

Aspect-Oriented ProgrammingAspect-Oriented Programming
Wes Weimer

(slides adapted from Dave Matuszek, UPenn)

 2

Programming paradigms

 Procedural (or imperative) programming
 Executing a set of commands in a given sequence
 Fortran, C, Cobol

 Functional programming
 Evaluating a function defined in terms of other functions
 Scheme, Lisp, ML, OCaml

 Logic programming
 Proving a theorem by finding values for the free variables
 Prolog

 Object-oriented programming (OOP)
 Organizing a set of objects, each with its own set of responsibilities
 Smalltalk, Java, Ruby, C++ (to some extent)

 Aspect-oriented programming (AOP) =
 aka Aspect-Oriented Software Design (AOSD)
 Executing code whenever a program shows certain behaviors
 AspectJ (a Java extension), Aspect#, AspectC++, …
 Does not replace O-O programming, but rather complements it

 3

Why Learn Aspect-Oriented Design?

 Pragmatics – Google stats (Apr '09):
 “guitar hero” 36.8 million
 “object-oriented” 11.2 million
 “cobol” 6.6 million
 “design patterns” 3.0 million
 “extreme programming” 1.0 million
 “functional programming” 0.8 million
 “aspect-oriented” or “AOSD” 0.3 million

 But it’s growing
 Just like OOP was years ago
 Especially in the Java / Eclipse / JBoss world

 4

Motivation By Allegory

 Imagine that you’re the ruler of a fantasy monarchy

 5

Motivation By Allegory (2)

 You announce Wedding 1.0, but must increase security

 6

Motivation By Allegory (3)

 You must make changes everywhere: close the secret door

 7

Motivation By Allegory (4)

 … form a brute squad …

 8

Motivation By Allegory (5)

 … clear the Thieves’ Forest …

 9

Motivation By Allegory (6)

 … reduce the number of gate keys to 1 …

 10

Motivation By Allegory (7)

 … kill your rival …

 11

Motivation By Allegory (8)

 … double the guards at the gate …

 12

Motivation By Allegory (9)

 … secure the castle hallways …

 13

Motivation By Allegory (10)

 … even reduce the length of the Wedding itself …

 14

Motivation By Allegory (11)

 … you’re swamped – you’re not happy!

 15

Motivation By Allegory (12)

 It’d be nice to separately advise: “Increase Security”

 16

Motivation By Allegory (13)

 Then you’d be a happy monarch!

 17

The problem

 Some programming tasks cannot be neatly encapsulated in
objects, but must be scattered throughout the code

 Examples:
 Logging (tracking program behavior to a file)
 Profiling (determining where a program spends its time)
 Tracing (determining what methods are called when)
 Session tracking, session expiration
 Special security management
 Error-checking or –handling

 The result is crosscutting code -- the necessary code “cuts
across” many different classes and methods

 18

High-Level AOP Goals

 You want to maintain different concerns
separately
 Business logic here
 Tracing there
 Security somewhere else

 And yet somehow weave them together to
form one unified program that you can run

 Specify rules for integrating them together

 19

Lecture Goals

 What Is Aspect-Oriented Programming
 When Should You Use It
 What Are Join Points
 What Are Pointcuts
 Where Can You Get More Information

 20

Example – Adding Tracing

class Fraction {
 int numerator;
 int denominator;
 ...
 public Fraction multiply(Fraction that) {
 traceEnter("multiply", new Object[] {that});
 Fraction result = new Fraction(
 this.numerator * that.numerator,
 this.denominator * that.denominator);
 result = result.reduceToLowestTerms();
 traceExit("multiply", result);
 return result;
 }
 ...
}

 Now imagine similar code in
every method you might
want to trace

 21

Consequences of crosscutting code

 Redundant code
 Same fragment of code in many places

 Difficult to reason about
 Non-explicit structure
 The big picture of the tangling isn’t clear

 Difficult to change
 Have to find all the code involved...
 ...and be sure to change it consistently
 ...and be sure not to break it by accident

 Inefficient when crosscutting code is not needed

 22

Popular AOP System: AspectJTM

 AspectJ is a small, well-integrated extension to Java
 Based on the 1997 PhD thesis by Christina Lopes, D: A Language

Framework for Distributed Programming
 Widely championed by Gregor Kiczales et al.

 AspectJ “modularizes crosscutting concerns”
 That is, code for one aspect of the program (such as tracing) is

collected together in one place
 The AspectJ compiler is free and open source
 AspectJ works with JBuilder, Forté, Eclipse, JBoss,

probably others
 Best online writeup: http://www.eclipse.org/aspectj/

 Parts of this lecture were taken from the above paper

 23

Terminology

 A join point is a well-defined point in the program flow
 e.g., “when something calls foo()”

 A pointcut is a group of join points
 e.g., “every call to foo() in Bar.java”

 Advice is code that is executed at a pointcut
 e.g., “add in this Tracing code”

 Introduction modifies the members of a class and the
relationships between classes

 An aspect is a module for handling crosscutting concerns
 Aspects are defined in terms of pointcuts, advice, and introduction
 Aspects are reusable and inheritable

 Each of these terms will be discussed in greater detail

 24

Join points

 A join point is a well-defined point in the program flow
 Used to specify how to integrate aspects of your program
 We want to execute some code (“advice”) each time a join point is

reached
 We do not want to clutter up the code with explicit indicators

saying “This is a join point”
 AspectJ provides a syntax for indicating these join points “from

outside” the actual code (but this is somewhat illusory)
 A join point is a point in the program flow “where

something happens”
 When a method is called
 When an exception is thrown
 When a variable is accessed (and more)

 25

Example designators

 When a particular method body executes:
 execution(void Point.setX(int))

 When a method is called:
 call(void Point.setX(int))

 When an exception handler executes:
 handler(ArrayOutOfBoundsException)

 When the object currently executing (i.e. this) is of type
SomeType:
 this(SomeType)

 When the target object is of type SomeType
 target(SomeType)

 When the executing code belongs to class MyClass
 within(MyClass)

 26

Example 1: Let’s Add Tracing

 A pointcut named move that chooses various
method calls:
 pointcut move():

 call(void FigureElement.setXY(int,int)) ||
 call(void Point.setX(int)) ||
 call(void Point.setY(int)) ||
 call(void Line.setP1(Point)) ||
 call(void Line.setP2(Point));

 Advice (code) that runs before (or after) the move
pointcut:
 before(): move() {

 System.out.println("About to move");
}

 27

Pointcut designator wildcards

 It is possible to use wildcards to declare
pointcuts:
 execution(* *(..))

 Chooses the execution of any method regardless of
return or parameter types

 call(* set(..))
 Chooses the call to any method named set regardless

of return or parameter type
 In case of overloading there may be more than one

such set method; this pointcut picks out calls to all
of them

 28

Pointcut designators based on types

 You can select elements based on types. For
example,
 execution(int *())

 Chooses the execution of any method with no parameters that
returns an int

 call(* setY(long))
 Chooses the call to any setY method that takes a long as an

argument, regardless of return type or declaring type
 call(* Point.setY(int))

 Chooses the call to any of Point’s setY methods that take an int
as an argument, regardless of return type

 call(*.new(int, int))
 Chooses the call to any classes’ constructor, so long as it takes

exactly two ints as arguments

 29

Pointcut designator composition

 Pointcuts compose through the operations or (“||”), and
(“&&”) and not (“!”)

 Examples:
 target(Point) && call(int *())

 Chooses any call to an int method with no arguments on an instance of
Point, regardless of its name

 call(* *(..)) && (within(Line) || within(Point))
 Chooses any call to any method where the call is made from the code

in Point’s or Line’s type declaration
 within(Line) && execution(*.new(int))

 Chooses the execution of any constructor taking exactly one int
argument, so long as it is inside Line

 !this(Point) && call(int *(..))
 Chooses any method call to an int method when the executing object

is any type except Point

 30

A Faulty Mental Model

 Many imagine that AOP works like this:

advice

advice

advice

basic code

basic code

Single Integrated
Program

Pointcut Rules

 31

A Problem

 Consider this Logger:

aspect Logger {
before(): call (* *.*(..)) {

System.out.println(“call to “ + thisJoinPoint);

}
}
 What might go wrong?

 32

A Better Mental Model

 This idea won’t lead you as far astray:

concern

concern

concern

concern

Integration
Rules

composed
element

composed
element

composed
element

 33

Kinds of advice

 AspectJ has several kinds of advice; here are some of
them:
 Advice is just like your normal code (cf. AspectWerkz, AspectJ 5)
 Before advice runs as a join point is reached, before the join point

executes
 After advice on a join point runs after that join point executes:

 after returning advice is executed after a method returns normally
 after throwing advice is executed after a method returns by throwing

an exception
 after advice is executed after a method returns, regardless of whether

it returns normally or by throwing an exception
 Around advice on a join point runs as the join point is reached, and

has explicit control over whether the program proceeds with the
join point

 34

Example 2: With Parameters

 You can access the context of the join point:
 pointcut setXY(FigureElement fe, int x, int y):

 call(void FigureElement.setXY(int, int))
 && target(fe)
 && args(x, y);

 after(FigureElt fe, int x, int y) returning: setXY(fe, x, y) {
 println(fe + " moved to (" + x + ", " + y + ").");
}

 35

Introductions

 An introduction is a member of an aspect,
but it defines or modifies a member of
another type (class). With introduction we
can
 add methods to an existing class
 add fields to an existing class
 extend an existing class with another
 implement an interface in an existing class
 convert checked exceptions into unchecked

exceptions

 36

Example introduction

 aspect CloneablePoint {

 declare parents: Point implements Cloneable;

 declare soft: CloneNotSupportedException:
 execution(Object clone());

 Object Point.clone() { return super.clone(); }
}

 37

AOP Challenges

 It’s not all wine and roses
 Debugging is a problem

 You debug the integrated (“weaved”) program – but
that doesn’t correspond to any particular piece of
source

 Like debugging C++ with macros and templates
 Aspects may depend on each other or themselves

 This is difficult to reason about
 What integrated code is really being produced?

 38

Concluding remarks

 Aspect-oriented programming (AOP) is a new paradigm -- a new way to
think about programming

 It acknowledges that crosscutting concerns come up in practice
 It provides a way to maintain concerns separately and specify

integration rules to weave them together
 AOP is somewhat similar to event handling, where the “events” are

defined outside the code itself
 AspectJ is not itself a complete programming language, but an adjunct

to Java
 AspectJ does not add new capabilities to what Java can do, but adds

new ways of modularizing the code
 Like all new technologies, AOP may--or may not--catch on in a big way

 39

And They Lived Happily Ever After

 You may be skeptical. Any questions?

