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An introduction to irrational numbers is done using basic

trigonometry, generally taught in pre-university courses. The

irrational sets of trigonometric ratios of rational angles are

discussed in detail along with two major theorems and their

proofs. Algebraic numbers along with transcendental num-

bers are also covered.

1. Introduction

High school mathematics introduces the concept of irrational num-

bers, and as an example proves that
√

2 is irrational using proof

by contradiction. A little bit more is done by stating that in gen-

eral, for any prime p,
√

p is also irrational. The textbooks and the

instructors end the topic by giving some examples of numbers

such as π and e, which are not rational. Coverage to the irrational

numbers can be enriched through the use of basic trigonometry,

generally taught in the pre-university courses. The sine or co-

sine of a rational number of degrees (if in radians, it is a rational

multiple of π) are irrational numbers. The only exceptions are

cosα , sinα ∈ {0,± 1
2
,±1}. We shall look at the related theorems

with proofs based on the results from elementary trigonometry.

2. Irrationality of Trigonometric Ratios
Keywords

Trigonometric ratios, algebraic

numbers, irrational numbers,

transcendental numbers, Niven’s

theorem, Paolillo–Vincenzi

theorem, Ram Murty–Kumar

Murty theorem, Ailles rectangle.

The arithmetic properties of trigonometric functions are a recur-

ring topic. The contributions of several mathematicians are sum-

marized in the following theorem published by Ivan Morton Niven

in the year 1956 and widely known as Niven’s theorem.
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Box 1. Gregory Numbers

Gregory number, named after James Gregory is defined as a number of the form

Gx = tan−1

(

1

x

)

,

=

∞
∑

k=0

(−1)k

(2k + 1)x2k+1
,

where x is an integer or a rational number. For example, for x = 1, G1 = tan−1(1) = 45◦(π/4) is a Gregory

number. All Gregory numbers in degrees are irrational with the exception of the pair G−1 = −45◦(−π/4)

and G1 = 45◦(π/4). Historically, the arctangent (tan−1) identities have been extensively used for calculating

the value of π. The simplest case, x = 1 leads to

π

4
= 1 −

1

3
+

1

5
−

1

7
+

1

9
· · · .

This series is called the Madhava–Leibniz series (also known as Gregory’s series) and is a special case of a

more general series expansion for the inverse tangent function, first discovered by the Indian mathematician

Madhava of Sangamagrama in the 14th century. The special case was published by Gottfried Leibniz in

1676.

Theorem 1. Niven’s Theorem: The only rational values of α in

the interval 0◦ ≤ α ≤ 90◦ for which the sine of α degrees is also

a rational number are sin 0◦ = 0 , sin 30◦ = 1
2

, sin 90◦ = 1 .

The theorem appears in the two books on irrational numbers by

Niven. The theorem implies that for rational angles in degrees,

the only rational values of the trigonometric ratios are cos α , sinα ∈

{0 ,± 1
2
,±1}, secα , csc α ∈ {±1,±2} and tan α , cotα ∈ {0 ,±1}.

There are different proofs to the theorem using diverse techniques

including, induction, de Moivre formulas, Chebyshev polynomi-

als, cyclotomic polynomials, among others.

Proof. Let us assume that 2 cos(α) = a/b, where a and b are

integers, b , 0 and a/b is in the reduced form with no com-

mon factors. We write the double angle identity as 2 cos(2α) =
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(2 cos(α))2 − 2, then,

2 cos(2α) =
a2 − 2b2

b2
. (1)

We According to

Paolillo–Vincenzi

theorem, If α is rational

in degrees, say

α = (m/n)180◦ for some

rational number m/n,

and tan2(α) is rational,

then

tan2(α) ∈ {0, 1, 1
3
, 3}.

will use the notation, a|b for a divides b, if there is an integer c

such that b = ac. Now, (a2−2b2) and b2 have no common factors,

since if p were a prime number dividing both, then p|b2 imply-

ing p|b and p|(a2 − 2b2) implying p|a, leading to a contradiction.

So, (a2 − 2b2)/b2 is also in the reduced form. Using the dou-

ble angle identity repeatedly, we construct the sequence 2 cos(α),

2 cos(2α), 2 cos(22
α), 2 cos(23

α), . . . , 2 cos(2k
α). The denomi-

nators in the sequence grow rapidly as b(2k). The cos function is

periodic with period 360◦. If α = (m/n)360◦ , where m and n are

integers, n , 0 and m/n is in the reduced form, then the sequence

{2 cos(2k
α)} may admit at most n different values. This assertion

is based on the expansion of cos(φ) in a n-th degree polynomial

in x = cos(φ/n). Any n-th degree polynomial has n solutions

including the repeating solutions (if any). Hence, the phrase at

most in the assertion (see Section 3). The presence of n solutions

contradicts the growth of the denominators, and the only allowed

values of b are b = ±1. With b = ±1, cosα = a/2b = ±a/2. So,

a ∈ {0 ,±1 ,±2}. Consequently, cosα ∈ {0 ,± 1
2
,±1}. Same set of

values apply to sinα, as sinα = cos(90◦ − α).

A recent proof (year 2020) of Niven’s theorem is due to Bonaven-

tura Paolillo and Giovanni Vincenzi. It is based on the periodicity

of the tangent function and has some additional results.

Theorem 2. Paolillo–Vincenzi Theorem: If α is rational in de-

grees, say α = (m/n)180◦ for some rational number m/n, and

tan2(α) is rational, then tan2(α) ∈ {0, 1, 1
3
, 3}.

Proof. Let us suppose that tan2(α) = tan2(αm) = am

bm
, (am and

bm are positive integers and am/bm is in the reduced form) is a

rational number different from 0 and 1. The angle αi =
i
n
180◦ for

some positive integer i and n can be any integer different from 0.

We construct a non-empty set of rational numbers as follows:

RESONANCE | June 2021 815



GENERAL ARTICLE

Tn :=
{

tan2(αi) ∈ Q \ {0 , 1} : i ∈ N
}

, (2)

where N is the set of natural numbers, and Q is the set of rational

numbers. The notation, A\B denotes the set minus such that A−B

is the set of elements in A but not in B. Each element of Tn is of

the type tan2(αi) :=
ai

bi
where ai and bi constitute a pair of positive

integers such that ai

bi
is in the reduced form. From the set Tn we

choose an element
ak

bk
such that

tan2(αk) :=
ak

bk

, (ak + bk) = max

{

(ai + bi) :
ai

bi

∈ Tn

}

. (3)

From the construction of the set Tn, it follows that bk , 0 and ak ,

bk. So, the sum of the numerator and denominator, (ak + bk) ≥ 3.

Likewise, by construction, αk , (45◦ + h90◦) for every integer h.

Let us consider the case, α2k = 2αk = 2 k
n
180◦, then

tan2(α2k) = (tan(2αk))2 =

(

2 tan(αk)

1 − tan2(αk)

)2

=
4akbk

(ak − bk)2
, (4)

which, by construction, is a rational number different from 0 and

1. By construction, both ak and bk cannot be even. If one of ak and

bk is even then, the other is necessarily odd, implying (ak − bk)

is odd. Hence, no prime deviser of (ak − bk) can divide 4akbk,

because ak and bk are coprime. So, 4akbk/(ak − bk)2 is a reduced

fraction and hence by the preposition (3) on the sum of numerator

and denominator, we have

4akbk + (ak − bk)2 = (ak + bk)2 ≤ (ak + bk) , (5)

which implies (ak + bk) ≤ 1, leading to a clear contradiction. So,

both ak and bk are odd (and coprime by construction). We rewrite

the reduced fraction in (4) as

tan2(α2k) = (tan(2αk))2 =

(

2 tan(αk)

1 − tan2(αk)

)2

=
akbk

[(ak − bk)2]/4
∈ Tn . (6)
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It follows by the preposition (3), on the sum of numerator and

denominator

akbk +
(ak − bk)2

4
=

(ak + bk)2

4
≤ (ak + bk) , (7)

implying that

(ak + bk)2 ≤ 4(ak + bk)

(ak + bk) ≤ 4 . (8)

So, the sums of the numerators and denominators in the preposi-

tion (3) are bounded by the inequalities

3 ≤ (ak + bk) ≤ 4 . (9)

Having established the lower and upper bounds of (ak + bk), the

next step is to see the implications of these bounds on the values

of ak and bk respectively. By construction, tan2(α) = tan2(αm) =
am

bm
and am

bm
, 0, 1. So, tan2(α2m) = 4ambm/(am − bm)2 is also dif-

ferent from 0 and 1. As a particular case, tan2(α2m) = a2m/b2m ∈

Tn. By preposition (3), (am + bm) and (a2m + b2m) are bounded

by the inequalities in (9). By construction, (am, bm) , (0, 1),

(am, bm) , (1, 0), (am, bm) , (1, 1), (am, bm) , (2, 2) and (am, bm) ,

(0, 4). So, we examine the case (am, bm) = (1, 2), which im-

plies tan2(α2m) = 4ambm/(am − bm)2 = a2m/b2m = 8 leading

to (a2m + b2m) = 8 + 1 = 9, which is a contradiction to the in-

equalities in (9). Similarly, the case (am, bm) = (2, 1) also leads

to the same contradiction. Lastly, the cases (am, bm) = (1, 3) and

(am, bm) = (3, 1) give tan2(αm) = 1
3

and tan2(αm) = 3 respectively.

This completes the proof. In any polynomial

equation with rational

coefficients, the

denominators can be

cleared, by multiplying

the polynomial equation

with a common multiple

of all the denominators.

Using Theorem 2 along with the trigonometric identities (such

as cos2
α = 1/(1 + tan2

α), cos(2α) = (1 − tan2
α)/(1 + tan2

α),

sin(2α) = 2 tan α/(1 + tan2
α) and sin2

α = 1 − cos2
α), we con-

clude that cos2(α) , sin2(α) ∈ {0, 1
4
,

1
2
,

3
4
, 1}. From this set, we con-

clude that cos α , sinα ∈ {0,± 1
2
,±1} and secα , cscα ∈ {±1,±2}.

See Box 1 for a note on the series for arctangent function.
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Box 2. At Least One of the Numbers (π + e) or πe is Transcendental.

In general, for any two transcendental numbers T1 and T2 at least one of (T1 + T2) and T1T2 must be

transcendental. This can be seen by taking the polynomial (x − T1)(x − T2) = x2 − (T1 + T2)x + T1T2. If

(T1 + T2) and T1T2 were both algebraic, then this would be a polynomial with algebraic coefficients. This

would imply that the roots of the polynomial, T1 and T2, must be algebraic. But this is a contradiction, and

thus it must be the case that at least one of the coefficients is transcendental. Choosing T1 = π and T2 = e

proves the statement that at least one of the numbers (π + e) or πe is transcendental.

3. Algebraic Numbers and Transcendental Numbers

In any polynomial equation with rational coefficients, the denom-

inators can be cleared, by multiplying the polynomial equation

with a common multiple of all the denominators. Then the equiv-

alent polynomial equation thus obtained has only integer coeffi-

cients. A polynomial is said to irreducible, when it cannot be fac-

tored into lower degree polynomials with integer coefficients. A

number is said to be algebraic, if it is a root of a polynomial with

integer coefficients (or equivalently rational coefficients). For

example, the rational numbers m/n satisfy the linear equation

nx−m = 0. Another example is,
√

2, which satisfies the equation

x2 − 2 = 0. If a real (or complex) number is a root of an irre-

ducible polynomial of degree n with integer coefficients, we say

that, it is an algebraic number with algebraic degree n. The corre-

sponding irreducible polynomial whose top coefficient is 1 is its

minimal polynomial. Rational numbers are of algebraic degree 1

and
√

2 is of algebraic degree 2. An example of a complex alge-

braic number is i =
√
−1 and as it satisfies the equation x2+1 = 0,

it is of algebraic degree 2. See Box 2 for conditional deduction of

irrationality.

TheThe function, cos(nθ)

can be expressed in a

polynomial in cos(θ) = x

with integer coefficients.

function, cos(nθ) can be expressed in a polynomial in cos(θ) =

x with integer coefficients. This can be done in several ways. A

simple way is to use the multiple angle identity (cos(A + B) =

cos A cos B− sin A sin B) and the double angle identity (cos(2θ) =

2 cos2
θ−1) repeatedly. Another method is to use the de Moivre’s
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Box 3. Transcendental Numbers with Patterns in their Decimal Expansions.

1. Liouville Constant

Lb =

∞
∑

n=1

10−k!

= 10−1 + 10−2 + 10−6

+10−24 + . . .

= 0.110001 . . . ,

in which the n-th digit after the decimal point is 1 if n is equal to k! (k factorial) for some k and 0 otherwise.

2. Fredholm Constant

F =

∞
∑

n=0

10−2n

= 10−1 + 10−2 + 10−4

+10−8 + 10−16 + . . .

= 0.11010001 . . . ,

which also holds by replacing 10 with any algebraic number greater than 1.

3. Champernowne Constant

C = 0.12345678910111213 . . .

is the number obtained by concatenating the natural numbers and interpreting them as decimal digits to the

right of a decimal point.

formula for the case θ = 2πk/n with k/n in the reduced form.

With these conditions, (cos θ + i sin θ)n = 1. Expanding on the

left side and equating real parts gives a polynomial equation in

cos θ and sin2
θ. The sin2

θ is substituted by (1 − cos2
θ). This re-

sults in an equation for cos(nθ) in terms of a polynomial in cos θ.

Both methods result in the following polynomials
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T0(x) = 1 ,

T1(x) = x ,

T2(x) = 2x2 − 1 ,

T3(x) = 4x3 − 3x ,

T4(x) = 8x4 − 8x2 + 1 , (10)

where Tn(x) are the Chebyshev polynomials of the first kind. A

similar expansion exists for sin(nθ) = (sin θ)Un−1(cos θ), where

Un(x) are the Chebyshev polynomials of the second kind. To sum-

marize, sines and cosines of rational multiples of 360 degrees are

algebraic numbers.

AA number that is not

algebraic is said to be a

transcendental number,

i.e., it is not a root of a

polynomial equation

with integer coefficients

(or equivalently rational

coefficients).

number that is not algebraic is said to be a transcendental

number, i.e., it is not a root of a polynomial equation with in-

teger coefficients (or equivalently rational coefficients). The most

widely known and extensively studied transcendental numbers

are π, from the circle and e, the base of the natural logarithms.

For any rational number, the decimal expansion has a repeating

pattern. For example, as 1/7 = 0.142857 . . . and the string of six

numbers keeps repeating. The decimal expansions of irrational

numbers do not have any repeating patterns. To date, no pat-

tern has been observed in the millions of decimal places of π and

e. Some of the transcendental numbers exhibit different types of

patterns, as seen in the examples in Box 3.

Proving a given number to be transcendental is difficult. There

is a long list of open cases including, π/e, ππ, πe, ee eπ
2

, . . . .

Examples of proven classes of transcendental numbers include

1. ea, if a is algebraic and nonzero.

2. The six trigonometric functions, sin(a), cos(a), tan(a), csc(a),

sec(a) and cot(a), when a is algebraic, a , 0 and expressed

in radians. Same is true for the six hyperbolic functions.

3. 1
π

tan−1(r), if r is rational, r , 0,±1 and tan−1(r) is in radi-

ans.
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Box 4. Hilbert Number

Hilbert number also known as the Gelfond–Schneider constant is the number 2
√

2. Both the Gel-

fond–Schneider constant and its square root,
√

2
√

2 =
√

2

√
2

are transcendental numbers. It is interesting to

note that

(

√
2

√
2
)

√
2

=
(√

2
)(
√

2
√

2)

=
(√

2
)2

= 2 .

Thus, it is seen that a transcendental number raised to the power of an irrational number can result in a

rational number!

4. The natural logarithm ln(a), if a is algebraic and a , 0, 1.

5. Gelfond–Schneider Theorem: ab is transcendental, if a and

b are algebraic numbers with a , 0, 1, and b irrational. If

the restriction that a and b are algebraic is removed, then,

the statement does not remain true in general (see Box 4).

6. Baker’s Theorem: If α1, . . . , αm are non-zero algebraic

numbers such that logα1, . . . , logαm are linearly indepen-

dent over rational numbers, then 1, log α1, . . . , logαm are

linearly independent over irrational numbers. It implies the

transcendence of numbers of the form a1
b1 · · · an

bn , where

bi are all algebraic, irrational, and 1, b1, . . . bn are linearly

independent over the rationals, and the ai are all algebraic

and ai , 0, 1.

7. eπ
√

n, where n is any natural number.

Irrational numbers can also be expressed as infinite continued

fractions (see Box 5).
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4. Deducing Irrationality Using Calculus-based Techniques

TrigonometricTrigonometric functions

have their origins in the

triangle geometry and

are now found in diverse

areas of mathematics.

They can also be seen as

solutions of differential

equations.

functions have their origins in the triangle geom-

etry and are now found in diverse areas of mathematics. They

can also be seen as solutions of differential equations. Hence, it

is very natural to employ calculus-based techniques to deduce the

irrationality and transcendence of trigonometric functions. Here,

we shall describe a technique using the following lemma.

Lemma. For some fixed natural number n ≥ 1, we define

f (x) =
1

n!
xn(1 − x)n

, (11)

which has the following properties

(i) The function f (x) of the lemma is a polynomial of the form

f (x) = 1
n!

∑2n
i=n cix

i, where the coefficients ci are integers

related to the binomial coefficients
(

n
i

)

= n!
i!(n−1)!

as ci =

(−1)i
(

n
i

)

.

(ii) For 0 < x < 1, we have 0 < f (x) < 1
n!

.

(iii) The derivatives f (k)(0) and f (k)(1) are integers for all k ≥ 0.

Proof. Parts (i) and (ii) are straightforward. From the polynomial

in (i), the k-th derivative f (k) vanishes at x = 0 for 1 ≤ k < n.

For n ≤ k ≤ 2n, f (k)(0) = k!
n!

ck, which is an integer. Since,

f (x) = f (1 − x) for all x, we have f (k)(x) = (−1)k f (k)(1 − x) for

all x. Consequently, f (k)(1) = (−1)k f (k)(0), which is an integer.

Thus concluding Part (iii).The numbers π and π2

are irrational.
Theorem 3. The numbers π and π2 are irrational.

Proof. It suffices to prove that π2 is irrational. Let us assume that

π
2 = a

b
for some integers, a, b > 0. We define a new polynomial

using the function f (x) of the lemma

F(x) := bn
{

π
2n f (x) − π2n−2 f (2)(x) + π2n−4 f (4)(x)

− · · · + (−1)n f (2n)(x)
}

. (12)
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Box 5. Continued Fraction Representation of π

Irrational numbers can be represented as infinite continued fractions. Initial segments provide rational

approximations, and these rational numbers are called the convergents of the continued fraction. For π, we

have

π = 3 +
1

7 + 1

15+ 1

1+ 1

292+ 1

1+ 1
1+···

.

No pattern has been found in this representation. The first few convergents are

[3] = 3

[3; 7] =
22

7

[3; 7, 15] =
333

106

[3; 7, 15, 1] =
355

113

[3; 7, 15, 1, 292] =
103993

33102
.

The differences of π = 3.14159265358979323 . . . and the convergents alternate in sign.

Using property (iii) of the lemma, we conclude that F(0) and F(1)

are integers. It is straightforward to see that F(x) satisfies

F(2)(x) + π2F(x) = bn
π

2n+2 f (x) = π2an f (x) . (13)

Then

d

dx

[

F(1)(x) sin(πx) − πF(x) cos(πx)
]

=
(

F(2)(x) + π2F(x)
)

sin(πx) = π2an f (x) sin(πx) . (14)

Now, we evaluate the integral

N := π

∫ 1

0

an f (x) sin(πx)dx

=

[

1

π

F(1)(x) sin(πx) − F(x) cos(πx)

]
∣

∣

∣

∣

∣

∣

1

0

= F(0) + F(1) , (15)
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which is an integer. On the other hand, from (ii) of the lemma

with n sufficiently large such that πa
n

n!
< 1, we obtain

0 < N = π

∫ 1

0

an f (x) sin(πx)dx <
πan

n!
< 1 . (16)

This is a contradiction. Hence, π2 and π are irrational.

Using the function of the lemma (and its variants) with suitable

choices of F(x), the technique can be used for proving the ir-

rationality of several classes of numbers. Examples include the

trigonometric functions, er for any rational r and r , 0, and the

hyperbolic functions. Ram Murty and Kumar Murty generalized

the method, which is summarized in the following theorem.

Theorem 4. Ram Murty–Kumar Murty Theorem: Let G(x) be a

non-trivial solution of the differential equation

p0u(n) + p1u(n−1) + p2u(n−2) + · · · + pnu = 0,

where pi are rational numbers and pn , 0. If b > 0 is such that

G(x) ≥ 0 on [0 , b] and G(i)(0), G(i)(b) are rational for 0 ≤ i ≤

n − 1, then b is irrational.

The proof makes use of the function of the lemma and an integral

analogous to the one used in proving that π is irrational. We note

the following applications of the powerful theorem.

(I) The numbers π and π2 are irrational.

Proof. If π2 is rational, consider y′′ + π2y = 0 which has a

solution G(x) = 1
π

sin(πx). For b = 1, we get a contradic-

tion.sin r and cos r are

irrational for every

non-zero rational r. (II) sin r and cos r are irrational for every non-zero rational r.

Proof. If sin r is rational, consider y′′ + y = 0 which has a

solution G(x) = sin x. For b = 1, we get a contradiction.

Choosing the other solution G(x) = cos x also leads to a

contradiction.

(III) er is irrational for every non-zero rational r.

Proof. If er is rational, consider y′ − y = 0 which has the

solutioner is irrational for every

non-zero rational r.

G(x) = ex. For b = 1, we get a contradiction.
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Box 6. Ailles Rectangle

Douglas S. Ailles, a high school teacher at Etobicoke Collegiate Institute in Etobicoke, Ontario, Canada

came up with this incredibly simple method of computing the trigonometric ratios of 15◦ and 75◦. The

Ailles rectangle also gives the trigonometric ratios of 30◦, 45◦ and 60◦. Ailles published his work in 1971.

A similar rectangle for other angles such as 18◦ and 72◦ has remained elusive!

(IV) sinh r and cosh r are irrational for every non-zero rational

r.

Proof. If sinh r is rational, consider y′′ − y = 0 which has a

solution G(x) = sinh x. For b = 1, we get a contradiction.

Choosing the other solution G(x) = cosh x also leads to a

contradiction.

5. Concluding Remarks

We approached the topic of irrational numbers using elementary

trigonometry. The irrational sets of trigonometric ratios of ratio-

nal angles were discussed in detail along with two major theorems

and their proofs. We also covered the related topic of algebraic

numbers. We obtained the expansion of cos(nθ) as a polynomial

in cos θ with integer coefficients. This enabled us to conclude that

the sines and cosines of rational multiples of 360 degrees are al-
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gebraic numbers. We had a brief look at the transcendental num-

bers and noted examples of the proven classes of transcendental

numbers. Using calculus-based techniques, we could prove the

irrationality of π and π2. The Ram Murty–Kumar Murty theo-

rem based on differential equations enabled us to revisit the proof

of irrationality of π and π2. Significantly, the powerful differen-

tial equations approach enabled us to establish the irrationality of

the functions sin r, cos r, er, sinh r and cosh r for every non-zero

rational r. It is interesting to note that the topics of frontiers of

research can be approached using some elementary trigonometry

and basic calculus.

Box 6 has an interesting geometric construction, from which one

can directly read the trigonometric ratios of 15◦ and 75◦.
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