PROBLEMS OFTEMN LOOK THE SECREY 15 TO BREAK | | FOR EXAMPLE, I'M SUPPOSED | | You FOCUS [ASK

OVERWHELMING AT FIRST. || PROBLEMS INTO SMALL, || To KEAD THIS ENTIRE on READING | MYSELF,
MANAGEABLE CHUNKS. HISTORY CHAPTER. IT LOOKS| | THE FIRST | "Do I EVEN
\F You DEAL WITH THOSE, | | IMPOSSIBLE, SO T BREAK SECTION? CARE?"
YOURE Done BEFORE You THE PROBLEM DowM.

KNOW 1T,

"

N~
£
a H'L
:n-.:q. \M

Ly
o

o —

Aspect-Oriented Programming

Wes Weimer

(slides adapted from Dave Matuszek, UPenn)

-

q Programming paradigms
|

Procedural (or imperative) programming
Executing a set of commands in a given sequence
Fortran, C, Cobol

Functional programming
Evaluating a function defined in terms of other functions
Scheme, Lisp, ML, OCaml

Logic programming
Proving a theorem by finding values for the free variables
Prolog

Object-oriented programming (OOP)
Organizing a set of objects, each with its own set of responsibilities
Smalltalk, Java, Ruby, C++ (to some extent)

aka Aspect-Oriented Software Design (AOSD)

Executing code whenever a program shows certain behaviors
Aspect] (a Java extension), Aspect#, AspectC++, ...

Does not replace O-O programming, but rather complements it

q Why Learn Aspect-Oriented Design?
|

Pragmatics - Google stats (Apr '09):

“guitar hero” 36.8 million
“object-oriented” 11.2 million
“cobol” 6.6 million
“design patterns” 3.0 million
“extreme programming” 1.0 million
“functional programming” 0.8 million

But it’s growing
Just like OOP was years ago
Especially in the Java / Eclipse / JBoss world

W Motivation By Allegory

" Imagine that y

W Motivation By Allegory (2)

" You announce Wedding 1.0, but must increase security

w Motivation By Allegory (3)

* You must make changes everywhere: close the secret door

&5

Motivation By Allegory (4)

= ... form a brute squad ...

w Motivation By Allegory (5)

w Motivation By Allegory (6)

= ... reduce the number of gate keys to 1 ...

" Motivation By Allegory (7)

= ... kill your rival ...

ﬂ Motivation By Allegory (8)

.. doule the guards at the gate ...

=

-
E 'y -
R .-'.'_ - _- . = W
e g . T

.kl : -
e - rapT = - v
., " R -
3 . -
' .
e - i
¥ - —
1
L n i
#
I; " .
- -
-
-_1":'._ e - . F - 3
. Ta »
e . I -
- "
[— — o —
L o SR

w Motivation By Allegory (9)

= ... secure the castle hallways ...

e %

T Motivation By Allegory (10)

W Motivation By Allegory (11)

T Motivation By Allegory (12)

“ 1t’d be nice to separately advise: “Increase Security”

:{‘ f? ———"
a , [_"'l'
8 ! =
& | ' ‘-\r !
;.-"’ # 3 "\
A

w Motivation By Allegory (13)

* Then you’d be a happy monarch!

q The problem
|

Some programming tasks cannot be neatly encapsulated in
objects, but must be scattered throughout the code

Examples:
Logging (tracking program behavior to a file)
Profiling (determining where a program spends its time)
Tracing (determining what methods are called when)
Session tracking, session expiration
Special security management
Error-checking or -handling

The result is code -- the necessary code “cuts
across” many different classes and methods

17

@ High-Level AOP Goals

“ You want to maintain different concerns
separately
Business logic here
Tracing there
Security somewhere else

“ And yet somehow weave them together to
form one unified program that you can run

= Specify rules for integrating them together

18

q Lecture Goals
|

What Is Aspect-Oriented Programming
When Should You Use It

What Are Join Points

What Are Pointcuts

Where Can You Get More Information

19

Q Example - Adding Tracing

class Fraction {
int numerator;
int denominator;

public Fraction multiply(Fraction that) {
traceEnter("multiply”, new Object[] {that});
Fraction result = new Fraction(
this.numerator * that.numerator,
this.denominator * that.denominator);
result = result.reduceTolLowestTerms();
traceExit("multiply”, result);

return result; , , o ,
1 * Now imagine similar code in

every method you might
1 want to trace 20

“ Consequences of crosscutting code

Redundant code
Same fragment of code in many places

Difficult to reason about
Non-explicit structure
The big picture of the tangling isn’t clear

Difficult to change
Have to find all the code involved...
...and be sure to change it
...and be sure not to break it by accident

Inefficient when crosscutting code is not needed

21

q Popular AOP System: AspectJ™
|

is a small, well-integrated extension to Java

Based on the 1997 PhD thesis by Christina Lopes, D: A Language
Framework for Distributed Programming

Widely championed by Gregor Kiczales et al.

AspectJ “modularizes crosscutting concerns”

That is, code for one aspect of the program (such as tracing) is
collected together in one place

The AspectJ compiler is free and open source

AspectJ works with JBuilder, Forte, Eclipse, JBoss,
probably others

Best online writeup: http://www.eclipse.org/aspectj/
Parts of this lecture were taken from the above paper

22

q Terminology
|

A is a well-defined point in the program flow
e.g., “when something calls foo()”
A is a group of join points

e.g., “every call to foo() in Bar.java”

is code that is executed at a pointcut
e.g., “add in this Tracing code”

modifies the members of a class and the
relationships between classes

An is a module for handling crosscutting concerns
Aspects are defined in terms of pointcuts, advice, and introduction
Aspects are reusable and inheritable

Each of these terms will be discussed in greater detail
23

q Join points
|

A is a well-defined point in the program flow
Used to specify how to integrate aspects of your program

We want to execute some code (“advice”) each time a join point is
reached

We do not want to clutter up the code with explicit indicators
saying “This is a join point”
AspectJ provides a syntax for indicating these join points “from
outside” the actual code (but this is somewhat illusory)
A join point is a point in the program flow “where
something happens”
When a method is called

When an exception is thrown
When a variable is accessed (and more)

24

q Example desighators
|

When a particular method body executes:
execution(void Point.setX(int))

When a method is called:
call(void Point.setX(int))

When an exception handler executes:
handler(ArrayOutOfBoundsException)

When the object currently executing (i.e. this) is of type
SomeType:
this(SomeType)
When the target object is of type SomeType
target(SomeType)

When the executing code belongs to class MyClass
within(MyClass)

25

w Example 1: Let’s Add Tracing

= A pointcut named move that chooses various

method calls:
= pointcut move():

call(void FigureElement.setXY(int,int))
call(void Point.setX(int))

call(void Point.setY(int))

call(void Line.setP1(Point))

call(void Line.setP2(Point));

= Advice (code) that runs before (or after) the move
pointcut:

= before(): move() {

}

System.out.println("About to move”);

26

q Pointcut desighator wildcards
|

It is possible to use to declare
pointcuts:

execution(* *(..))

Chooses the execution of any method regardless of
return or parameter types

call(* set(..))

Chooses the call to any method named set regardless
of return or parameter type

In case of overloading there may be more than one
such set method; this pointcut picks out calls to all

of them
27

q Pointcut designators based on types
|

You can select elements based on types. For
example,

execution(int *())

Chooses the execution of any method with no parameters that
returns an int

call(* setY(long))

Chooses the call to any setY method that takes a long as an
argument, regardless of return type or declaring type

call(* Point.setY(int))

Chooses the call to any of Point’s setY methods that take an int
as an argument, regardless of return type

call(*.new(int, int))

Chooses the call to any classes’ constructor, so long as it takes
exactly two ints as arguments 28

q Pointcut desighator composition
|

Pointcuts compose through the operations or (“||”), and
(“&&”) and not (“!”)

Examples:

target(Point) && call(int *())

Chooses any call to an int method with no arguments on an instance of
Point, regardless of its name

call(* *(..)) && (within(Line) | | within(Point))

Chooses any call to any method where the call is made from the code
in Point’s or Line’s type declaration

within(Line) && execution(*.new(int))

Chooses the execution of any constructor taking exactly one int
argument, so long as it is inside Line

Ithis(Point) && call(int *(..))

Chooses any method call to an int method when the executing object
is any type except Point 29

w A Faulty Mental Model

* Many imagine that AOP works like this:

Pointcut Rul

__Single Integrated
Program

30

w A Problem

= Consider this Logger:
aspect Logger {

betore(): call (* *.%(..)) { NOBODY INDERSTANDS ME.
System.out.println(“call to “ + thisJoinPoint);

}

}
" What might go wrong? 31

w A Better Mental Model

* This idea won’t lead you as far astray:

Integration I

Rules

32

q Kinds of advice
|

AspectJ has several kinds of advice; here are some of
them:
(cf. AspectWerkz, AspectJ 5)
Before advice runs as a join point is reached, before the join point
executes
After advice on a join point runs after that join point executes:

after returning advice is executed after a method returns normally

after throwing advice is executed after a method returns by throwing
an exception

after advice is executed after a method returns, regardless of whether
it returns normally or by throwing an exception
Around advice on a join point runs as the join point is reached, and
has explicit control over whether the program proceeds with the
join point

33

w Example 2: With Parameters

" You can access the context of the join point:

= pointcut setXY(FigureElement fe, int x, int y):
call(void FigureElement.setXY(int, int))
&& target(fe)
&& args(x, y);

= after(FigureElt fe, int x, int y) returning: setXY(fe, x, y) {
printin(fe + "moved to ("+ x +", " +y +").");

}

34

q Introductions
|

An is a member of an aspect,
but it defines or modifies a member of
another type (class). With introduction we
can

add methods to an existing class

add fields to an existing class

extend an existing class with another

implement an interface in an existing class

convert checked exceptions into unchecked
exceptions s

Q Example introduction

= aspect CloneablePoint {

declare parents: Point implements Cloneable;

declare soft: CloneNotSupportedException:
execution(Object clone());

Object Point.clone() { return super.clone(); }

}

36

N AOP Challenges

t’s not all wine and roses
Debugging is a problem

You debug the integrated (“weaved”) program - but

that doesn’t correspond to any particular piece of
source

Like debugging C++ with macros and templates

Aspects may depend on each other or themselves
This is difficult to reason about

What integrated code is really being produced?

37

q Concluding remarks
|

Aspect-oriented programming (AOP) is a new paradigm -- a hew way to
think about programming

It acknowledges that crosscutting concerns come up in practice

It provides a way to maintain concerns separately and specify
integration rules to weave them together

AOP is somewhat similar to event handling, where the “events” are
defined outside the code itself

AspectJ is not itself a complete programming language, but an adjunct
to Java

AspectJ does not add new capabilities to what Java can do, but adds
new ways of modularizing the code

Like all new technologies, AOP may--or may not--catch on in a big way

38

w And They Lived Happily Ever After

* You may be skeptical. Any questions?

