume fraction profiles as well as the axial 
distributions of the Nusslet number and the Sherwood number, respectively. It is noted that 
the buoyancy ratio parameter Nr has a similar tendency as the Ergun number Er parameter 
such that as the buoyancy ratio parameter Nr increases, both of the temperature and the 
nanoparticles volume fraction profiles increase, while the velocity profiles within the 
boundary layer decreases.  

This causes the value of the slope of the velocity profile at the wall to increase and the 
negative values of the wall slopes of the temperature and nanoparticles volume fraction 
profiles to decrease yielding corresponding decreases in all of the Nusselt and Sherwood 
numbers as clearly shown in Figures 6 and 7. 

Figures 8-10 depict the effects of the Brownian motion parameter Nb on the velocity, 
temperature and nanoparticles volume fraction profiles as well as the axial distributions of the 
Nusslet number and the Sherwood number, respectively. It is observed that as the Brownian 

( ,0)θ ξ′−

Nr
Le
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motion parameter Nb increases, the velocity and temperature profiles increase while the 
nanoparticles volume fraction profiles decrease within the boundary layer. In addition, as the 
Brownian motion parameter Nb increases, the value of the Nusslet number decreases while 
the value of the Sherwood number increases.  

 

 

Figure 2. Effect of Er on the (a) velocity, (b) temperature, (c) volume fraction profiles. 

 

Figure 3. Effect of Er on the local Nusselt number. 
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Figure 4. Effect of Er on the local Sherwood number. 

 

Figure 5. Effect of Nr on the (a) velocity, (b) temperature, (c) volume fraction profiles. 

 

Figure 6. Effect of Nr on the local Nusselt number. 
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Figure 7. Effect of Nr on the local Sherwood number. 

 

Figure 8. Effect of Nb on the (a) velocity, (b) temperature, (c) volume fraction profiles. 

 

Figure 9. Effect of Nb on the local Nusselt number. 
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Figure 10. Effect of Nb on the local Sherwood number. 

 

Figure 11. Effect of Nt on the (a) velocity, (b) temperature, (c) volume fraction profiles. 

 

Figure 12. Effect of Nt on the local Nusselt number. 
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Figure 13. Effect of Nt on the local Sherwood number. 

 

Figure 14. Effect of Le on the (a) velocity, (b) temperature, (c) volume fraction profiles. 

 

Figure 15. Effect of Le on the local Nusselt number. 
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Figure 16. Effect of Le on the local Sherwood number. 

This is due to the corresponding decrease in the negative value of the wall slope of the 
temperature profile and the increase in the negative value of the wall slope of the 
nanoparticles volume fraction profile, respectively. 

Figures 11-13 elucidate the effects of the thermophoresis parameter Nt on the velocity, 
temperature and nanoparticles volume fraction profiles as well as the axial distributions of 
Nusslet number and the Sherwood number, respectively. It is clearly seen that as the 
thermophoresis parameter Nt increases, all of the velocity, temperature and nanoparticles 
volume fraction profiles increase.  

In addition, it is predicted that the local Sherwood number decrease as the thermophoresis 
parameter Nt increases. Moreover, the local Nusslet number decreases as Nt increases for 
transpiration parameters , whereas the opposite behavior occurs for transpiration 
parameters . 
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number Le is expected to cause sufficient decreases in the temperature and the nanoparticles 
volume fraction profile and their boundary layers and a weak increase in the velocity profile 
and its boundary layer. This leads to corresponding increases in the local Nusslet number. 
However, in general, as Le increases, the local Sherwood number increases for  
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evident from Figures 15 and 16. 

CONCLUSION 

An analysis was performed to study non-Darcy free convection boundary-layer flow over 
a permeable vertical cone embedded in a porous medium saturated with a nanofluid in the 
presence of uniform wall transpiration. The model used for the nanofluid incorporated the 
effects of Brownian motion and thermophoresis. Numerical results for the axial distributions 
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of the Nusselt and Sherwood numbers were presented for parametric variations of the 
buoyancy ratio parameter, Ergun number (non-Darcy number), Brownian motion parameter, 
thermophoresis parameter and the Lewis number. The results indicated that as either of the 
Ergun number (non-Darcy number) or the buoyancy ratio parameter increased, all of the 
Nusselt number and the Sherwood number decreased. Also, as the Brownian motion 
parameter increased, the Sherwood number increased whereas the Nusselt number decreased. 
In addition, as the thermophoresis parameter increased, the Nusselt and Sherwood numbers 
decreased. Furthermore, as the Lewis number increased, the Nusselt and Sherwood numbers 
increased. It was also predicted that the Nusselt and Sherwood numbers decreased with 
increasing values of the transpiration parameter. 
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