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Preface

The material in this monograph delves into the specific topics of conduction and con-
vection heat transfer and should be a useful continuation for those who have completed

introductory studies in thermodynamics, incompressible flow, and heat transfer and who also have
a good understanding of basic calculus and differential equations. It is a “modern” treatment in the
sense that the presentation is given primarily from the analytical point of view. Many older texts
(e.g. McAdams, 1942) tend more toward empirics, but the main problem with this perspective is
that it limits the potential for basic conceptual learning and understanding. In general, a science
is advanced to the degree that its underlying phenomena can be quantified mathematically, rather
than being restricted to lesser qualitative or empirical descriptions. Of course, there are still many
problems where the level of mathematical difficulty exceeds what could reasonably be presented
in a venue like this. In those few cases that are examined here, we will fall back to traditional
treatments based on approximation (including numerical) and dimensionless analysis.

Several factors have motivated this text. First, advanced monographs tend to be written es-
sentially as reference works and many are far too hefty for classroom use in terms of the amount
of material presented. Here, the content is roughly what can be discussed in proper detail within
a one–semester advanced undergraduate or a graduate survey course in conduction and convection
within engineering, physics, or applied mathematics curricula. Focusing the scope in this way means
omitting certain aspects. For example, we will not place heavy emphasis on coordinate system es-
oterica, anisotropic media, problems outside the continuum realm, numerical methods, etc. Each
of these topics commands at least one dedicated course of its own. We will concentrate instead on
presenting a broad conceptual survey of fundamental problems and the associated mathematical
ideas and methods for examining them in toto. While all have some relevance to applications, we
instead emphasize the concepts of formulation and mathematical techniques of solution.

These mathematical ideas and methods frame the second motivator. Certain aspects of the
math will undoubtedly be new to the reader, but the combination of prerequisites mentioned above
with the detailed presentation style used here should ensure a successful understanding of the
developments. We purposely do not often fall back on extremely terse, general results commonly
found in research papers and monographs; they are usually too intimidating and inaccessible for
the student, and consequently tend to impede the learning process. We opt, rather, to expand these
concepts in long–hand, often in appendices, so that the mathematical operations are presented in
a manner that can be precisely followed and digested step–by–step and which are consequently
rendered much more clear to the reader. Because this is a free book, there is no editorial pressure
to limit page count and you will thus find the level of mathematical detail to be vastly more
comprehensive than in a typical commercial publication. Again, this is a text meant primarily for
learning rather than reference, though it may have some value in the latter context, too. I believe
this style to be consistent with the philosophy that modern science and engineering work calls for

vii



PREFACE viii

its practitioners to develop a comfortable relationship with advanced mathematics, a point that
is certainly stated more authoritatively by the great theoretical physicist Richard Feynman in the
epigraph below. “Real world” problems are invariably more difficult than those encountered in any
academic course and the situation will be utterly hopeless unless one has laid a solid foundation
in both concepts and the underlying mathematical methods to build upon. Some texts will end
on this note, limiting their scope to the formalities of obtaining solutions, but we feel there is
yet more to which the reader should be exposed. For example, there are often practical and
interesting algorithmic issues in evaluating a closed–form solution, once obtained, for specific sets
of parameters, as well as more esoteric aspects of the mathematical theory, e.g. solution uniqueness.
We cover such topics in some detail. Our intent is that the reader obtain a truly well–rounded
presentation of the fundamentals of the subject.

The last motivator for this book is cost. Retail prices of college texts have risen at a rate of
about 7% per year for over two decades, far faster than inflation. These increases tend to push
the affordability of proper learning materials out of reach for many students. Much has been
written about this problem, much blame has been placed, and many programs have already been
established to create and disseminate free or low–cost materials, for example the MIT Open Course
Ware project. Hopefully, this text will contribute in some humble way to this effort.

The material presented here is but a tiny slice of the broad “universe” of conduction and
convection heat transfer. The research literature and advanced reference texts (e.g. Carslaw and
Jaeger, 1959) represent the complete compendium of what is currently known about these topics
and it is hoped that this book helps form a preliminary link for the reader to those resources, one
that might be additionally strengthened by even further study. Sections having a “star” designation
are included for the sake of analytical completeness, but can be omitted without loss of continuity.
The material here is largely self–contained, but we often give references to sources where additional
relevant information can be found. Finally, any mistakes in this text are mine alone and I would
greatly appreciate notice, so as to make the necessary corrections in future editions.

Michael C. Wendl
Saint Louis, USA

May 2012

The burden of the lecture is just to emphasize the fact that it is impossible to
explain honestly the beauty of the laws of nature in a way that people can feel,
without their having some deep understanding of mathematics. I am sorry, but
this seems to be the case.

Richard Feynman



Table of Notation

The table below gives the general notation convention used throughout, as well as desig-
nations for dimensionless parameters, relevant acronyms, etc. Any exceptions will be noted.

Symbolic modifiers are sometimes used in more than one way, for example an “overbar” can rep-
resent an average, as well as an integral–transformed quantity. In these instances, context will be
clear.

Dependent and Independent Variables Material Properties

T , θ temperature k thermal conductivity

x, y, z, r coordinates c specific heat

t time α thermal diffusivity

q′′ heat flux ρ density

q heat transfer rate µ dynamic viscosity

q̇ heat generation rate ν kinematic viscosity (µ/ρ)

Q heat energy

Mathematical Functions Dimensionless Numbers

sin, cos, tan trigonometric functions Bi Biot number

sinh, cosh, tanh hyperbolic trig. functions Kn Knudsen number

Ij, Jj , Kj Bessel functions Re Reynolds number

ζj eigen–values Pr Prandtl number

Ψ, Γ, Ω eigen–functions Br Brinkman number

erf Gaussian error function Nu Nusselt number

Fr Froude number

Miscellaneous Acronyms

d, ∂, D derivative signs PDE partial differential equation

h convection coefficient ODE ordinary differential equation

ϕ, η, ξ, χ non–specific variables SOV separation of variables

IBP integration by parts
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CHAPTER 1

Introduction

Heat Transfer can be described as the process of energy transmission due to a gradient
in temperature T , which is a measurable quantity.1.1 Thus, determining the temperature

distribution for a given problem is the desired solution since other quantities of interest, such as
heat flux can be derived from it. The subject of heat transfer, which deals with non–equilibrium
processes, is essentially an extension of an introductory course in thermodynamics, which is usually
limited to equilibrium states. For example, a typical problem in thermodynamics might be to
determine the final equilibrium T when an annealed steel machine part is quenched in a vat of
water. The extension of this problem in heat transfer might be to find the rate of cooling of the
steel (T as a function of time and location), which is required to predict the resulting hardness in
various regions of the part.

1.1. Conduction and Convection

We will be concerned here with two main modes of heat transfer: conduction and convection.

• Conduction occurs through microscopic mechanisms, such as lattice vibrations and elec-
tron movement. There is no bulk motion of the medium — it is strictly a diffusion process.
Example: the heat felt when holding one end of a long copper bar in a open fire.

• Convection is thermal transport via bulk motion of the medium. Example: cooling effect
realized by standing in front of a fan after sprinting the 400m.

The typical heat transfer mode through solid matter is clearly conduction because of its sta-
tionary nature. Conversely, fluids (meaning liquids and gases) are more complicated. If the fluid is
at rest, heat is transferred exclusively via conduction, as well. But, if motion is present, transfer is
generally by both conduction and convection, though we refer to this more complex phenomenon
simply as “convection”.

There are other important modes of heat transfer that we will not have occasion to discuss, such
as radiation (heat transfer by way of electromagnetic phenomena) and condensation and boiling
(heat transfer involving a phase change).

1.2. The Continuum Assumption

One of the foundational concepts of all modern mechanics1.2 is that of the continuum assump-
tion. On a practical level, it means that physical properties are taken to be continuously distributed

1.1Temperature is not an entirely trivial concept to define in terms of first principles. Here, we will take the
simplistic, but typical approach of understanding temperature merely as a quantity that indicates thermal energy.

1.2This includes, for example, fluid mechanics, solid mechanics (e.g. beam theory, elasticity, etc.), electrodynam-
ics, thermodynamics, etc.

1



1.2. THE CONTINUUM ASSUMPTION 2

through space and time, such that these properties can be represented in the familiar terms of math-
ematical functions. In turn, these functions can be manipulated in the usual ways without further
regard to physical limits. For example, say property φ varies in the x direction. Taking the deriv-
ative dφ/dx is meaningful mathematically, but the underlying principle involves a limit ∆x → 0,
which physically takes us far below even the length scale of the molecules of our embodied system.
How is this seeming contradiction resolved?

If we were to look at a mass of fluid or solid at the microscopic level, what we would see are
individual molecules interacting with each other. We are not actually interested in the behavior of
these individual molecules, but rather want to understand the overall (or macroscopic) behavior of
the system as a whole. That is, it is the macroscopic properties such as density, temperature, or
pressure drop that are of physical interest. What we are doing from the mathematical perspective
is taking averages over small elemental physical volumes. These volumes must be large enough such
that they contain enough molecules at any instant in time to yield a statistically significant average
of the property of interest, yet they must also be small enough so that the statistical average does
not vary over the volume. It should be a constant. If these conditions are met, the properties
will have meaningful point values. In other words, they will be, to a very good approximation,
continuous functions of space and time. This is the so–called continuum assumption.

To illustrate this concept, consider the density ρ of a fluid, defined as mass per unit volume.
Without loss of generality take the volume as a cube of side length S and assume the medium in
question is a fluid. Now, envision what a plot of the density would look like as a function of S
(Fig. 1.2). At very small S, say comparable to molecule size, the actual number of molecules and

S
water

air
molecules

log

m
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s /
 u

ni
t v
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um

e

point value of
density is well−defined

S

Figure 1.1. Defining density as a point function according to the continuum assumption.

thus the mass within the volume varies erratically — “density” in the sense we would like to define
this concept is clearly ill–posed. There is clearly a lower limit for S which restricts the continuum
assumption. Conversely, very large values of S are also quite obviously meaningless. For example,
we could imagine a scale that includes heterogeneous matter, e.g. an air–water interface. Increasing
S so that the cube goes deeper into the water would further increase density, whereas growing it
further into the air would have the opposite effect.

The continuum assumption is clearly an issue of whether we can identify S large enough to
have a statistically significant number of molecules, while still being vastly smaller than the finite
scales of problems of interest. At first glance, this would seem to be the case. For example, a cubic
meter of air at standard temperature and pressure (15 C, 101.3 kPa) contains on the order of 1025

molecules. Therefore, the number of molecules in a volume about the size of a grain of sand, about
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10−12 cubic meters, would still be order 1013. The more rigorous assessment of the continuum
assumption is made via the Knudsen number

(1.1) Kn =
λ

L
=

mean free path of molecule

length scale of problem
,

where Kn # 1 indicates a valid continuum assumption (Schetz and Fuhs, 1999). Here, λ is the
average distance traveled by a molecule before interacting with another molecule of the medium,
whereby a low Kn indicates that the molecular “closeness” relative to the scale of the problem is
very high. The kinetic theory of gases suggests that λ ∼ 10−7m, meaning that most problems in the
traditional areas of heat transfer are well–suited to continuum analysis (Burmeister, 1983). We will
not discuss either of the two general scenarios, which according to Eq. (1.1), violate the continuum
model: rarefied media, where particles are spaced very far apart, and so–called nano–scale problems,
where the length scale of the configuration itself becomes comparable to 10−7 m.

With these ideas in place, we can define several primitive entities in terms of the continuum
assumption. Here, we consider an arbitrary shaped differential volume of δV . As with the familiar
use of the limit in calculus, we will define these entities in mathematical terms of δV → 0, even
though we realize physically that δV can only approach a very small, finite size.

Formally, we define density as mass per unit volume

(1.2) ρ = lim
δV →0

δm

δV
·

The dimensions of this quantity are mass per length to the third power.
The entity of velocity should be familiar from particle dynamics. It is a vector quantity that

gives the speed of a particle in three orthogonal coordinate directions: V = u î + v ĵ + w k̂, where
(u, v, w) represent the component magnitudes along the unit vectors (̂i, ĵ, k̂) in the coordinate
directions (x, y, z). This is also the form we will use to denote the velocity distribution in fluids.
However, we must realize that, like our other quantities, velocity is actually defined according to
the continuum assumption. That is, velocity is the collective momentum of all the particles in δV
divided by the total mass of these particles (Panton, 1984). Mathematically, we write this as

(1.3) V = lim
δV →0

Σ mi Vi

Σ mi
,

i.e. velocity is nothing more than momentum per unit mass. This definition permits us to use
velocity as a continuum function defined at all points in the fluid.

1.3. Anatomy of Heat Transfer Problems

Heat transfer is a consequence of variations in the scalar field of temperature. Therefore, we
consider a heat transfer problem solved if we know the temperature distribution, T = T (r, t), where,
in the general case, T is a function of 3 space dimensions, r = x î + y ĵ + z k̂, and time, t. Often,
a problem will depend on only a subset of these independent coordinates, but there can be many
other contributors, e.g. fluid motion, V, and energy generation, q̇. That is to say, the temperature
problem is often more intimidating in terms of its dependencies:

T = T (r, t,V, q̇, . . . ) .

Presuming the distribution of T can actually be derived by suitable methods, the heat transfer
follows as a direct consequence of its gradient, ∇T , whether it be via conduction (according to
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Fourier’s Law or other appropriate phenomenological relationships) or convection, where the so–
called “no–slip” boundary condition of velocity (Panton, 1984) will be presumed to apply for our
purposes, so that the temperature gradient at the boundary implies a convection coefficient.

Although heat transfer comprises a large fraction of the material presented here, we will give
greater schrift to T , both because it is the more basic entity and because it generally poses the
primary technical problem. The latter ranges from the moderately difficult (i.e. those problems
of a mostly “academic” nature that may be physically improbable, or even wholly contrived) to
the almost impossible (most “real–world” problems). The processes of deriving T are what we will
pay special devotion to, including assessments of when a problem can be solved exactly and when
suitable approximation methods must be employed.

1.4. Concept of Conservation of Energy

The cornerstone of heat transfer is the law of conservation of energy, which is described in terms
of a specific volumetric space called the control volume (CV ) and a bounding surface called the
control surface (CS) that encloses the CV (Fig. 1.2). In later sections, we will also introduce the

gen

E in

E out

E stored
E

Figure 1.2. Control volume and control surface schematic.

conservation laws for mass and momentum, given the dependence of convection on fluid motion.
Conservation of energy can be stated symbolically as

(1.4)
dEstored

dt
= Ėstored = Ėin + Ėgen − Ėout ,

where E represents energy and the dot notation connotes a rate process.1.3 In other words, the rate
of energy increase in the control volume is equal to the rate at which it is generated internally1.4

plus the rate at which it comes into the control volume minus the rate at which it leaves. This
energy can be of various types — usually we mean thermal energy, but it can also be mechanical
work. The terms Ėin and Ėout describe phenomena occurring at (across) the CS, while Ėgen is a
volumetric term associated with the CV . Note that the equation integrated over any time period
∆t must also hold true:

(1.5) ∆Estored = Ein + Egen − Eout .

1.3We have not said anything about describing these Ė quantities yet.
1.4Energy can be generated by a variety of means, for example nuclear decay. One of the most common situations

is electrical dissipation via current flowing through a wire having non–zero electrical resistance.
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1.5. Brief Historical Perspective and the Methodological Triumvirate

Heat transfer, like many other branches of mechanics, has a complicated history of development
with various fits and starts. It is highly intertwined with the development of fluid mechanics, a
not–surprising fact, given the intimate relationship between convection and fluid motion. Like fluid
mechanics, the “theoretical” and the “practical” were historically rather separate entities. For
instance, Joseph Fourier had already made significant progress on analytical models of heat by the
early 1800s, which were valuable in theoretical terms, but not widely used for applications. In fact,
such methods were not really even part of the educational lexicon for engineers and physicists of the
day, a point underscored in a quote made originally by Thornton Fry of Bell Telephone Laboratories
in a 1941 report to Congress on the use of mathematics in industry: “The theory of linear differential
equations, for example, is a subject by which the average well–trained engineer of 1890 would have
been completely baffled” (Fry, 1948).1.5 Indeed, much of the science of heat transfer was empirical
up to the Second World War. The experimental approach played a large role in researching basic
physical mechanisms of heat transfer and was used almost exclusively for engineering design and
construction, a feat enabled primarily by the ability to systematically extrapolate test data using
the techniques of dimensional analysis (Kays and Crawford, 1980). This state of affairs is reflected
in textbooks of that time (e.g. McAdams, 1942), which while discussing some analytical elements
of heat conduction, were largely empirical in their presentations of convection.

Analytical approaches had continued to mature, and, since that time, have been rapidly inte-
grated into the mainstream of the science of heat transfer. Even more recently, say in the past 30 to
40 years, computational methods have also become increasingly important, a practicality enabled
by spectacular advances in both hardware and programming languages. In essence, computation
has become sufficiently cheap for routine usage by scientists and engineers.1.6 These two addi-
tional developments have led to what might be called the “methodological triumvirate” available
to today’s well–trained practitioner, both for researching the basic physics of heat transfer and for
applying its principles to engineering problems. The 3 components are:

• the experimental approach
• the analytical approach
• the computational approach

and, of course, the material we present here focuses on the middle component.
In a very real sense, the analytical perspective is the best point of departure for deeper study of

the subject because it enables the clearest and most direct quantification of its principles. At some
level, this is related to the fact that it is the only approach which is not, to some degree, ad hoc.
What we mean by this statement is the following. Once a problem has been stated analytically, i.e.
framed in proper and well–posed mathematical terms with all assumptions, boundary conditions,
etc. specified, and, presuming this proposition can actually be solved, the result is general. There
is now a known rule that precisely dictates how the various inputs of a problem, including velocity,
type of medium, size of domain, etc., affect the output, that being usually temperature and/or heat
transfer, for our purposes. In effect, it unlocks the intimate knowledge of precisely how the system
behaves by simply being able to shunt new sets of parameters through the “solution rule”. The

1.5Emphasis added.
1.6Tannehill et al. (1997) discuss these trends at length. They cite figures showing the relative computational

cost dropping roughly 5 orders of magnitude from 1955 to 1995. That trend continues.
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usefulness for both basic understanding, as well as application to practical problems is obvious.
Such “economies of science” are considered to be one of the most important practical benefits of
mathematics for problems in the physical world (Mach, 1956).

Conversely, computational solutions, and to a much larger degree, experimental measurements
are ad hoc in the sense that they furnish a necessary answer for only one particular set of parameters.
Discerning trends and assessing general operating characteristics, as one would routinely do via
parametric studies, require repeatedly performing the associated analyses. This may be a formality
for the working engineer or physicist, depending on available resources, but can be a significantly
higher barrier for the student. Of course, there are many advantages to computation and experiment
(Table 1.1) and we might say that a true expert on the subject of heat transfer will be highly
knowledgeable in all 3 areas.

Table 1.1. Characteristics of the Triumvirate of Scientific Methods

Method Advantages and Disadvantages

Experimental† Potential for most realistic modeling of a problem of interest, but at typically

enormously larger cost than other 2 methods; significant technical hurdles

and equipment requirements; ad hoc results, although these are generalizable

to certain other combinations of parameters via dimensionless analysis

Analytical Entirely general, but issues of mathematical tractability limit realism in

terms of physics and geometries; well–established methods exist for linear

problems, but no general approach for non–linear problems yet known

Computational Can treat non–linear physics and complex geometries; solutions are ad hoc

but computational runs can often be reconfigured without much difficulty;

costs continue to fall; expectation of independent validation due to

various approximations and known limitations in modeling certain complex

phenomena such as turbulence
†Here we include the “observational”, which can be thought of as dealing with spontaneous

or naturally–occurring inquiries, e.g. sampling ocean temperatures to infer convection

patterns or other geothermal aspects of the oceans (e.g. von Arx, 1962)

A great deal more could be written here on the interdependence of these methods upon one
another. Here, we will say only that the usefulness of analytical methods extends significantly past
what meets the eye. For example, they are often used in the validation role for numerical methods
mentioned in Table 1.1. They are also crucial in the nascent “finite analytic” approach that casts
analytical solutions within finite sub–domains of a problem and might be combined with numerical
aspects to develop very efficient and very accurate analytical–numerical methods. We hope this is
sufficient justification to study this worthwhile subject.

Much has been written on the history and development of heat transfer as a scientific, engineer-
ing, and mathematical endeavor (e.g. Eckert, 1981; Narasimhan, 1999). Goldstein (1969) and Tani
(1977) summarize the more basic history of fluid mechanics, which is the foundation of convection,
and a particularly comprehensive examination is given in the book by Eckert (2006).
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1.6. Exercises

1.1
A large class of problems in heat conduction involves solving ordinary differential equations
having constant coefficients. Show by any suitable method that the general solution of

d2T

dx2
+ 5

dT

dx
+ 4 T = 0

is T (x) = C1 e−4x + C2 e−x, where C1 and C2 are constants. Furnish step–by–step details
of your solution process.

1.2
A particular class of mathematical methods for more sophisticated heat conduction prob-
lems involves techniques to transform a partial differential equation for temperature, T ,
into an auxiliary ordinary differential equation for a transformed variable, T . Given the
ordinary equation

dT

dt
+ α ζ2

n T = G(ζn, t) ,

where α is the thermal diffusivity, ζn is a constant, t is time, and G is an arbitrary function,
show that

T = e− α ζ2
n t

[

F (ζn) +

∫ t

0
eα ζ2

n t′ G(ζn, t′) dt′
]

is a solution to this problem, where F (ζn) is associated with an initial condition.



CHAPTER 2

Fundamentals of Heat Conduction

Heat transfer via conduction is a diffusion phenomenon. Here we will introduce the basic
concepts of diffusive conduction, including governing equations and boundary conditions, that

describe this important mode of heat transport.

2.1. Diffusion and Fourier’s Law

Diffusion is the process by which an entity, in this case heat energy, is transported by way of
random molecular motion. Diffusive effects can be illustrated in many ways, a traditional experi-
ment being to have a container of water and an iodine solution separated by a partition. Assume
the partition can be removed without causing any actual motion of the fluids. At time t = 0,
the two fluids are in their initial, unmixed state and the boundary between the two is sharp and
distinct. For t > 0, we start to visually observe color progressively more on the water side and less
on the iodine side. After a long time, t ' 0, the color of the overall solution is uniform. Iodine
molecules have clearly been transported throughout the container, though not by any motion of
the fluid.

Diffusion can be discussed on a molecular basis in terms of the so–called “random walk” phe-
nomenon, but we are concerned once again with the macroscopic viewpoint. Empirically, we find
that, like many other diffusion processes, the rate of heat transfer is proportional to a gradient in
the direction of the transport. In the case of conduction, the basic governing law is Fourier’s Law
of Heat Conduction, which in one dimension takes the form

(2.1) q′′ = −k(T )
dT

dx
,

where q′′ is heat flux, k is thermal conductivity,2.1 and dT/dx is temperature gradient along an
independent coordinate x. Eq. (2.1) is a phenomenological law derived from numerous experimental
observations rather than first principles. It holds for all the physical configurations we shall study
here, but additional terms are required for more complicated materials, for example some animal

2.1Eq. (2.1) shows conductivity being a function of the temperature, k(T ), which it is, in general. However, this
contingency renders conduction problems non–linear. In many situations k may only be a suitably weak function of T ,
or temperature differences might not be severe enough that variable conductivity makes an appreciable contribution.
Here, conductivity can be taken as a constant, in which case we write this equation simply as

(2.2) q′′ = −k
dT
dx

·

If Ac is the cross–sectional area, then the heat transfer is

(2.3) q = −k Ac
dT
dx

·

8
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tissues.2.2 In many cases of interest, the thermal conductivity can be reasonably approximated as
constant. When its dependence on temperature must be considered, i.e. k = k(T ), the resulting
problem becomes non–linear and commensurately more difficult mathematically.

Heat flux is clearly a directional quantity. For homogeneous, isotropic materials2.3 the general
three–dimensional form written in vector notation is

(2.4) q′′ = −k ∇T = −k

(

î
∂T

∂x
+ ĵ

∂T

∂y
+ k̂

∂T

∂z

)

.

Although the negative sign in Eqs. (2.1) and (2.4) looks rather strange, it is required for consistency
of the physics. Heat energy is conducted along a temperature gradient. That is, energy flows from
a high temperature region to one of lower temperature. For example, in Fig. 2.1 energy flows in
the positive x direction, therefore q′′ must be a positive quantity. The temperature gradient in this

heat flow

T

x

T1

T 2

x 1 x 2

Figure 2.1. Heat is conducted along a negative gradient from high temperature toward

low temperature, shown in the positive direction here.

case is linear, i.e.
dT

dx
=

T2 − T1

x2 − x1
,

which is clearly a negative quantity, since x2−x1 is positive, but T2−T1 is negative. In fact, T2−T1

must be negative, otherwise the resulting gradient would not allow energy to flow as shown. Since
k is defined as positive, the leading negative sign is clearly required for consistency. In this sense,
the temperature gradient is very similar to the pressure gradient in pipe flow: movement proceeds
along a negative gradient.

2.2. Thermal Properties of Matter

We mentioned the thermal conductivity k as a material parameter in Fourier’s Law. Two other
quantities are important to the problems we wish to study: the volumetric heat capacity, ρcp,
and the thermal diffusivity, α. Units for these quantities are listed in Table 2.1. Other properties
will arise as well, including many of those associated with fluid mechanics problems and surface
properties for radiation. These will be introduced as needed.

2.2This situation is quite analogous to Newtonian versus non–Newtonian fluids. Recall that for a Newtonian
fluid, shear stress and rate of strain are linearly related, where the constant of proportionality is the viscosity. For
non–Newtonian fluids, additional terms result in much more complicated relationships.

2.3These are materials for which the thermal conductivity is independent of direction.
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Table 2.1. Thermal Properties

Property Notation Units

thermal conductivity k W/(m K)

volumetric heat capacity ρ cp (kg/m3) × J/(kg K) = J/(m3 K)

thermal diffusivity α = k/(ρ cp) m2/s

Recalling that the physical basis for conductivity is at the molecular and atomic levels, we
would suspect that solids would generally have the highest conductivities, followed by liquids, and
finally gases. This is in fact the case and is largely due to differences in the molecular spacings
(Fig. 2.2). Actual values are available in many references (e.g. Weast and Astle, 1982).

pure  metals

thermal conductivity in
0.01 0.1 1 10 100 1000

gases

W / (m K)

liquids

non−metallic  solids

alloys

Figure 2.2. Approximate ranges of thermal conductivity for various classifications of

matter.

2.3. Derivation of the Conduction Equation

It was mentioned in the opening sentences of Chapter 1 that the goal of heat transfer is to
determine the temperature distribution. In the general case, this will depend on all three spatial
dimensions and on time, so that T = T (r, t). We introduced Fourier’s Law in Eq. (2.1), but
this alone does not provide a foundation for calculating T . Instead, we must base our theoretical
framework on the conservation law for energy, which was introduced only at a conceptual level in
Chapter 1.

We extend the conceptual treatment using the classic differential approach; The resulting equa-
tion will be valid for every differential point in a problem domain. This is characteristic of differential
formulations: the conservation law must be satisfied simultaneously for all (r, t). In this sense, the
differential formulation is exact, however, it typically presents a more challenging mathematical
situation than the integral approach.2.4 We define a differential element with properties of interest
defined in the center. Any properties depending upon a flux can be extrapolated to the boundaries
using truncated 1–term Taylor series.2.5

2.4The integral approach is not typically as important in heat transfer as in fluid mechanics, but will be introduced
later for certain configurations.

2.5Terms of second–order and higher can all be neglected since they involve products of the differential quantities,
e.g. (δx)2, which are exceedingly small.
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Define the differential element according to the volume δx × δy × δz (Fig. 2.3). According to

.

δ

δ

δ

gen
.

x

y

z

x
z

y
ql

q t

qr

qb

q
E

E
st

Figure 2.3. Differential volume showing energy generation Ėgen and energy storage Ėst

terms in the center and heat fluxes at the boundaries. Diagram omits fluxes pointing in the

positive z–direction, qn at the near face and qf at the far face (at z = 0).

the concept of conduction, the material is either a solid, or a non–moving fluid. We formulate
all quantities at a given instant of time: the energy generation and storage terms, Ėgen and Ėst,
represented as volumetric entities in the element, and all heat conduction terms at the boundaries.
Expressing these terms as 1–term Taylor series expansions with respect to their associated values
defined in the center, we find

(2.5) ql = qx −
∂qx

∂x

δx

2
and qr = qx +

∂qx

∂x

δx

2
,

(2.6) qb = qy −
∂qy

∂y

δy

2
and qt = qy +

∂qy

∂y

δy

2
,

(2.7) qf = qz −
∂qz

∂z

δz

2
and qn = qz +

∂qz

∂z

δz

2
,

where higher–order terms have been omitted. Energy generation is simply

(2.8) Ėgen = q̇ δx δy δz ,

where q̇ is the per unit volume rate of generation.2.6 Finally, the rate of change of thermal energy
stored in the element can be expressed as

(2.9) Ėst = ρ cp
∂T

∂t
δx δy δz

based on the dimensional argument using the volumetric heat capacity ρ cp in units of J/(m3 K)
given in Table 2.1.

2.6There does not seem to be a standard notation for heat generation. Here, we follow the choice of many
introductory texts, e.g. Incropera and Dewitt (2002), in using q̇. This should not be confused with heat flux q′′. Other
texts, like Özişik (1980) use g, which are also easily confused with other quantities, like gravitational acceleration.
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These terms can be used directly in the conceptual conservation law in Eq. (1.4) on pp. 4,
where the rate of energy entering the element is Ėin = qb + qf + ql and the rate of energy leaving
is Ėout = qn + qr + qt. This operation yields

(2.10) ρ cp
∂T

∂t
δx δy δz = q̇ δx δy δz + qb + qf + ql − (qn + qr + qt) ,

which becomes

(2.11) ρcp
∂T

∂t
δxδyδz = q̇δxδyδz +

(

qy −
∂qy

∂y

δy

2

)

+

(

qz −
∂qz

∂z

δz

2

)

+

(

qx −
∂qx

∂x

δx

2

)

−
(

qz +
∂qz

∂z

δz

2

)

−
(

qx +
∂qx

∂x

δx

2

)

−
(

qy +
∂qy

∂y

δy

2

)

,

after substituting Eqs. (2.5) through (2.7) for the heat conduction terms. We then cancel and
combine terms appropriately to get

(2.12) ρ cp
∂T

∂t
δx δy δz = q̇ δx δy δz −

(
∂qx

∂x
δx +

∂qy

∂y
δy +

∂qz

∂z
δz

)

.

Eq. (2.12) represents the limit in terms of what can be derived strictly from theory. It cannot be
solved, because T and q are both unknowns.2.7 However, we have additional relationships between
T and q in the form of Fourier’s Law. In light of Eq. (2.4), we can express the heat terms as

(2.13) qx = −k
∂T

∂x
δy δz and qy = −k

∂T

∂y
δx δz and qz = −k

∂T

∂z
δx δy ,

which can be substituted into Eq. (2.12) to obtain

(2.14) ρ cp
∂T

∂t
δx δy δz = q̇ δx δy δz −

[
∂

∂x

(

−k
∂T

∂x
δy δz

)

δx

+
∂

∂y

(

−k
∂T

∂y
δx δz

)

δy +
∂

∂z

(

−k
∂T

∂z
δx δy

)

δz

]

.

All volume terms δx × δy × δz cancel and all double–negatives cancel, leaving

(2.15) ρ cp
∂T

∂t
= q̇ +

∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

as the general three–dimensional time–dependent form of the heat conduction equation, or in vector
notation with functional dependencies annotated

(2.16) ρ cp
∂T (r, t)

∂t
= q̇(r, t) + ∇ ·

[

k(T ) ∇T (r, t)
]

.

Eq. (2.15) states the conduction equation explicitly in Cartesian (rectangular) coordinates, which
will be sufficient for the majority of the problems we will study, while Eq. (2.16) is a more general
statement in terms of the ∇ operator. The latter implicitly specifies all coordinate systems, given
the associated forms of ∇, and obtaining this equation explicitly in another system is relatively
straightforward using coordinate transformation.2.8

2.7We assume that heat generation q̇ would be prescribed, or would be measurable for a problem.
2.8Further discussion of coordinate transformation, particularly the conduction equation in various orthogonal

coordinate systems, is found in many sources e.g. Özişik (1980). Other sources have extensive tabulation of operators
in various coordinate systems e.g. Panton (1984).
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2.4. Discussion of the Conduction Equation and its Special Cases

Eq. (2.16) expresses conservation of energy in terms of the single dependent variable of temper-
ature T . We can solve this in principle because there is one equation and exactly one unknown and
we will largely examine it in the context of a linear partial differential equation. Linearity is satis-
fied if T does not appear in the form of any products of itself, or its derivatives, involve any special
functions of itself or its derivatives, etc. For example, if k is a constant and q̇ is, at most, a linear
function of T , Eq. (2.16) is linear. The mathematical advantage to such problems is that the theory
of linear equations is extremely well developed and there are many general methods for solution.
Conversely, there is no corresponding comprehensive theory of non–linear equations. Fortunately,
there are methods for special cases of interest, especially problems for which k = k(T ). We will
examine this particular class of problems in detail. Additionally, if the source term q̇ vanishes, the
equation is homogeneous and this simplification entails certain additional advantages for solution
that we shall study in detail.

For the class of linear conduction problems, we will take k as a constant, whereby it can be
moved outside of the derivatives yielding

(2.17)
1

α

∂T

∂t
=

q̇

k
+

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
,

where q̇ is again the energy generation rate per unit volume (W/m3) and α is the thermal diffusivity
(Table 2.1). Further simplifications are possible, for example if conduction is also steady, Eq. (2.17)
reduces to

(2.18)
q̇

k
+

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0 .

Moreover, if energy generation is absent, we obtain

(2.19)
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0 ,

which is Laplace’s equation and which also can be written in general vector notation as ∇2T = 0,
where ∇2 is the Laplacian operator. This equation may simplify further if T is only a function of
fewer than the three independent coordinates.

2.5. Boundary and Initial Conditions

The various forms of the conduction equation we have just discussed govern the physics of how
heat is conducted in the interior of some pre–defined domain. However, this still does not completely
specify the problem. We must also have some prescription of temperature (or its derivatives) on
the boundaries of the domain — these are called boundary conditions. Moreover, if the problem is
also unsteady, we must also know the initial condition for the problem. That is, we must have the
value of T (or its derivative) at some specific time.

2.5.1. Initial Conditions. Conduction problems involve second derivatives of their spatial
coordinates, meaning there are two required boundary conditions for each coordinate. Conversely,
there is only one initial condition needed for any unsteady problem because the temporal term
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appears as a first derivative. Almost always, the latter takes the form of prescribing T itself at
some instant of time, usually by convention at t = 0, which can be written in a few different ways

(2.20) T (r, t) |t=0 = T (r, 0) = T0(r) ,

where again r = (x, y, z) or other coordinates, as appropriate.

2.5.2. Boundary Conditions of the First Kind: Dirichlet. Boundary conditions, on the
other hand, can take a number of forms, depending upon the physics of the problem. The most
obvious case is similar to the initial condition, where a specific value of T is specified at a coordinate
location. For example we could write

(2.21) T (x, y, z, t) |x=0 = Ts or T (x, y, z, t) |x=L = Ts ,

where Ts is the temperature at the surface coinciding with the coordinate location x = 0 or x = L,
respectively. Eq. (2.21) is commonly known as a boundary condition of the first kind, or a Dirichlet
boundary condition, and is common to heat transfer problems. For instance, if the boundary is in
contact with a medium undergoing a phase change, the constant temperature boundary condition
is a good model.

2.5.3. Boundary Conditions of the Second Kind: Neumann. A boundary condition
of the second kind, or Neumann boundary condition, involves the derivative of T . For instance,
Fourier’s Law in Eq. (2.1) on pp. 8 is a ready–made Neumann boundary condition when applied
at a physical boundary, e.g.

(2.22) q′′s = −k
∂T

∂x

∣
∣
∣
∣
x=L

.

In other words, the heat flux q′′s at the x = L boundary is related to the temperature gradient ∂T/∂x
at x = L as prescribed by this equation. The special case of the adiabatic (perfectly insulated)
boundary is given by

(2.23)
∂T

∂x

∣
∣
∣
∣
x=L

= 0 .

2.5.4. Boundary Conditions of the Third Kind: Robbins. Boundary conditions of the
third type, also called Robbins boundary conditions, specify a balance between energy conduction
at the boundary and the rate at which this energy is convected away. The latter is specified by
Newton’s Law of Cooling :

(2.24) q′′s = h (T |x=L − T∞) ,

where T∞ is the freestream temperature of the flow and h is the convection heat transfer coefficient.
Eq. (2.24) implies the definition of the entity h, such that its product with the temperature difference
gives the heat flux.2.9 In fact, h is a complicated quantity that depends on the flow and energy
equations — it is the main focus of convection heat transfer to be discussed later. The form of
a Robbins boundary condition is something of a combination of the first two types of boundary

2.9Clearly, h must have units of W/(m2 K) so that its product with a temperature difference yields heat flux. If
h can be expressed as an average value for an area A, Newton’s Cooling Law can also be written in the useful form
qs = h A (T |x=L − T∞) for the actual heat transfer rate.
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condition in that it contains both temperature itself and its derivative. Equating the expressions
in Eqs. (2.22) and (2.24), we find2.10

(2.25) −k
∂T

∂x

∣
∣
∣
∣
x=L

= h (T |x=L − T∞) .

2.6. Exercises

2.1
Derive the statement of conservation of mass in the cylindrical coordindate system, c.f.
Eq. (I.1) on pp. 182, by analyzing a differential “sector” element.

2.10There is an equation of identical form, but somewhat different physical meaning, that arises when considering
heat transfer strictly on the fluid side. This is discussed in detail in §7.4 on pp. 92.



CHAPTER 3

One–Dimensional Steady Conduction: Fins

In the simplest case, conduction heat transfer occurs only along one primary dimension, say
the x direction, and the problem is steady. Almost all such problems are elementary from a

mathematical perspective. For example, if q̇ = 0, then we see from Eq. (2.19) that the governing
equation is d2T/dx2 = 0, which is readily integrated to find T . Here, we will examine a class
of more interesting problems, primarily in the context of “extended surfaces”, i.e. fins, and the
conditions under which the one–dimensional model could be reasonably expected to apply.

3.1. The One–Dimensional Model and the Biot Number

While there are several different physical scenarios under which the one–dimensional model is
reasonable, their commonality is that the gradient in one of the coordinate directions is much larger
than those in the other directions. Consider a simple two–dimensional domain shown in Fig. 3.1
and assume that the temperature on the boundaries is given by the equations

1

y
y x

x(0, 0)

1

Figure 3.1. Two–dimensional rectangular domain with a side length in one dimension

much longer than the other, i.e. x1 ' y1.

T |x=0 = T |y=0 = 0 and T |x=x1
= T |y=y1

= T1 .

According to discussions in Chapter 2, particularly Eq. (2.19) on pp. 13, we could deduce that this
problem is governed formally by the conduction equation

(3.1)
∂2T

∂x2
+

∂2T

∂y2
= 0 .

However, if we look at the rough sizes of temperature gradients using a simple finite–difference
approximation,

∂T

∂x
≈

T1 − 0

x1 − 0
and

∂T

∂y
≈

T1 − 0

y1 − 0
,

it is clear that gradients in the x direction will be small compared to those in the y direction.
Thus, such a problem could be satisfactorily approximated as one–dimensional. In fact, we often
recognize such cases on a dimensional basis, that is, whenever two of the length dimensions are
much larger than the third.

16
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The subtlety in Fig. 3.1 is that, while the temperature itself varies, i.e. is not constant in the x–
direction, the length scales are such that the rate of change of T with respect to x is much smaller
than the rate in the y direction. Another category of problems in which the one–dimensional
model is valid is the more obvious case where the temperature in two of the coordinate directions
is essentially constant. There is a formal, dimensionless method for identifying such instances.
Consider the slab geometry in Fig. 3.2, where the left–boundary, right–boundary, and freestream
convection temperatures are, T0, TL, and T∞, respectively, and T0 > TL > T∞. The assumption

low Biot (<<1)

L

TL

TL

Too

T0

x = 0
x = L

x

DR RV

convectionconduction

flow

heat transfer area = A

high Biot (>>1)

moderate Biot (~1)T

Figure 3.2. Dimensionless assessment of constant temperature in a slab of thickness

L based on the difference between a given left–boundary temperature, T0, and 3 possible

values of a right–boundary temperature, TL, along with a freestream temperature, T∞, of a

convecting flow. Corresponding resistors from the circuit analogy are also shown: RD and

RV for conduction and convection, respectively.

of “almost” constant temperature within the conductor clearly depends on how close TL is to T0.
By a straightforward conservation of energy argument, the conduction and convection fluxes at
the x = L boundary must be equivalent. Writing these respective fluxes using an approximate
finite–difference form of Eq. (2.1) on pp. 8 and Newton’s Law of Cooling in Eq. (2.24) on pp. 14,
respectively, we find

(3.2) − k
TL − T0

L
≈ h (TL − T∞)

which is readily re–arranged to reveal the Biot Number , Bi:

(3.3)
T0 − TL

TL − T∞
≈

h L

k
=

L/(kA)

1/(hA)
=

RD

RV
= Bi .

The temperature ratio in this expression clearly shows that a state of constant temperature is
approached progressively better by smaller values of Bi. Although formally we would require
Bi # 1, most texts advise Bi < 0.1 as an acceptable threshold (Holman, 2010; Bergman et al.,
2011). The second ratio, hL/k, is the Biot number definition,3.1 from which actual calculations can

3.1Note that k in Eq. (3.3) is the thermal conductivity of the conductor, not the flowing fluid.
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be made, presuming h is known. The third and fourth ratios furnish a physical interpretation of
the Biot number, where RD = L/(kA) and RV = 1/(hA) are the resistor model values from the
conduction circuit analogy.3.2 In other words, the Biot number is

(3.4) Bi =
h L

k
=

resistance of conduction

resistance of convection
,

and, if this figure is small, convection is the rate determining factor. Equivalently, the conductivity
is very high so that temperature gradients in the conductor are low enough such that their product,
the heat transfer, correctly matches the heat transfer by convection at the boundary.

3.2. Derivation of the Fin Equation

Extended surfaces, or “fins”, are often used to increase heat transfer, for example as applied
to air conditioner coils, I/C chips, heat exchangers, car radiators, lawn mower engines, pipes, etc.
Why is this the case? If we recall the concept of Newton’s Law of Cooling introduced in Eq. (2.24)
on pp. 14, we can write a generic form of this convection equation as

(3.5) q = h As

(

T
∣
∣
∣
surface

− T∞

)

,

where h is once again the convective heat transfer coefficient and As is the surface area available
for heat transfer. How can the various components of this equation be modified to increase q?

• T∞: This is the ambient temperature of the surrounding fluid environment and, as such,
cannot usually be changed much, if at all. For example, if air is the working fluid then the
atmospheric air temperature is essentially a constant.

• T |surface: Similar to Tfluid, the device temperature and thus the resulting surface tem-
perature is usually constrained by the operating range of the device.

• h: This can be increased to a degree, however, it still may be highly constrained, for
example adding a blower to increase convection may be possible, but it may be impractical
due to weight, size restrictions, electrical considerations, aerodynamics, etc.

• As: It’s easy to increase this by huge margins using fins and Eq. (3.5) indicates there is a
proportional increase in the heat transfer.

Of course, to properly analyze such systems, we must first have the appropriate equation describing
the conservation of energy. Here, we develop the so–called fin equation, which is a special case
of the general conduction equation that explicitly incorporates a convection boundary condition.
The conceptual justification for this special treatment is as follows. Fins are normally fashioned
from high–conductivity material and they are typically employed within gas rather than liquid
media, as the former have lower convection coefficients. Moreover, maximizing area logically implies

3.2 Recall the simple one–dimensional model d2T/dx2 = 0 implies, whose general solution is T (x) = C1 x + C2,
and whose gradient is constant. With respect to the notation in Fig. 3.2, this gradient is (TL−T0)/L, so that Fourier’s
Law becomes

q = − k A
dT
dx

= − k A
TL − T0

L
= k A

T0 − TL

L
= ∆T

k A
L

,

which is analogous to the linear voltage drop in DC circuits, I = ∆V/R, for a flowing current. Newton’s Law of
Cooling is a direct analog, i.e. q = hA(TL − T∞) = hA∆T . The circuit analog model is discussed extensively in
introductory texts (e.g. Holman, 2010; Bergman et al., 2011).
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maximizing surface area to volume ratios, meaning that the cross–sectional length scales tend
to be small (Fig. 3.3). These factors all imply a low Bi per Eq. (3.4). That is to say, to a

x
gas medium:
low convection coeff.

high conductivity
material

small length
scale

Figure 3.3. Elements of good fin design imply low cross–sectional Biot number according

to Eq. (3.4): small length scale, L, small convection coefficient, h, of gas media, and large

thermal conductivity, k, of the fin material.

very good approximation, the temperature in any cross–sectional slice through the fin is constant.
Consequently, we take temperature to vary only along the fin’s length, e.g. in the x direction in
Fig. 3.3. Heat conduction in the fin satisfies the one–dimensional idealization.

In the usual fashion, we analyze a differential length dx of a fin as shown in Fig. 3.4. Here,

s

x x d x

q x

q x+dx
x + dx

dq
dA

A

convection
around  fin

conv

c

Figure 3.4. Schematic of a general, variable–area fin showing convection (left) and

differential element of thickness dx (right). Cross–sectional shape is arbitrary, although it

is shown here as roughly circular. Temperature in this cross–section is taken as constant.

energy is conducted along the fin in the x direction and dissipated by convection along the entire
outer boundary in what we will take as a steady–state process. The local cross–sectional area at x
is Ac, however, we assume this can vary along the axis, so we properly write this as a function of
x, as in Ac(x). The local differential boundary area exposed to convection is dAs.

Heat is conducted into the element at x at a rate of qx and is conducted out of the element at
location x + dx at a rate qx+dx. Heat is convected away at the radial boundary at a rate dqconv.
For energy to be conserved, we write the simple conservation equation3.3

(3.6) qx = qx+dx + dqconv .

3.3This is clearly a form of Eq. (1.4) on pp. 4: Ėstored = Ėin + Ėgen − Ėout, where Ėstored = Ėgen = 0.
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We immediately recognize qx from Fourier’s Law in Eq. (2.2) on pp. 8, which can be written for
this problem as

(3.7) qx = −k Ac(x)
dT

dx
,

where Ac(x) is again the cross–sectional area of the fin that varies with x. Note that we are explicitly
assuming a constant thermal conductivity. We can expand qx+dx according to a truncated 1–term
Taylor series3.4 to obtain

(3.8) qx+dx = qx +
dqx

dx
dx = −k Ac(x)

dT

dx
− k

d

dx

(

Ac(x)
dT

dx

)

dx ,

where we have removed k from under the derivative in the second term, since it is assumed constant.
Finally, we write the convection term once again according to Newton’s Law of Cooling as

(3.9) dqconv = h dAs (T − T∞) ,

where T∞ is the temperature of the fluid absorbing the heat. It is important to note again that
the assumption of a constant temperature cross–section means that the internal cross–section tem-
perature and the boundary temperature are one in the same, T . We can now substitute these
components back into our original conservation law in Eq. (3.6) to obtain

(3.10) h dAs (T − T∞) − k
d

dx

(

Ac(x)
dT

dx

)

dx = 0 .

If we divide by k dx and change sign, we get the canonical form

(3.11)
d

dx

(

Ac(x)
dT

dx

)

−
h

k

dAs

dx
(T − T∞) = 0 .

This equation is the generalized fin equation for one–dimensional conduction. It is a non–homo-
geneous, second–order equation which requires 2 boundary conditions for solution of T (x). Dif-
ferential equations are more manageable in homogeneous form3.5 and, in this case, we can convert
Eq. (3.11) to homogeneous form using a simple change of variables: θ(x) = T (x) − T∞, which
results in

(3.12)
d

dx

(

Ac(x)
dθ

dx

)

−
h

k

dAs

dx
θ = 0 .

This expression is also known as the generalized fin equation.

3.4Recall we did this with the derivation of the conduction equation in Chapter 2 for flux terms as well.
3.5 The term involving T∞ renders Eq. (3.11) non–homogeneous. We would like to remove that by a change of

variables θ(x) = T (x)−T∞. Since T∞ is a constant, derivatives of T can be recast directly in terms of θ, for example

dT
dx

=
d(θ + T∞)

dx
=

dθ
dx

+
dT∞

dx
=

dθ
dx

·

Further derivatives clearly show the same behavior.
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3.3. Special Case: Constant Cross–Section Fins

Notice that a non–trivial aspect of Eq. (3.12) is that we must know the function Ac(x) before
we can solve the problem. That is, Eq. (3.12) depends on the geometric attribute of how the
cross–section varies along the fin. Before we study some of these more general cases, let us briefly
review the most straightforward configuration: a uniform cross–section. Under these conditions,
the total surface area As is simply the perimeter of the cross–section P multiplied by the length x,
i.e. As = P x (as can be inferred from e.g. Fig. 3.5), so that dAs/dx = P by simple differentiation.
Moreover, for constant cross–section Ac(x) → Ac is a constant and can be moved outside of the
differential term in Eq. (3.12). With these two simplifications, Eq. (3.12) reduces to

(3.13)
d2θ

dx2
− m2 θ = 0 where m2 =

h P

k Ac

is a composite, constant parameter made up of the flow, geometric, and material attributes of the
fin. Because its coefficients are constant, Eq. (3.13) is readily solvable using the method of the
auxiliary equation (Ross, 1965), which in this case is ϕ2 − m2 = (ϕ + m)(ϕ − m) = 0. The roots
are obviously ϕ = ±m, implying the general solution3.6

(3.15) θ(x) = C1 emx + C2 e−mx .

The constants C1 and C2 must be evaluated using specific boundary conditions.

3.4. Boundary Conditions

Both Eq. (3.12) and its special case of Eq. (3.13) and are second order and require 2 boundary
conditions, one at the base of the fin, often x = 0, and one at the end of the fin at x = L
(Fig. 3.5). The first boundary condition is straightforward: it is almost always taken as a known

x

x =

x = L

0

Figure 3.5. Boundary locations for fins.

temperature at the fin base, i.e. T (0) = Tb assuming a boundary at x = 0, because we assume

3.6 The general solution can likewise be written in terms of the hyperbolic trigonometric functions according to
the identities

(3.14) cosh ϕ =
eϕ + e−ϕ

2
and sinh ϕ =

eϕ − e−ϕ

2
and these could furnish a more compact representation, depending upon the boundary conditions. See for example
Eq. (3.18) on pp. 23.
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the operating temperature of the device to which the fin is attached is known. This translates to
θ(0) = T (0) − T∞ = Tb − T∞ = θb. If we substitute this into Eq. (3.15), we find that one of the
boundary equations for the special case of constant cross–section is

(3.16) θ(0) = θb = C1 + C2 .

At the end of the fin, x = L, there are 4 cases that are of interest here. Listed in general order of
mathematical difficulty, they are:

Very long fin: Fins convect heat to the surrounding fluid along their length. If we assume
that the fin tip is very long, i.e. L → ∞, eventually all of the heat will be convected away, so that
the temperature at the very end must be equal to T∞. That is, there is no longer any temperature
gradient because there is no more heat to be transferred. According to our original substitution
θ(x) = T (x) − T∞, meaning θ(L) → 0. If we substitute this into Eq. (3.15), it is clear that the
first term would be unbounded, so we must conclude that C1 = 0. We can then use the boundary
condition at the base to find C2 = θb, so that the solution is

(3.17) θ(x) = θb e−mx .

Negligible fin tip heat transfer: In this case, we assume the end of the fin is insulated, so
that q = 0 at x = L. Writing this in terms of Fourier’s Law, we obtain a boundary condition of

dθ

dx

∣
∣
∣
∣
x=L

= 0 .

Again, application to the special case of constant cross–sections is straightforward. Take the deriv-
ative of Eq. (3.15) and substitute this into the boundary condition to obtain the equation

dθ

dx
= C1 m emx − C2 m e−mx gives C1 emL − C2 e−mL = 0 .

This equation, along with the boundary condition from x = 0 in Eq. (3.16) allows us to solve for
the constants. For example, we have C1 = θb − C2 from Eq. (3.16), which can be substituted into
the above equation

(θb − C2) emL − C2 e−mL = θb emL − C2
(

emL + e−mL
)

= 0 ,

so that C2 can be solved as

C2 = θb
emL

emL + e−mL
·

Substitute this back into Eq. (3.16) to solve for C1 as

C1 = θb − θb
emL

emL + e−mL
= θb

(

1 −
emL

emL + e−mL

)

= θb
e−mL

emL + e−mL
·

Finally, we can substitute C1 and C2 into Eq. (3.15) to obtain the exact solution

θ(x) = θb
e−mL

emL + e−mL
emx + θb

emL

emL + e−mL
e−mx

= θb
e−mLemx + emLe−mx

emL + e−mL

= θb
em(L−x) + e−m(L−x)

emL + e−mL
·
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According to the identity for cosh in Eq. (3.14), as footnoted on pp. 21, we can write this result in
the more simple form

(3.18) θ(x) = θb
cosh [m(L − x)]

cosh (mL)
,

which is the exact solution.
Fin tip temperature is known: That is, we have a standard Dirichlet boundary condition

at x = L, similar to that at the base x = 0 in the form θ(L) = θt. The procedure to evaluate C1

and C2 for this case is identical to what we have just seen, although the algebra is somewhat more
involved. The final solution is

(3.19) θ(x) =
θt sinh (mx) + θb sinh [m(L − x)]

sinh (mL)
,

where the sinh identity in Eq. (3.14), has been used for maximum simplification.
Convection from fin tip: Rate of energy transferred to the fluid by convection at the tip

of the fin equals the rate at which energy arrives at the tip via conduction. We write the basic
equation, which can be simplified using our standard change of variables, as

h Ac

(

T (L) − T∞

)

= − k Ac
dT

dx

∣
∣
∣
∣
x=L

→ h θ(L) = − k
dθ

dx

∣
∣
∣
∣
x=L

·

This case is the most tedious to solve, but the final solution is

(3.20) θ(x) = θb
cosh [m(L − x)] + λ sinh [m(L − x)]

cosh (mL) + λ sinh (mL)
,

where λ = h/(mk) is a constant that depends upon the characteristics of the boundary condition,
specifically h and k.

3.5. Analysis of the Common Annular Fin Using Frobenius’ Method

The previous few sections give a fairly complete picture of the temperature distribution in the
special case of constant cross–section fins. However, in a broad class of applications, the cross–
section actually varies. Perhaps the most familiar example is the annular fin, as seen on IC engine
cylinders, numerous types of piping and tubing systems, electric motor housings, firearm barrels
and mortar tubes, etc. (Fig. 3.6). This configuration is extremely common because of the natural

L

ri

d r

r
ro

Figure 3.6. Cut–away view of an annular fin of constant thickness L.

conformity to the usually heat–generating devices for which fins are often needed. It is clear in
Fig. 3.6 that the cross–sectional area increases with the radius, r.
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Analysis of this configuration starts with quantifying the geometric parameters Ac and As

in Eq. (3.12) on pp. 20. Note for this section we will switch notation from “x” to “r” for the
independent variable to represent the cylindrical nature of this configuration in a more familiar
way. The fin itself is defined as the annular material in the domain ri ≤ r ≤ ro. Consider a
portion of the fin up to radius r. The cross–sectional area at r is the outer face of the element,
i.e. Ac = 2 π r L. The surface area consists of the top and bottom faces of the fin, from ri up to
coordinate location r, so that As = 2(π r2 − π r2

i ) and therefore

dAs

dr
= 4 π r .

Substituting these quantities into Eq. (3.12) on pp. 20, we find

(3.21)
d

dr

(

2 π r L
dθ

dr

)

−
4 π h

k
r θ = 0 .

We can develop this into the standard form

(3.22)
d2θ

dr2
+

1

r

dθ

dr
− m2 θ = 0 where m2 =

2 h

k L
is again a constant comprised of the flow, geometric, and material parameters. Note the resemblance
to Eq. (3.13) on pp. 21 for constant cross–section fins, with the exception of an additional first
derivative term, which has a variable coefficient, r−1. Eq. (3.22) is a type of Bessel differential
equation, for which the extended power series method of solution (see appendix A) yields3.7

(3.23) θ(r) =
I0(m r) K1(m ro) + K0(m r) I1(m ro)

I0(m ri) K1(m ro) + I1(m ro) K0(m ri)
θb

when the prescribed boundary conditions are θ(ri) = θb and an insulated (adiabatic) fin tip. Here,
I0 and K0 are the modified Bessel functions of the first and second kind of order zero, respectively.

3.6. Fin Heat Transfer and Performance Metrics

The quantity of practical interest for many real–world problems is the total rate of heat trans-
ferred by the fin to its surroundings, q. We have considered the steady–state case, i.e. Eq. (3.12),
whereby the rate of energy entering the fin at its base via conduction must equal the rate of en-
ergy convected by the fin to its surroundings over its total surface area. In general, calculating
q according to the latter viewpoint is more difficult because the temperature along the fin is not
constant. Consequently, we would have to write a differential form of Newton’s Law of Cooling,
then integrate it about the entire surface area of the fin

q =

∫

As

h
(

T (x) − T∞

)

dAs =

∫

As

h θ(x) dAs .

This would require proper consideration of heat transfer at the fin tip, as well, with the exception
of the case of adiabatic tip conditions. It is rather more straightforward to use to the former point
of view, i.e. calculating q using Fourier’s Law applied at the fin base. For example, in the case of
the constant cross–section long fin, we find

dθ

dx
= −θb m e−mx ,

3.7This is commonly known as Frobenius’ method. See appendix A pp. 129 for development and detailed solution
method for Eq. (3.22).
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which can be evaluated at x = 0 and substituted into Eq. (2.2) on pp. 8 (Fourier’s Law) to yield

q = − k Ac (−θb m) = θb k Ac m .

Recalling the original definition of parameter m from Eq. (3.13), we can write the result in the
more useful form

(3.24) q = θb

√

h P k Ac .

This equation indicates that the temperature difference at the base is the strongest parameter
of the problem. In particular, doubling the temperature difference will double the heat transfer.
Conversely, the other four variables are not as significant, since they appear as square roots. For
example, to double the heat transfer, the convection coefficient would have to be increased by
a factor of four and so forth. Likewise, for the constant cross–section with adiabatic tip, whose
temperature distribution appears in Eq. (3.18) on pp. 23, the derivative is

dθ

dx
= − m θb

sinh [m(L − x)]

cosh (mL)
,

which can again be evaluated at x = 0 and substituted into Fourier’s Law to yield

(3.25) q = − k Ac

(

− m θb
sinh (mL)

cosh (mL)

)

= θb

√

h P k Ac tanh

(

L

√

h P

k Ac

)

,

after again substituting m from Eq. (3.13). Heat transfer rates for the remaining boundary condi-
tions of the constant cross–section fin are similarly derived.

The annular fin is not quite as straightforward, but it does likewise follow directly from applying
Fourier’s Law at the fin base, i.e. at r = ri. The calculation is shown in appendix A, the answer
being

(3.26) q = 2 π ri θb

√
2 L k h

K1(m ri) I1(m ro) − I1(m ri) K1(m ro)

I0(m ri) K1(m ro) + I1(m ro) K0(m ri)
,

where, for this case, m is defined in Eq. (3.22) on pp. 24.
One of the main metrics that quantifies performance of fins is their fin efficiency , i.e. the ratio

of the actual heat transfer, q, to the maximum possible heat transfer, h As θb, which would take
place if the entire fin was hypothetically maintained at the base temperature, so that convection
was maximized all along the fin length. The form is

(3.27) ε =
q

h As θb
,

where again As is the total participating area of heat transfer of the fin. Once the fin heat transfer
has been determined, it is a relatively simple matter of substitution to obtain ε for a given fin. For
example, for the constant cross–section long fin, As = P · L, where L is the fin length,3.8 whereby
substitution of Eq. (3.24) gives

(3.28) ε =
θb

√
h P k Ac

h L P θb
=

1

L

√

k Ac

h P
·

3.8 The fin tip area is not counted in As for the case of the “long” fin because there is identically no heat transfer
at the tip by virtue of the fin tip being at ambient temperature, c.f. Eq. (3.17) on pp. 22. The same observation can
be made for the adiabatic fin tip boundary condition.
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An extremely common instance is the “thin” rectangular cross–section fin of width w and thickness
b, where w ' b. Here, Ac = w · b and P = 2 (w + b) ≈ 2 w, so that

(3.29) ε =
1

L

√

k b

2 h
·

Similarly, for the annular fin with adiabatic fin tip (see footnote 3.8), we can substitute Eq. (3.26)
and observe

(3.30) ε =
ri

r2
o − r2

i

√

2 L k

h

K1(m ri) I1(m ro) − I1(m ri) K1(m ro)

I0(m ri) K1(m ro) + I1(m ro) K0(m ri)
·

3.7. Additional Remarks

Heat conduction in actual fins is generally a more complicated proposition than we have rep-
resented here in several respects. First, geometries are not always idealized shapes, such as the
perfect annular fin discussed in §3.5. Although Fig. 3.6 is meant to be a cut–away view, it is a
good example of how only a partial or a notched fin might be used to allow perhaps for clearance
with another device. Such a case would entail angular dependence and two–additional boundary
conditions. The temperature distribution could be quite different. A substantial Biot number could
imply cross–sectional temperature dependencies and large temperature differences could mean con-
ductivity changes should be considered, rendering a problem non–linear. Such contingencies will
be explored in succeeding chapters.

More substantive difficulties occur when multiple fins are used in arrays, as is very frequently
the case. Introductory texts generally present a superposition analysis where heat transfer is simply
additive (Bergman et al., 2011), however this viewpoint totally neglects the effects that arrays have
on the convective flow with which they interact. If operating temperatures are very high, there
may be radiative effects, as well, with mutual exchanges of radiation among fins and with the
outside environment. The broader aspects of fin design include many other factors like cost and
manufacturability considerations, optimization for heat transfer per unit mass, etc.

3.8. Exercises

3.1
Prove Eq. (3.19) for the case of a constant cross–section fin having a prescribed fin tip
temperature of θt.

3.2
A common ODE that arises in various problems in mechanics is Bessel’s equation, a
solution of which is the Bessel function of the first kind of order n

Jn(x) =
( x

2

)n
∞
∑

i=0

(−1)i

i! (i + n)!

( x

2

)2i
,

where n is an integer. If a particular problem has a boundary condition of the second kind,
the derivative of Jn must be determined. Show that J ′

0 = −J1, for example by operating
term–by–term on J0 and reconstituting the result.
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3.3
A fin has a triangular shape defined by the coordinates

∣
∣
∣

y

H

∣
∣
∣ = 1 −

x

L
,

where the root has a thickness 2 H and the extension
length is L. Assume the fin is “long”, i.e. w is much
larger than the other 2 geometric parameters. Show
that the efficiency of this fin is

ε =
I1(2 m L)

m L · I0(2 m L)
where m =

√

h

k H
·

x

w

H

L

2
y



CHAPTER 4

One–Dimensional Unsteady Conduction

There are numerous situations where unsteady effects are important, i.e. where they occur
because of inherent operational transients in a device or system, or during the start–up or

shut–down in such systems. Mathematically, these scenarios generally represent more complicated
conduction problems than what we have examined thus far. Whereas steady 1–D problems can be
reduced to ordinary differential equations, transient problems routinely lead to partial differential
equations, which are typically more difficult to solve. In this chapter, we will survey various cases
of transient conduction. First, let us briefly review the most elementary transient problem: zero–
dimensional conduction.

4.1. Special Case: Zero–Dimensional Unsteady Conduction

Consider an arbitrarily–shaped domain having a uniform temperature, T , for example by virtue
of a low Biot number (c.f. Eq. (3.4) on pp. 18) within a surrounding fluid at a temperature of T∞
(Fig. 4.1). Heat transfer will occur when T∞ -= T , but let us assume T > T∞, without loss of

s

o

temperature
boundary

T
surrounding

temperature T uniform
temperature

T
volume V

surface  area A

o

Figure 4.1. Constant temperature domain: both the interior and the boundary are at a

temperature T , while surroundings are at T∞, where T∞ -= T .

generality. According to the conservation of energy concept in Eq. (1.4) on pp. 4, we can observe
that Ėstored = −Ėout, where Ėout = hAs(T − T∞) is the rate at which convection removes heat
energy defined by Newton’s law of Cooling. For the rate of change of stored energy, a dimensional
argument (c.f. Eq. (2.9) on pp. 11) gives Estored = ρV c dT/dt implying

ρ V c
dT

dt
= − h As (T − T∞) .

Or, making the standard change of variables as introduced in Chapter 3 (c.f. footnote 3.5 on pp. 20)
to obtain a homogeneous equation, θ(t) = T (t) − T∞, this becomes4.1

(4.1)
dθ

dt
= −

h As

ρ V c
θ .

4.1Eq. (4.1) is routinely called the lumped capacitance model of transient conduction in introductory texts (e.g.
Holman, 2010; Bergman et al., 2011).

28
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Eq. (4.1) is a separable differential equation, which can be conveniently solved by gathering de-
pendent terms, those involving θ, on the left, and independent ones, those of t, on the right, then
integrating over an elapsed time, as

dθ

θ
= −

h As

ρ V c
dt

∫ θ

θ0

dθ′

θ′
= −

h As

ρ V c

∫ t

0
dt′

ln θ′
∣
∣
∣

θ

θ0

= −
h As

ρ V c
t′
∣
∣
∣

t

0

(

ln θ − ln θ0
)

= ln

(
θ

θ0

)

= −
h As

ρ V c
t ,

the last step exploiting the logarithm identity ln a − ln b = ln(a/b). Exponentiating both sides
yields the solution

(4.2)
θ(t)

θ(0)
=

T (t) − T∞

Ti − T∞
= e−t/tc , where tc =

ρ V c

h As

is a time constant and T (0) = Ti is the initial, obviously constant temperature of the domain.
According to Eq. (4.2), temperature response is a simple exponential when spatial gradients are
small enough to be neglected.

4.2. Casting the One–Dimensional Unsteady Configuration

As mentioned above, the zero–dimensional model of unsteady conduction is valid only under
very restricted circumstances, conventionally taken to be satisfied roughly when Bi < 0.1 (Bergman
et al., 2011). We might consider a domain such as that shown in Fig. 4.2, where one of the
physical dimensions is much smaller than the other two, but where Bi nevertheless exceeds an

initial condition (interior)

x

2 L

boundary condition
boundary condition

Figure 4.2. One–dimensional transient problem, where Bi -< 0.1, and the value of 2L is

much smaller than the other two physical dimensions.

acceptable small–value threshold.4.2 If temperature differences across the 3 physical dimensions

4.2In the case of Fig. 4.2, we mean that 2L is significantly smaller than both the vertical height of the domain
and its depth dimension, i.e. “into the paper”. Here, the length scale for the problem can be deduced on dimensional
grounds as the quotient of total volume of the domain and the total area available for heat transfer, the latter being
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are comparable, or if they are larger in the x direction than in the other two, then temperature
gradients will only matter in the x direction. Simplifying the general equation of heat conduction,
Eq. (2.15) on pp. 12, commensurately, we get

(4.3)
∂T

∂t
= α

∂2T

∂x2
,

where T = T (x, t) and α is the thermal diffusivity (c.f. Table 2.1 on pp. 10). This is a partial
differential equation rather than an ordinary differential equation, and is therefore usually more
difficult to solve. It is linear in that there are no products of T or its derivatives, and it is also
homogeneous, i.e. has no source term (c.f. §2.4). In general, we derive T (x, t) according to the
following procedure.

• Obtain the general solution of Eq. (4.3) via suitable advanced calculus techniques for linear
differential equations.

• Specify an initial condition, which gives the temperature distribution at some known time,
i.e. T (x, 0) = T0(x). In special cases T (x, 0) may be a constant.

• Specify 2 boundary conditions, one each at x = ±L, which may be of any of the 3
standard types discussed in §2.5. Formally, the total number of possible types of boundary
problems then is 6, but this neglects the fact that symmetry considerations collapse matters
further.4.3 For example, the domain of −L ≤ x ≤ L in Fig. 4.2 having Dirichlet boundary
conditions at x = ±L is formally equal to the domain 0 ≤ x ≤ L having the same
condition at x = L, but adiabatic conditions at x = 0. The former is symmetric about
the plane x = 0, whereby there is no heat conduction across this plane, and this precisely
matches conditions of the latter, which enforces a zero slope of T at x = 0. However, it
is also possible to have additional forms of this problem if, for example, the problem is
semi–infinite in one of the coordinate directions, e.g. 0 ≤ x < ∞.

We will examine several representative problems.

4.3. The Dirichlet Problem and the Technique of Separation of Variables

Let us first study the so–called Dirichlet problem in heat conduction, that is, the configuration
where the boundaries at x = ±L in Fig. 4.2 are prescribed with conditions of the first kind. In
this section, we focus specifically on introducing the method of separation of variables for solving
a partial differential equation. This technique is one of the oldest and most important for finding
explicit closed–form solutions of linear equations (Dettman, 1962; Özişik, 1980). Roughly speaking,
the procedure involves separating the partial differential equation into a set of ordinary equations,
solving these, and reconstructing the desired problem by the method of superposition. It is well–
suited for homogeneous problems like Eq. (4.3).

the sum of the areas of the plane boundaries, each being of area Ac, at x = ±L. The former is V = 2 L Ac, while the
latter is As = 2 Ac, whereby the length scale is the half–thickness L. Consequently, the Biot number is Bi = hL/k,
assuming a convection coefficient of h and domain thermal conductivity of k.

4.3The number of ways that 3 objects, the 3 possible types of boundary conditions, can be combined in 2 ways,
i.e. at the two boundaries, allowing for repetition, e.g. both boundaries could have Dirichlet boundary conditions, is

 

3 + 2 − 1
2

!

=

 

4
2

!

=
4 · 3
2

= 6 .
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For convenience, we will change the domain from −L ≤ x ≤ L as shown in Fig. 4.2 to 0 ≤ x ≤ L
for this section without loss of generality. We will also assume homogeneous Dirichlet boundary
conditions T (0, t) = T (L, t) = 0, or equivalently, non–homogeneous conditions that can readily
be converted to homogeneous form by a simple change of variables (c.f. footnote 3.5 on pp. 20).
The problem is then well–suited to the separation of variables treatment, where we assume T can
be written as the product of two univariate functions: T (x, t) = Ψ(x) Γ(t). The detailed solution
procedure is furnished in appendix B, which shows the general solution to be

(4.4) T (x, t) =
∞
∑

n=1

Cn sin (ζnx) e−αζ2
nt ζn =

n π

L
,

where the mode coefficients are given by the integral

(4.5) Cn =
2

L

∫ L

0
F (x) sin(ζnx) dx .

The solution given by Eqs. (4.4) and (4.5) permits us to examine a wide range of initial con-
ditions, F (x), for the Dirichlet problem. For example, consider a constant temperature, which we
can specify without loss of generality as F (x) = 1. The exact solution (see §B.4 in appendix B) is

T (x, t) =
∞
∑

n=1,3,5,...

4

n π
sin (ζnx) e−αζ2

nt .

Fig. 4.3 plots the temperature distributions for a billet of size L = 10 cm at elapsed times of 10
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Figure 4.3. Temperature distributions for steel and copper at 10 and 20 seconds elapsed

time, given unit initial conditions, i.e. T (x, 0) = 1.

and 20 seconds for two materials: steel (1.5% carbon content) and unalloyed copper. The thermal
diffusivities are α = 9.7 × 10−6 m2/s and 1.12 × 10−4 m2/s, respectively (Özişik, 1985). Two
notable properties are observed. First, the T (x, t) curves are all symmetric about the centerline,
here x = 5 cm, as we would expect from the fact that the boundary conditions are symmetric
and the initial conditions are symmetric. We would not expect this property if either one were
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non–symmetric. Second, the copper billet, having a thermal diffusivity roughly 10–fold of the steel,
shows much faster response to the imposed boundary conditions.

We might also consider another problem that is a direct extension to the elementary one–
dimensional steady conduction problem, whose solution is T (x) = C1 x + C2 (c.f. footnote 3.2 on
pp. 18). Specifically, consider the same 10 cm billet where there is steady–state conduction and a
temperature distribution of T (x) = x/L. This clearly implies boundary temperatures of T (0) = 0
and T (L) = 1. Now suppose the boundary temperature at L is changed to T (L) = 0, so that the
problem is one of calculating the decay transient as the entire billet reaches thermal equilibrium.
Framed in this way, we see the problem is identical to the previous one, except where F (x) = x/L.
The exact solution (see §B.5 in appendix B) is

T (x, t) =
∞
∑

n=1

2 (−1)n+1

n π
sin (ζnx) e−αζ2

nt .

Fig. 4.4 plots decay profiles for the billet assuming it is made of steel (α quoted above) for several
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Figure 4.4. Transient decay of the elementary one–dimensional conduction problem.

Decay curves are shown for steel billet at 10, 30, 60, 120, and 240 seconds elapsed time.

time points. Here, the decay is clearly not symmetric about the mid–plane, early in the process
at least, and that aspect is due to the asymmetry of the initial condition. However, note that the
profiles at later times tend increasingly toward symmetry. This behavior is inherent in the process
because the end state, thermal equilibrium, is itself symmetric.

One additional subtlety of this problem is also worth mentioning. The temperature distribution
for steady, one–dimensional conduction depends only on boundary conditions and is independent of
the material properties of the conductor.4.4 Conversely, once transients are present, the temperature
profile is strongly dependent on material, specifically the thermal diffusivity. In particular, materials
having higher values of α will respond faster to changes in temperature.

4.4Of course, the heat transfer, does depend on material properties according to Fourier’s Law (Eq. (2.2) on
pp. 8).
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4.4. Dimensionless Reduction of the One–Dimensional Robbins Configuration

The previous section examined the so–called Dirichlet problem, in which the two boundary
conditions are both of the “first kind”. Recall that we broadly discussed three different kinds of
boundary conditions in §2.5, and, although they are clearly distinct in a mathematical sense, there
is a subtle hierarchy in terms of their generality in a physical sense for problems such as these.
Consider that we have framed Dirichlet problems in the context of having some initial temperature
distribution and then one or both of the boundary values is/are instantaneously changed to a
different value. Here, the word “instantaneous” carries some obvious physical caveats. The actual
procedural aspect would more typically be something like changing the surroundings within which
the conductor is placed. For example, we might take the unit initial condition Dirichlet problem
(discussed above, solution in §B.4 in appendix B) as a model of quenching an annealed part: The
workpiece is heated for a long time, for which we assume it has some uniform temperature. Then,
it is dropped into a cold liquid.

Here, we do not necessarily expect the surface temperature of the part to change immediately
to match the liquid temperature. Instead, there is some fluid motion about the part with ac-
companying convection, so that a more appropriate boundary condition in such cases might be of
the “third kind”. In this sense, the Dirichlet boundary condition is a special case of the Robbins
boundary condition for infinite convection coefficient. This interpretation is immediately clear from
the concept of the circuit analogy, e.g. as referred to in Fig. 3.2 (pp. 17). That is, for the surface
temperature of the conductor to instantly match the fluid temperature, the convection resistor
must be “short–circuited”, meaning its value, RV , must be zero. Given RV ∝ h−1, the implication
is an infinite convection coefficient.

This discussion implies that there is a large class of problems where the Robbins “convection
boundary condition” is applicable for some finite value of h. Aside from added mathematical
complexity, as we shall see, the main practical hindrance is the dependence on a larger number
of variables than in the Dirichlet problem. Consider from Eqs. (4.4) and (4.5) that the Dirichlet
problem is stated as

T = T (x, t,α, L, Ti) ,

where we assume for this discussion that Ti is a uniform (constant) initial temperature. In other
words, T depends on two independent coordinates, x and t, a material property, α, and geometric
property, L, and an initial configuration, Ti — a total of 5 variables. There is no dependence
on boundary temperature, because we assumed problems of the type where a simple change of
variables could be applied to cast the problem as homogeneous.

Let us now consider the Robbins problem in this same way, i.e. where conditions of the “third
kind” are specified at both boundaries for the domain shown in Fig. 4.2. If we limit our discussion
to uniform initial conditions, T (x, 0) = Ti and also assume the Robbins’ conditions are identical at
both boundaries, then the problem is symmetric about the mid–plane. Here, it is more convenient
to consider the equivalent problem of the half–domain 0 ≤ x ≤ L with a symmetry boundary
condition ∂T/∂x = 0 at x = 0.4.5 Consequently, the problem is described by the governing field

4.5Note that this is formally equivalent to an adiabatic boundary condition at the mid–plane, which is entirely
consistent with the fact that no heat transfer occurs across x = 0 in a symmetric configuration.
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equation in Eq. (4.3), the initial condition T (x, 0) = Ti, and the boundary conditions

∂T

∂x

∣
∣
∣
∣
x=0

= 0 and h
[

T (L, t) − T∞

]

= −k
∂T

∂x

∣
∣
∣
∣
x=L

.

Checking these expressions, one readily sees that, rather than the 5 variables above, the Robbins
problem depends on 8 variables

T = T (x, t,α, L, Ti, k, h, T∞) ,

where the three extra parameters are another conductor material property, k, a thermo–flow prop-
erty, h, and a fluid state, T∞.

It is often beneficial to non–dimensionalize a problem because the number of variables is thereby
reduced.4.6 For the Robbins problem, we define the following forms of dimensionless temperature,
location, and time using the “star” notation (∗):

(4.6) θ∗ =
T (x, t) − T∞

Ti − T∞
=

θ(x, t)

θi
, x∗ =

x

L
, t∗ =

α t

L2
= Fo ,

where the dimensionless time, t∗, is routinely called the Fourier Number, Fo.4.7

To apply the dimensionless treatment to the governing equation, Eq. (4.3), we first determine
how derivatives behave in the dimensionless realm using the Chain Rule of Calculus, as in

(4.7)
∂

∂t
=

∂

∂t∗
∂t∗

∂t
=

α

L2

∂

∂t∗
and

∂

∂x
=

∂

∂x∗
∂x∗

∂x
=

1

L

∂

∂x∗ ·

The latter expression leads us to the required second derivative in x, as in

(4.8)
∂2

∂2x
=

∂

∂x

(
∂

∂x

)

=
∂

∂x

(
1

L

∂

∂x∗

)

=
1

L

∂

∂x∗
∂x∗

∂x

(
∂

∂x∗

)

=
1

L2

∂2

∂2x∗ ·

Using these expressions, Eq. (4.3) can be written directly in the dimensionless form

(4.9)
∂θ∗

∂t∗
=

∂2θ∗

∂x∗ 2

Likewise, the initial condition becomes

(4.10) θ∗(x∗, 0) = 1

4.6 This is not the only benefit of so–called dimensionless analysis. For example, it is also the basis of the principle
of dynamic similarity, whereby two systems, a prototypical model and a full–scale device, are dynamically equivalent,
permitting knowledge of one system to be extrapolated to the other, e.g. as in aerodynamic wind–tunnel testing. As a
by–product, it also yields various dimensionless numbers that have physical significance, for example, the well–known
Reynolds number for viscous fluid flow, c.f. Eq. (7.18) on pp. 90, which indicates the relative strengths of inertial and
viscous forces. In some cases, it can even be pushed to reveal specific physical laws for some systems (Ong, 1991).
See Barenblatt (1987) or Panton (1984) for extensive discussion.

4.7This is the slightly unfortunate nomenclature used in most texts. The Fourier number is not a dimensionless
“number” in the same sense as, for example the Reynolds number for pipe flow, but rather a dimensionless coordinate.
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and boundary conditions become4.8

(4.11)
∂θ∗

∂x∗

∣
∣
∣
∣
x∗=0

= 0 and −Bi · θ∗(1, t∗) =
∂θ∗

∂x∗

∣
∣
∣
∣
x∗=1

.

The non–dimensionalizing process has now reduced the problem to

(4.12) θ∗ = θ∗(x∗, t∗, Bi) ,

where the single parameter, the Biot number, arises in the boundary conditions.

4.5. The Non–Dimensionalized Robbins Problem

Eqs. (4.9) through (4.11) represent another linear partial differential equation system, which can
again be solved using the separation of variables technique, much like the Dirichlet problem. How-
ever, there are some important differences from the Dirichlet problem and the solution procedure
is shown in appendix C on pp. 141. The solution takes the form of an infinite series

(4.13) θ∗(x∗, t∗) =
∞
∑

n=1

4 sin ζn
2 ζn + sin(2 ζn)

cos (ζn x∗) e−ζ2
nt∗ ,

where ζn are the eigen–values given by the roots of the transcendental equation

(4.14) ζn tan ζn = Bi .

Roots of Eq. (4.14) can be found numerically, e.g. as shown in §C.2 in appendix C.
One of the interesting aspects of the Robbins problem is that it is the direct generalization

of the lumped capacitance model, which here we have called the zero–dimensional problem (c.f.
§4.1 on pp. 28). That is, the Robbins solution considers the spatial gradient that the capacitance
model neglects. As mentioned above, capacitance is conventionally taken as valid roughly when
Bi < 0.1 (Bergman et al., 2011). These observations naturally prompt a comparison between the
two theories.

Consider conduction in a large pane of soda lime glass of half–thickness L = 0.004 m (material
properties in Table 4.1). If the convection coefficient at the boundary is h = 70W/(m2 K), then the

Table 4.1. Material Properties of Soda Lime Glass at Room Temperature

Property Value

k 1.4 W/(m K)

ρ 2500 kg/m3

cp 750 J/(kg K)

α 7.5 × 10−7 m2/s

4.8For example, T (x, t) = (Ti − T∞)θ∗ + T∞ and Ti and T∞ are both constants, so that

∂T
∂x

=
Ti − T∞

L
∂θ∗

∂x∗
,

from which we see the Robbins boundary condition can be cast as

h
h

T (L, t) − T∞

i

= −k
Ti − T∞

L
∂θ∗

∂x∗

˛
˛
˛
˛
x∗=1

.

The final expression in Eq. (4.11) follows directly from arithmetic (c.f. the definition of the Biot number in Eq. (3.4)
on pp. 18).
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Biot number is Bi = 70 · 0.004/1.4 = 0.2. The time constant in the capacitance model of Eq. (4.2)
on pp. 29 can be calculated from the material properties and the geometric characteristics as

tc =
ρ (2 L · As) c

h · 2 As
=

ρ L c

h
=

2500 · 0.004 · 750
70

≈ 107.14 sec ,

where the volume, V , of the domain is 2L multiplied by the surface area of the face, and the total
surface area is twice the surface area of the face (note the left and right exposed faces, e.g. as shown
in Fig. 4.2).

Fig. 4.5 shows θ∗(x∗, t∗) for both the Robbins solution and the lumped capacitance model, the
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Figure 4.5. Comparison of lumped capacitance (zero–dimensional) model, Eq. (4.2), to

the unsteady Robbins solution, Eq. (4.13), for dimensionless temperature decay in a soda

lime plate glass pane of half–thickness L = 0.004m at a Biot number of Bi = 0.2 for several

time points.

latter obviously being independent of x∗, for several time points within the half–domain 0 ≤ x∗ ≤ 1.
Note the the zero–slope at x∗ = 0 for the Robbins solution, indicating a plane of symmetry (as the
boundary condition requires). The Biot number in this calculation is comparable to the commonly
recommended threshold maximum for the capacitance model of 0.1 (Bergman et al., 2011). Error
is highest at the outset and lessens with elapsed time, finally vanishing in the limit of thermal
equilibrium, at which point both models indicate θ∗ = 0. (In Fig. 4.5, the maximum error appears
in the curve for 10 seconds elapsed time. Specifically, the capacitance model over–predicts the
boundary temperature at x∗ = 1 by roughly 6%.) Larger errors would accompany larger values
of Bi as the gradients within the pane would increase, while those in the convection layer would
decrease. In essence, we would see a quantification of what Fig. 3.2 on pp. 17 represents only
qualitatively.

4.6. The Semi–Infinite Rayleigh Problem and the Similarity Technique

Another geometry which can be studied analytically is that of a semi–infinite solid, which serves
as a useful idealization for many problems, e.g. any body which is very “thick” (Fig. 4.6). This
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x

y

Figure 4.6. Semi–infinite domain: 0 ≤ x < ∞ and −∞ < y < ∞.

problem is described by the same governing law as the others, Eq. (4.3). Like the Robbins problem,
we will assume a uniform initial temperature, but the boundary conditions are special. We require
two conditions because of the second–order spatial derivative, but there is only one obvious location
at which to specify a boundary condition, i.e. x = 0. The second boundary condition depends upon
the following logical deduction: If the entire domain is initially at some constant temperature, say
T (x, 0) = Ti, and truly x → ∞, then it will always be possible to pick some x sufficiently large that
the temperature at that location will still be Ti, i.e. a location where boundary effects prescribed
at x = 0 have not yet been perceived. This idea is quantified as

T (x → ∞, t) = Ti .

For the surface x = 0, we can specify any of the 3 standard types of boundary conditions we have
studied, though a prescribed temperature, i.e. T (0, t) = T0, is a classical case having analogs in
other branches of mechanics.4.9 That is, the boundary temperature is suddenly changed to some
value T0.

The mathematical significance of this problem is that there is a very clever transform to simplify
the partial differential equation (PDE), Eq. (4.3), to an ordinary differential equation (ODE).4.10

Called a similarity transform, it effectively converts the problem of two independent variables, x
and t, into a problem of just one independent variable, the unified similarity transform variable ϕ
(Barenblatt and Zel’Dovich, 1972; Hansen, 1967). Such a transform may be possible for problems
that do not have naturally–identifiable scales, for example those having no clear length scale because
of infinite dimensions. Determining what the similarity transform variable is for a specific problem
is not trivial, nor may the parameter itself be unique. In this case, one parameter that works
is ϕ = x/

√
α t (see appendix D) and the solution can be shown to be a function of this single,

4.9 Eq. (4.3) on pp. 30 taken with the initial condition T (x, 0) = 0 and the boundary conditions

T (0, t) = T0 and T (x → ∞, t) = 0

has a well–known analog in fluid mechanics known variously as Stokes’ First Problem (Schlichting, 1979) and the
Rayleigh Problem (Panton, 1984). In the hydrodynamic version, a semi–infinite domain of fluid is initially at rest
when the boundary at x = 0 is suddenly given a specified in–plane velocity. Its solution describes the time–dependent
behavior of the flow as momentum diffuses in the x direction. This problem is discussed in numerous sources
(Batchelor, 1967). We shall adopt the Rayleigh moniker here, despite the fact that the heat conduction version is
not commonly referred to by either name.

4.10The technique we discuss here is only one such way of reducing a PDE to an ODE to simplify the solution
process. We will examine another approach based on integral transforms in Chapter 6 on pp. 63.
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combined variable, as

(4.15)
T (x, t) − T0

Ti − T0
= erf

(
x√

4 α t

)

,

where “erf” is the so–called Gaussian error function (Andrews, 1985). Heat transfer is then readily
derived by applying Fourier’s Law (see Eq. (4.16) in appendix D), so that, at the surface x = 0, we
find

(4.16) q
∣
∣
∣
x=0

=
k (T0 − Ti)√

π α t
·

4.7. Additional Remarks

Unsteady conduction heat transfer occurs in numerous physical situations. If the Biot number
is sufficiently small, the capacitance model can be used. It is mathematically straightforward and
has the additional convenience of being independent of any particular spatial coordinate system.
Otherwise, spatial gradients must be considered and the problem becomes more complicated. We
have shown a number of representative examples here, solved using the separation of variables and
similarity methods. There are many other scenarios for which similar unsteady, one–dimensional
dynamics can be examined, including those in other orthogonal coordinate systems. In fact, separa-
tion of variables has been proved to work for homogeneous problems over a wide range of coordinate
systems (Özişik, 1980). In cases where boundary conditions are steady and only the end behavior
is of interest, i.e. the steady temperature distribution after a very long time, the unsteady term can
simply be dropped, reverting the problem to simpler form.

We note finally that we have matched mathematical techniques and methods to specific prob-
lems based on some idea of simplicity and convenience. There are often several ways to solve a given
problem, for example the Rayleigh conduction in §4.6 can be solved using separation of variables
just as well (Özişik, 1980). All such problems can be solved with more general techniques, such as
we will examine in upcoming chapters.

4.8. Exercises

4.1
Show that the total heat energy tranferred over an elapsed time period 0 → t in a zero–
dimensional unsteady conduction process is Q = ρ V c θ0

(

1 − e−t/tc
)

.

4.2
The Rayleigh problem can be solved with the so–called similarity method using the trans-
formed similarity parameter ϕ = x/

√
t . It has been asserted that a successful similarity

transform is not necessarily unique. Confirm this claim by solving the Rayleigh prob-
lem using the alternative dimensionless parameter ϕ = x/

√
α t and demonstrate that the

solutions obtained using the two different parameters are in fact one and the same.
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4.3
The Rayleigh problem for T (x, t) in 0 ≤ x < ∞ for t ≥ 0 is defined as

∂T

∂t
= α

∂2T

∂x2
T (x, 0) = Ti T (0, t) = T0 T (x → ∞, t) = Ti

and this problem can, in fact, be solved with the so–called similarity method using the
transformed similarity parameter ϕ = x/

√
t . In particular, this transform reduces the

PDE to an ODE and collapses the 2 boundary conditions for x and 1 initial condition for
t into just 2 boundary values for ϕ:

d2T

dϕ2
+

1

2 α
ϕ

dT

dϕ
= 0 T (ϕ = 0) = T0 T (ϕ→ ∞) = Ti .

Show that the similarity approach is not applicable to the associated Dirichlet problem,
where the boundary condition for x → ∞ is moved to a finite location x = L, i.e. T (L, t) =
Ti.

4.4
DNA sequencing by the “di–deoxy” method depends on the con-
cept of molecular sieving of charged DNA fragments through an
electrically–conducting gel. One of the primary design problems of
such devices is that the associated heat generation, q̇, will break the
molecular bonds (destroying the molecules) if temperature, T , be-
comes sufficiently high. The gel is defined in 0 ≤ x ≤ L, where L is
very small compared to the other 2 dimensions, so the model of 1–D
conduction in the x direction is applicable, i.e.

ρ c
∂ T

∂ t
= q̇ + k

∂2 T

∂ x2
,

where c, ρ, and k are heat capacity, density, and conductivity, re-
spectively. Here, we will consider the idea of modifying a device by
adding coolant jackets that can precisely control the temperatures
at the gel boundaries.

co
ol

an
t

0

x

x 
=

 L

co
ol

an
t

gel

x 
=

Taking room temperature as a reference, Tr = 0, consider the case where the cooling jackets
are set so that the boundary temperatures on the gel are Tc below room temperature.
Determine T for steady–state operating conditions if the maximum temperature in the
gel is not to exceed Tc above room temperature. Give the answer as a function of the
parameters Tc and L and the coordinate x.

4.5
Referring to exercise 4.4: At a reference time t = 0, the device power is cut, whereby
q̇ = 0 and the coolant jackets are immediately removed, so that the boundaries at x = 0
and x = L are simultaneously reset to room temperature, T = 0. Determine the transient
temperature decay T (x, t) within the gel for t ≥ 0 and, in particular, simplify the mode
coefficients, Cn, to the greatest degree possible.



CHAPTER 5

Multi–Dimensional Steady Conduction: Laplace’s Equation

The general form of conservation of energy when heat transfer occurs exclusively by
conduction was derived in Eq. (2.16) on pp. 12. We observed that if thermal conductivity

is constant, conditions are steady, and there is no heat generation, then the equation simplifies
to Laplace’s equation, ∇2T = 0, which was written in long–hand in rectangular coordinates as
Eq. (2.19). This equation can be expressed in many other coordinate systems, via the associated
forms of the ∇ operator (Panton, 1984). The general expression in vector notation implies that
T = T (x, y) if the dependence is two–dimensional and T = T (x, y, z) if it is three–dimensional.

The Laplace equation describes dynamics that apply over a broad spectrum of physical prob-
lems, close thermofluid relatives being those of uni–directional flow and potential flow.5.1 Within
the discipline of conduction, there are an enormous number of practical problems governed by
this equation, especially when considered in light of combinations of various possible boundary
conditions. As with other special cases discussed earlier for conduction, we will examine several
representative problems. Although multi–dimensional steady problems are physically of a different
kind than those discussed in Chapter 4 (one–dimensional unsteady conduction), we can still apply
the same mathematical tools to many of them here, chiefly separation of variables (SOV).

In §4.3, we had passingly commented that separation of variables is well–suited to homogeneous
problems. Here, we shall see it is also readily applied to multi–dimensional problems having non–
homogeneous boundary conditions in one of the coordinate directions, the technique being very
much like what we saw in Chapter 4. We shall furthermore demonstrate a generalization of the
concept of superposition whereby SOV can be extended to non–homogeneous boundary conditions
for more than one coordinate direction. Here, SOV starts to show its limitations in terms of
practicality, suggesting the need for more general methods that will yet be introduced.

5.1. The Two–Dimensional Dirichlet Problem

We will start this discussion with the most fundamental two–dimensional problem, T = T (x, y),
where the boundary conditions are all of the first type, i.e. Dirichlet (Fig. 5.1). Besides examining
the basic configuration, we will contrast two versions of it: one where the length dimensions, L and
H, are comparable, and another where H ' L. Note from Fig. 5.1 that for the latter case, we

5.1Uni–directional flows, also known as parallel flows, are those in which 2 of the 3 velocity components are zero,
meaning the non–linear terms of the Navier–Stokes equations vanish, c.f. Eq. (7.15) on pp. 88. If the pressure gradient
is also zero and the flow is driven by boundary motion, then the velocity distribution is governed by Laplace’s equation
(Wang, 1991). The two–dimensional Couette problem is perhaps the best–known example and solutions for numerous
configurations have been derived (e.g. Wendl and Agarwal, 2000). “Potential flow” is the common designation of
flows that are both inviscid and irrotational. Here, the primitive variables can be replaced by the stream function
and the velocity potential function. It can be shown (e.g. Panton, 1984) that motion is then governed by a pair of
Laplace equations for these respective entities.

40
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T = F(x)
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Figure 5.1. Representative two–dimensional steady Dirichlet conduction problem in a

rectangle.

specifically frame the boundary conditions so that conduction is driven primarily along the larger
dimension, i.e. in the y direction. In other words, this is one of the exceptions of the discussion we
had in §3.1 on pp. 16 regarding the one–dimensional model (c.f. Fig. 3.1).

As mentioned, the two–dimensional problem is governed by Laplace’s equation, as described
for this case by Eq. (3.1) on pp. 16, and repeated here for convenience:

(5.1)
∂2T

∂x2
+

∂2T

∂y2
= 0 .

Let us consider the problem shown in Fig. 5.1, i.e. where

(5.2) T (0, y) = T (L, y) = T (x,H) = 0 and T (x, 0) = F (x) .

Although Laplace’s equation, as exemplified by Eq. (5.1), is a fundamentally different type as com-
pared to the one–dimensional unsteady equation, e.g. Eq. (4.3) on pp. 30,5.2 the solution procedure
is very similar (see §E.1 in appendix E on pp. 151). We find

(5.3) T (x, y) =
2

L

∞
∑

n=1

(
1

sinh(ζnH)

∫ L

0
F (x) sin(ζnx) dx

)

sin(ζnx) sinh
[

ζn(H − y)
]

,

where the eigen–values are explicit: ζn = nπ/L. While the solution is formally valid for any
boundary specification F (x), it may not be trivial to evaluate the integral if F (x) is sufficiently
complex.

As mentioned above, an interesting variation of this problem is obtained by taking H ' L,
which we model by changing the relevant boundary condition in Eq. (5.2) to

(5.4) T (x, y → ∞) = 0 .

In other words, we move the top boundary in Fig. 5.1 such that the domain becomes semi–infinite
in the y direction. Recall that we had invoked a similar specification in the Rayleigh problem (§4.6),
which we justified by a logic argument. Eq. (5.4) requires no such argument — it is obvious to
observe simply that the top boundary, which is homogeneous, is simply moved “very far away”.

5.2PDEs can be further classified by type, Eq. (5.1) being an elliptic PDE and Eq. (4.3) being a parabolic one.
Such classification has implications in the formal theory of differential equations, but will not contribute significantly
to our more practical focus on problem solving. See, e.g. Hellwig (1964), Hildebrand (1976), or Carrier and Pearson
(1976).
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This variation of the problem is described in appendix E, §E.2 on pp. 153, the solution being

(5.5) T (x, y) =
2

L

∞
∑

n=1

( ∫ L

0
F (x) sin(ζnx) dx

)

sin(ζnx) e−ζny ,

where the eigen–values are the same as for the finite version of the problem, ζn = nπ/L.
Note that neither of the solutions in Eqs. (5.3) and (5.5) depends on any material properties,

though they are both a function of geometric properties. One might be tempted to conclude that
this is a consequence of the fact that Laplace’s equation (5.1) also does not contain any material
properties, and therefore that this is a general property of steady Dirichlet problems. But, this is
not the case. It holds here only because both the Laplace equation and the boundary conditions
do not depend upon material properties. It is easy to see, for example, that the temperature
distribution will involve k if any of the boundary conditions are of the second or third kind (c.f.
§2.5 on pp. 13).

We allowed for an arbitrary boundary condition, T (x, 0) = F (x), in this problem, however,
suppose we focus on a special case of a constant boundary temperature, T (x, 0) = T0, for the two
configurations. We can perform the boundary integral (see §E.3 on pp. 154), finding

(5.6) T (x, y) =
4 T0

π

∞
∑

n=1,3,5,...

1

n sinh(ζnH)
sin(ζnx) sinh

[

ζn(H − y)
]

,

and

(5.7) T (x, y) =
4 T0

π

∞
∑

n=1,3,5,...

1

n
sin(ζnx) e−ζny ,

for finite and semi–infinite geometries, respectively. An interesting question is how large H must
become in order that Eq. (5.6) converges to Eq. (5.7). We answer this question in this particular
case by comparing the temperature profile at a specific height, y = 0.1 m, in a billet of width
L = 0.5m and having a variable height, H (Fig. 5.2). The bottom boundary is set to T (x, 0) = 30C.

o
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y base  temperature  = 30

0.1

m0.5L =

C

0.15H =

H / L = 0.3 0.4 0.8 o

Figure 5.2. Steady Dirichlet solution for 4 different aspect ratios of a billet, including

the semi–infinite case (rightmost diagram). Each configuration has a width of L = 0.5 m,

a constant base temperature of T (x, 0) = 30 C, and homogeneous temperatures on all other

boundaries. We compare the temperature distribution for each at a location y = 0.1 (the

common dashed line).

Intuitively, we see that the top boundary should have a decreasing influence on T (x, 0.1) as it is
moved further away. In other words, we would expect the temperature profile to converge to some
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particular limiting form as H/L becomes sufficiently large. How large must this be? Fig. 5.3 shows
profiles for several H/L ratios, 0.3, 0.4, 0.8, and ∞, for which the profile appears to converge
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Figure 5.3. Temperature profiles at y = 0.1 m for parameters given in Fig. 5.2.

surprisingly quickly, reaching a maximum of around 19 C at midline. All profiles are symmetric
about x = 0.25, of course, because boundary conditions at x = 0 and x = 0.5 are the same. The
convergence rate is a little less striking if we consider the fact that we are evaluating the profile
fairly close to the non–homogeneous boundary at the base. Given the profile at y = 0.1, it might
make more sense to report the H/y ratios, which are 1.5, 2, 4, and ∞, respectively. We could choose
other y locations at which to do this comparison, and the profiles and the convergence would be
commensurately different.

One aspect that is qualitatively different for configurations that have multiple space dimensions
is that it is more difficult to visualize the resulting solutions. For example, for 1–dimensional
unsteady problems, it is a simple matter to plot temperature profiles at various times and this
gives a very informative synopsis of the dynamics (c.f. Fig. 4.4 on pp. 32). However, 2–dimensional
configurations can still be well–represented in graphical form by contour or surface plots. For
example, Fig. 5.4 shows T (x, y) represented as a surface for the finite domain solution, Eq. (5.6),
having T (x, 0) = 30 C and H = L = 0.5 m. Such visualization is obviously very useful for quickly
seeing where the interesting trends within the domain are located. For example, it is clear that
there is substantial heat transfer in the x direction near the base.

5.2. Some Numerical Issues

There are also issues that relate to the numerics of evaluating exact solutions, including those
discussed in this section. Although there is no widely–accepted and precise nominal distinction, we
emphasize the difference between the numerical methods for managing these fairly straightforward
contingencies versus those for solving the governing conservation equations themselves, e.g. finite–
volume algorithms for the Navier–Stokes equations (Tannehill et al., 1997), which are enormously
more sophisticated. The latter, known by various names, including “computational fluid dynamics”
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Figure 5.4. T (x, y) represented as a surface for a square domain of edge length 0.5 m

having a constant base temperature of 30 C with remaining boundaries held at 0 C. Terms

were summed at each point until the fractional change for each additional term fell below

10−6.

and “computational fluid mechanics and heat transfer” (c.f. §1.5 on pp. 5), are founded upon making
suitable approximations to the differential terms within the equations and then solving the resulting,
invariably large system of algebraic equations numerically. These topics are far beyond our current
scope and are not discussed further.

5.2.1. Floating Point Arithmetic. An equation like (5.7) for the semi–infinite domain poses
no particular difficulty. The trigonometric “sine” fluctuates between −1 and 1, while the exponen-
tial and n−1 terms both decay toward 0 (at different rates). In particular, the convergence of
this series can be very fast, depending partially upon y, since the exponential can decay very
quickly. Consequently, it appears there are no serious numerical issues to consider in evaluating
this expression.

Consider now the related solution for the finite domain, Eq. (5.6). The “hyperbolic sine”, sinh,
is an increasing function and can overflow when the series does not converge fast enough (Forsythe
et al., 1977).5.3 For example, Table 5.1 shows the growth of the sinh term in the denominator
of Eq. (5.6) for selected n for the square finite domain, i.e. H/L = 1. In fact, Eq. (5.6) requires
taking the ratio of two sinh terms. If a large number of terms is indeed required for a particular
set of parameters, one must use more sophisticated methods. For example, when the arguments
become large (because n becomes large in the summation), one possibility is to simply substitute
the limiting form sinhϕ → eϕ/2 when ϕ ' 1, as can be seen from the identity in Eq. (3.14)
on pp. 21. The advantage is that the ratio of these two problematic large numbers can then

5.3Numerical overflow is the condition in which a mathematical number is too large to be represented within the
floating–point register of a particular computational device.
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Table 5.1. Approximate growth of sinh term for selected n in Eq. (5.6) when H = L

n sinh(nπ) n sinh(nπ)

1 11.54874 121 6.145 × 10164

21 2.243 × 1028 141 1.191 × 10192

41 4.349 × 1055 161 2.310 × 10219

61 8.432 × 1082 181 4.478 × 10246

81 1.635 × 10110 201 8.682 × 10273

101 3.169 × 10137 221 1.683 × 10301

be evaluated algebraically instead of numerically for those terms where numerical overflow would
otherwise occur. Specifically,

sinh
[

ζn(H − y)
]

sinh(ζnH)
→

eζn(H−y)

eζnH
= eζn(H−y)−ζnH = e−ζny ,

which is again numerically well–behaved. The astute reader will immediately notice that we’ve
actually done little more than to re–derive the resulting form for the semi–infinite case! Except,
here we used a limiting argument of the form that observed e−ϕ → 0 for ϕ ' 1 in the identity
in Eq. (3.14). Other cases may not be so straightforward, requiring perhaps more sophisticated
asymptotic approximations or extended precision floating–point calculations using special numerical
libraries.

An interesting example of the number of terms required for convergence is given by the case we
had just shown in Fig. 5.4. That is, Fig. 5.5 plots the number of terms required to evaluate T (x, y) at
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Figure 5.5. Number of terms required to evaluate T (x, y) in Fig. 5.4.
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each (x, y). As we might have expected, it appears that locations having higher gradients generally
require more terms. Note also that there are some (x, y) locations near the y = 0 boundary requiring
more than 70 terms, suggesting sinh values on the order of 10100 (Table 5.1). In this particular
plot, these points are located along the line y = 0.01. Had we attempted to evaluate the solution
even closer to the base, say at y = 0.001, the number of terms would have been commensurately
larger. Finally, the numbers of terms precisely at the boundaries are shown as zero because values
of T are known a priori at these locations.

5.2.2. Convergence Involving Periodic Functions. We observed above that the trigono-
metric sine poses no floating–point anomalies, yet it still has its own issues related to its periodicity
and how this property can affect convergence, i.e. the point at which one decides that sufficient
terms have been summed to give an answer of suitable accuracy. Consider, for example, algo-
rithm 5.1 to evaluate the finite domain solution in Eq. (5.6) that we have been discussing and
which is plotted in Fig. 5.4 for a specific parameter set. This algorithm is essentially a simple

Algorithm 5.1 Simple Algorithm for Evaluating Eq. (5.6)

specify convergence threshold, ε, suitably near 0
specify point at which to evaluate solution (x, y)
specify dimensions of the domain, H and L
specify constant non–homogeneous boundary temperature, T (x, 0) = T0

set (n, T, Told) = (1, 0, 0)
repeat

Told = T
T = T + sin(ζnx) sinh[ζn(H − y)]/[n sinh(ζnH)]
n = n + 2

until |T − Told| ≤ ε
print T

loop that runs until the contribution of the current term falls below a user–defined convergence
threshold of ε. This sort of convergence test is quite common,5.4 but in this case, there is a subtle
omission that leads to pre–mature truncation of the series, i.e. a false convergence, at certain (x, y)
locations in the domain. To understand the problem and ascertain a solution, we must consider
the periodic nature of sin(ζnx) in Eq. (5.6) more closely.

In essence, if a particular term in the summation happens to coincide with conditions for which
sine vanishes because it happens to cross the 0–axis for that particular combination of parameters,
i.e. sin(ζnx) = 0, then it will appear to the simple ε test in algorithm 5.1 that convergence has been
obtained, even though it may not have been. See an actual example of this phenomenon in Fig. 5.6
for the case already examined in Fig. 5.4. This plot shows the convergence process for two points
that are very close to one another in the domain: (0.01, 0.01) and (0.02, 0.01). Notice that sin(ζnx)
is never zero for x = 0.01, so the pre–mature convergence phenomenon never occurs at this point.
In essence, the period of this function is such that there is never an eigen–mode for which ζnx is

5.4It appears, for example, to have been used by Zill and Cullen (2000), whose Fig. 13.14 shows the jagged
surface near the non–homogeneous boundary that is consistent with the type of numerical anomaly we describe in
this section.
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Figure 5.6. Convergence study of T (0.01, 0.01) and T (0.02, 0.01) for the finite–domain

Dirichlet configuration plotted in Fig. 5.4. The dashed curves represent sin(ζnx) with cir-

cles and squares denoting the values at the discrete, odd mode numbers, as specified in

Eq. (5.6), for x = 0.01 and x = 0.02, respectively. Solid curves show the convergence to the

two respective temperatures, normalized as T (x, 0.01)/T (x, 0), with asterisks indicating true

convergence. Potentially pre–mature convergence for x = 0.02 is noted.

a multiple of π; Its discrete values always “hop over” the zero point. Consequently, T (0.01, 0.01)
converges using algorithm 5.1 without any special modification.

Matters are clearly quite different for x = 0.02, where sin(ζnx) vanishes at n = 25 after having
summed (n + 1)/2 = 13 terms. As written, algorithm 5.1 will halt at this point. Notice that the
corresponding temperature, T (0.02, 0.01), has not yet converged, being about 3.5% higher than its
correct value. Yet, now that the problem has been recognized, amending the algorithm procedurally
is fairly straightforward. We could, for example, simply add a second test which would not allow the
algorithm to halt if | sin(ζnx)| is below a second user–chosen convergence threshold (algorithm 5.2).
With such an extra condition, the loop would always be forced through at least one extra iteration,

Algorithm 5.2 Improved Algorithm for Evaluating Eq. (5.6)
:
:
repeat

:
:

until |T − Told| ≤ εa and | sin(ζnx)| ≥ εb
print T

so as never to terminate at a mode for which sine vanishes. Note in Fig. 5.6 that there are 3 such
out–of–bounds points that are forcibly skipped for x = 0.02 on the way to proper convergence.
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Is there are more systematic way to characterize this problem, in particular when it occurs
and the degree to which it affects the accuracy of T ? The answer is affirmative, of course. We
have already observed in vague terms that this phenomenon is a function of periodicity. Fig. 5.6
demonstrates that it is specifically a function of the half–period, i.e. the distance between every
successive crossing of the 0–axis. Given the mode number, n, as the independent variable, the
half–period of sin(n π x/L) is5.5

δ

2
=

1

2

2 π

π x/L
=

L

x
·

Because n can only take odd integer values in Eq. (5.6), this phenomenon will exist wherever the
half–period L/x is an odd integer. For example, for x = 0.02 and L = 0.5 in the above example,
we have L/x = 0.5/0.02 = 25 and the sine term is

sin
( n π x

L

)

= sin
( n π

25

)

,

whereby this term vanishes at n = 25, 75, and 125, as shown in Fig. 5.6. Note that, while the term
would also vanish for, e.g. 50 and 100, those numbers are even and are therefore not part of the
set of eigen–modes in this particular solution, and therefore not indices in the summation. This
observation also explains why the location x = 0.01 does not experience this numerical anomaly.
Because its associated half–period is L/x = 0.5/0.01 = 50, there will never be an n that is both a
multiple of 50 and odd.

The above discussion actually does not tell the whole story in that there are a additional sets
of x–values where the first 0–axis crossings will occur at multiples of x that result in exactly a half
period. Perhaps the easiest way to visualize this phenomenon is by tabulating eigen–functions along
with their interior zeroes and where the consequent critical values of x reside (Table 5.2). Take

Table 5.2. Interior zeroes and critical values of x for first several odd modes.

n sin(nπx/L) max multiples of π that can give critical values of x that result in

(odd) x = L zeroes in the interior x < L zero with duplicates canceled

1 sin(1πx/L) π — —

3 sin(3πx/L) 3π π, 2π L
3 , 2 L

3

5 sin(5πx/L) 5π π, 2π, 3π, 4π L
5 , 2 L

5 , 3 L
5 , 4 L

5

7 sin(7πx/L) 7π π, 2π, 3π, 4π, 5π, 6π L
7 , 2 L

7 , 3 L
7 , 4 L

7 , 5 L
7 , 6 L

7

9 sin(9πx/L) 9π π, 2π, 3π, 4π, 5π, 6π, 7π, 8π L
9 , 2 L

9 ,!
!!3 L
9 , 4 L

9 , 5 L
9 ,!

!!6 L
9 , 7 L

9 , 8 L
9

n = 9, for example. The eigen–function is sin(9πx/L) and the maximum value of the argument
is 9π at the boundary, x = L. However, the function can be zero in the interior of the problem,
0 < x < L, if its argument is any lower multiple of π, i.e. π, 2π, 3π, etc. This will result in
pre–mature convergence at n = 9 and the values of x that result in this condition are easily found

5.5A function having the property f(n) = f(n + δ) for all real values of n is periodic. The period of sin(ϕn) can
be demonstrated by a simple logical argument (Combellack, 1962). If δ represents the period, then by definition it
must be equal to the smallest value for which sin(ϕn) = sin[ϕ(n + δ)] = sin(ϕn + δϕ). Of course, 2π is the period of
the basic sine function, i.e. sin ξ = sin(ξ + 2π). Given the correspondence between ϕn and ξ, we conclude δϕ = 2π,
meaning the period is δ = 2π/ϕ.
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algebraically as L/9, 2L/9, etc. Notice that there will be various duplicated values for higher modes,
for example L/3 and 2L/3 in n = 3 are duplicated for n = 9.

The other aspect we can readily deduce is the magnitude of this error, if it is allowed to occur.
In particular, series truncation occurs at the first 0–axis crossing, i.e. n = L/x, for example as
shown in Fig. 5.6 for n = 25. Given that a total of (n+1)/2 will have been summed, the magnitude
of the error decreases with x. Clearly, for example, x = L/3 and x = L/5 would give the largest
errors, with only (3 + 1)/2 = 2 and (5 + 1)/2 = 3 terms summed, respectively (Table 5.2). For
very small x, the minimum number of terms summed may eventually exceed those required for
actual convergence, in which case the error would not arise, even under our näıve convergence test
in algorithm 5.1.

A few final points are worth mention. First, it should be clear that the phenomenon discussed
here may apply to other series and should be considered especially when any periodic or quasi–
periodic functions are involved. Such would include, for example, the family of Bessel functions
of the first kind (Andrews, 1985). Second, we do not include L/1 in any of the above discussion,
because this location is specified by the boundary condition. Third, many problems, including
the one discussed above are symmetric about a mid–line or a mid–plane,5.6 and this is reflected in
Table 5.2 in the symmetry of values about x = L/2.

5.3. Uniqueness of the Dirichlet Solution

A slightly more esoteric, but extremely interesting question regarding differential equations is
whether a solution, presuming one can be derived, is actually unique. We have already encountered
cases that demonstrate the answer is “not necessarily”. For example, using the methods shown in
§B.2 on pp. 135, it is easy to show that the system

Ψ ′′(x) + ζ2Ψ(x) = 0 , Ψ(0) = 0 , Ψ(1) = 0

has an infinite number of non–trivial solutions of the form Ψ = C sin(nπx), where ζ = nπ, C is
a constant, and n ∈ {1, 2, 3, . . . }. This simple example is especially intriguing since the problems
we have examined thus far for Laplace’s equation involve very similar sub–problems of this type.
Such questions of uniqueness are an important topic in the broader theory of differential equations
(Hellwig, 1964).

Here, we will introduce some concepts related to uniqueness and show that the above solutions
for the two–dimensional Dirichlet problem are indeed unique. Such proofs are often based on the
idea of presuming at the outset that 2 different solutions actually exist and then demonstrating by
some means that these solutions must actually be one and the same — and therefore there really

5.6Symmetry about the mid–line x = L/2 for Eq. (5.6) is suggested by Fig. 5.4. However, the symmetry question
can be proved formally using the “angle–difference” relationship for sine (Beyer, 1984). That is, the problem is
symmetric if

sin
“ n π x

L

”

= sin

„
n π (L − x)

L

«

= sin
“

n π − n π x
L

”

= """"#0
sin(n π) cos

“ n π x
L

”

− cos(n π) sin
“ n π x

L

”

,

the last expression being a consequence of the angle–difference rule. Note the cancellation for the sine of multiples
of π. Since cos(n π) = (−1)n, the right hand side simplifies to − (−1)n sin(n π x/L). Noting that n is always odd in
Eq. (5.6), there are always an even number of negative signs in this expression, which mutually cancel one another,
leaving the right–hand–side identically sin(n π x/L), which proves the equivalence.
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is only one unique answer.5.7 We will frame the uniqueness proposition in the context of the finite
Cartesian configuration above, although it will be clear in the detailed derivation in §E.4 pp. 155
that it applies in general to the Dirichlet problem, irrespective of geometry.

The full proof is shown in §E.4 but can be sketched, as follows. Start by assuming that two
different solutions exist to this problem, T1(x, y) and T2(x, y).5.8 Each of these satisfies Laplace’s
equation (5.1), as well as the boundary conditions, Eq. (5.2). Now define θ = T1−T2 and note that
the fact that we have defined T1 -= T2 also implies θ -= 0, if the 2–solution proposition is true. Note
that θ itself is also a solution to a Dirichlet problem. To wit, it satisfies both Laplace’s equation

∇2θ = ∇2
(

T1 − T2

)

= ∇2T1 − ∇2T2 = 0 − 0 = 0

(because T1 and T2 each satisfy Laplace’s equation) and it satisfies the boundary conditions

θ(0, y) = T1(0, y) − T2(0, y) = 0 − 0 = 0

θ(L, y) = T1(L, y) − T2(L, y) = 0 − 0 = 0

θ(x,H) = T1(x,H) − T2(x,H) = 0 − 0 = 0

θ(x, 0) = T1(x, 0) − T2(x, 0) = F (x) − F (x) = 0 .

The last statement is particularly important, as it fully establishes that θ = 0 around the entire
boundary of the problem. The proof then uses Green’s theorem to show that ∇θ = 0 within the
domain by virtue of the very fact that θ = 0 identically on the boundary. One can then deduce
from ∇θ = 0 that θ itself must be a constant. The boundary value of θ = 0 is invoked once
more: this constant must be zero, whereby θ = 0 identically within the domain itself. Finally,
since θ = T1 − T2, we are left with the conclusion that T1 = T2, i.e. these two solutions, initially
presumed to be different, can only be the same.

5.4. Two–Dimensional Conduction Having Mixed Boundary Conditions

Let us now consider a variation of the two–dimensional problem, T = T (x, y), where the bound-
ary conditions are of a mixed type, specifically a simple combination of Dirichlet and Neumann
(Fig. 5.7). Note in referring back to Fig. 5.1, that we have also switched the top and bottom bound-
aries (turning the problem “upside down” as it were) to illustrate a few additional mathematical
implications.

If the vertical boundaries are very well insulated, they can be taken as essentially adiabatic, so
that heat transfer at x = 0 and x = L is zero. Fourier’s Law immediately implies the 2 associated
boundary conditions are

∂T

∂x

∣
∣
∣
∣
x=0

=
∂T

∂x

∣
∣
∣
∣
x=L

= 0 ,

5.7This idea can be illustrated by an elementary algebra problem, say ϕ + 3 = 5, for which it is readily shown
that ϕ = 2. However, this does not formally prove that there is only one solution for this problem, even though the
equation is simple enough to see by inspection that no other value would satisfy it. To prove the proposition, assume
there are at least two different solutions, ϕ and η, so that both ϕ + 3 = 5 and η + 3 = 5. However, by the transitive
property of equality, ϕ + 3 = η + 3, from which we immediately conclude ϕ = η. That is, the two assumed solutions
are actually one and the same.

5.8One of these could be the solution derived above, Eq. (5.3), but the proof does not actually depend on assuming
specific forms of T1 and T2 — only that there are 2 such solutions and that they are different.
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Figure 5.7. Two–dimensional steady conduction in a rectangle having adiabatic side

(vertical) boundaries and Dirichlet conditions at the horizontal boundaries.

which are Neumann boundary conditions (c.f. Eq. (2.23) on pp. 14). We again let conduction be
driven by a primary temperature gradient in the y direction, i.e.

T (x,H) = F (x) and T (x, 0) = 0 ,

which are Dirichlet boundary conditions, although reversed with respect to the previous problem,
as mentioned.

Physically speaking, this configuration seems only marginally different from the one we just
examined. The mathematically interesting aspect of this problem is how the Neumann boundary
conditions affect the solution. In short, we find that ζ0 = 0 is a new eigen–value, which rounds–out
the set of positive eigen–values, ζn = nπ/L, n ∈ {1, 2, 3, . . . } we have found for other problems.
Its corresponding eigen–mode is governed by independent ODEs and results in a conspicuously
independent addition to the general solution

(5.8) T (x, y) = C0 y +
∞
∑

n=1

Cn cos(ζnx) sinh(ζny) ζn =
n π

L
·

(5.9) Cn =
2

L sinh(ζnH)

∫ L

0
F (x) cos(ζnx) dx .

(5.10) C0 =
1

H L

∫ L

0
F (x) dx

whose derivation is shown in full in appendix F on pp. 158.
There are several interesting aspects of this solution. First, it is clear that the adiabatic (Neu-

mann) boundary conditions are identically satisfied. The first partial derivative in x is

∂T

∂x
= −

∞
∑

n=1

Cn ζn sin(ζnx) sinh(ζny) .

Evaluating this expression at x = 0 and x = L indicates an infinite summation of terms, each
multiplied by sin 0 and sin(nπ), respectively, the latter vanishing because its argument is always a
multiple of π.

Secondly, recall that we examined the case of the constant non–homogeneous boundary temper-
ature for the Dirichlet problem in §5.1, with an interesting instance of T (x, y) plotted in Fig. 5.4.
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However, the solution for the special case of constant boundary condition for this problem may be
a little surprising. If we take F (x) = TH , we find

Cn =
2

L sinh(ζnH)

∫ L

0
TH cos(ζnx) dx =

2 TH

L sinh(ζnH)

∫ L

0
cos(ζnx) dx = 0

C0 =
1

H L

∫ L

0
TH dx =

TH

H L

∫ L

0
dx =

TH (L − 0)

H L
=

TH

H
·

Note that we’ve exploited the orthogonality of the cosine function to determine Cn = 0 without
actually performing the integral.5.9 Clearly, the series vanishes, leaving only the “zero–mode” term,
with the result

T (x, y) → T (y) =
TH

H
y ,

which is nothing more than the elementary solution for 1–dimensional steady conduction.5.10 We
may not have anticipated this result, meaning that the math would have shown us something
that our intuition did not detect. In retrospect, however, the reduction of T (x, y) → T (y) does
make sense. The Neumann conditions require independence of x at the vertical boundaries. If the
conditions at y = H are themselves independent of x, then there appears to be no mechanism to
create any temperature variation in x.

Let us now examine a problem more like what might occur in a real–world application. Fig. 5.8
shows a rectangular conduction domain of dimensions L × H = 0.1 × 0.05 (meters) having 2 heat

= 0

conduction  domain

= 0.1L

H= 0.05

well−insulated

heat  sources
y
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x
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T

Figure 5.8. Electro–mechanical instrument containing a conduction domain with 2 heat–

generating elements mounted on top (left panel) and a corresponding physical model showing

the approximate boundary effect of these elements as two half–sine waves (right panel).

generating elements mounted on the top. If these elements produce heat at a steady rate and if
the insulation on the vertical boundaries is very effective, then the solution in Eqs. (5.8) to (5.10)
is a good model of this problem, provided we can assign reasonable estimates to the temperature
distributions imposed at the top boundary. For this example, let us assume each element creates
a sine–type distribution, so that the boundary temperature at y = H is given by the piece–wise

5.9See Eq. (F.7) on pp. 161.
5.10See e.g. footnote 3.2 on pp. 18 or introductory texts (e.g. Holman, 2010; Bergman et al., 2011).
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function

(5.11) F (x) =



















0 : 0 ≤ x < 0.02

50 sin
[

10 π(5 x − 0.1)
]

: 0.02 ≤ x < 0.04

0 : 0.04 ≤ x < 0.05

20 sin
[

50 π(2 x − 0.1)
]

: 0.05 ≤ x < 0.06

0 : 0.06 ≤ x ≤ 0.1 ,

where the units are in degrees Celsius. Because F (x) is rather more complicated than examples we
have used previously, the evaluations of C0 and the Cn are also more complicated. The work and
subsequent results are shown in detail in §F.3 on pp. 162.

A surface plot is useful once again for visualizing the temperature distribution, T (x, y), in the
configuration shown in Fig. 5.8 and we write a summation loop, similar to algorithm 5.2. That is,
we are conscious that there is a periodic function, here being cosine in Eq. (5.8), and we take steps
to prevent the numerical artifact of pre–mature convergence from occurring (c.f. §5.2.2 on pp. 46).
We are also careful to assign T at any points on the vertical edges, i.e. at T (0, y) and T (0.1, y), to the
same value as its adjacent neighbor in the interior, i.e. T (∆x, y) and T (0.1 − ∆x, y), respectively,
where ∆x is the discrete resolution of our plot in the x direction. In this way, we accurately
represent the adiabatic (Neumann) boundary condition. Fig. 5.9 shows the resulting temperature
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Figure 5.9. T (x, y) plotted as a surface for the mixed boundary condition problem in

Fig. 5.8. Here, ∆x = 0.00125 and ∆y = 0.001.

distribution, T (x, y).5.11 Notice how the heat flow “spreads out” in the x direction as one moves

5.11We do not show the plot of the number of terms necessary for convergence in this case. It looks roughly
like its counterpart for the Dirichlet problem in Fig. 5.5 on pp. 45 in that numbers are relatively low in much of the
domain, but increase dramatically near the non–homogeneous boundary.
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from the top boundary at y = 0.05 into the interior. The plot also correctly depicts the adiabatic
boundary conditions, ∂T/∂x = 0, as we just specified.

Like the Dirichlet problem in §5.1, the mixed problem, as we have specified it here, does
not depend upon the thermal conductivity, k. Conversely, the heat transfer depends upon k via
Fourier’s Law and, though the effect is somewhat subtle on the surface plot in Fig. 5.9, it should be
noted that there is a continuous gradient in the y direction, which might be best discerned by the
arcing shape of the edge at x = 0. Given all these observations, it seems that a good qualitative
summary of this configuration is that heat diffuses outward from the somewhat concentrated heat
energy sources at the top boundary, but the adiabatic side boundaries limit the primary conduction
to the y direction.

Of course, it is possible to gain even more insight into this problem by developing its math-
ematical description a little further. For example, it is a fairly straightforward formality at this
point to derive ∂T/∂y from Eq. (5.8), and therefore to write the heat flux in the y direction directly
from Fourier’s Law as

(5.12) q′′y = q′′y(x, y) = − k
∂T (x, y)

∂y
= − k

[

C0 +
∞
∑

n=1

Cn ζn cos(ζnx) cosh(ζny)

]

where again ζn = nπ/L. One could easily plot values as a surface, the matter being clear from
Eq. (5.12) that q′′y ∝ k and that the real details of the distribution are still encoded by T , which

is independent of k for this particular case.5.12 However, we are chasing a slightly more interesting
finding with this line of thought.

Suppose we now think about the domain in Fig. 5.7 (pp. 51) in a control volume sense to examine
energy conservation in the finite, macroscopic sense. We can observe that, because the vertical sides
are perfectly insulated, the rate at which heat enters the volume from the top boundary at y = H
must be equal to the rate at which it leaves the other side at y = 0, a situation quite analogous,
for example, to the conservation of mass for incompressible flow between two locations in a pipe
(Munson et al., 2006). We can pick a horizontal line at some given y, integrating Eq. (5.12) for
x : 0 → L to find the total rate at which heat crosses that line (Fig. 5.10).5.13 The values should

dxx

L0

Figure 5.10. Integrating heat flux in Eq. (5.12) over an arbitrary line in the domain.

then be equal when substituting y = 0 and y = H in order than energy is conserved for the control

5.12In terms of a surface plot like Fig. 5.9, one could think of this observation in the sense that the entire surface
would simply “rise or fall” as a whole, according to various values of k, without changing its shape. Conversely, were
the temperature problem itself to be a function of k, for example by including a boundary condition of the third kind,
then the shape itself would change, too.

5.13We are often used to thinking about heat transfer simply as heat flux multiplied by cross–sectional area,
quite like Eq. (2.3) on pp. 8, but this model is only valid if the flux is constant within that area. Such is clearly not
the case here. Instead, we must integrate. If we reason that q′′y = dqy/dA, then we can determine qy by integrating

dqy in the form of q′′y dA.
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volume, as a whole.5.14 Carrying out this integration, we find

qy =

∫ L

0
dqy = − 1 ·

︸︷︷︸

unit depth

∫ L

0
k

[

C0 +
∞
∑

n=1

Cn ζn cos(ζnx) cosh(ζny)

]

dx

= − k

[

C0 x +
∞
∑

n=1

Cn ζn
ζn

sin(ζnx) cosh(ζny)

] ∣
∣
∣
∣
∣

L

0

= − k

[

C0

(

L − 0
)

+
∞
∑

n=1

Cn

(

"""""""#0
sin
[ n π

L
L
]

− sin 0

)

cosh(ζny)

]

qy = − k C0 L

in units of J/s, or Watts. The entire series vanishes, leaving the rather surprising result shown here.
While the temperature distribution is an infinite series, Eq. (5.8), the heat transfer is evidently this
simple expression. Note that the negative sign indicates heat flow in the “− y” direction.

Several corollaries are immediately evident from this result. First, conservation of energy is
clearly satisfied for the control volume, as a whole. The heat transfer across any horizontal line,
including the bottom and top boundaries, y = 0 and y = H, respectively, is |k C0 L| and there is no
heat transfer at the vertical boundaries because they are adiabatic. Obviously, the net rate of heat
entering the control volume is equal to the net rate leaving. Secondly, the heat transfer is governed
solely by the zero–mode coefficient, C0, with the other mode coefficients, {C1, C2, C3, . . . }, being
relevant only to the temperature distribution. The practical implication is that one only needs to
derive C0 from Eq. (5.10) if interested in heat transfer for a given problem, skipping evaluation of
the Cn from Eq. (5.9), which are generally more complicated.

5.5. Superposition for More Complex Non–Homogeneous Problems

In the above sections in this chapter, we have examined problems where only one of the bound-
aries is non–homogeneous. In each of those cases, we found the separation of variables method to
be applicable, and we ultimately obtained a solution as a series of eigen–modes by the principle
of superposition. In this sense, these cases all belong to the same class of problems. If we liked,
we could further round–out this discussion by looking at problems where both of the boundaries
in one of the coordinates, say x, were non–homogeneous. The separation of variables method is
still likewise applicable and we would follow the same procedures that we have already described.
If, for example, we were to redefine the Dirichlet problem in §5.1 so that the boundaries at y = 0
and y = H were both non–homogeneous, we would find that the expansion we derived in §E.1 on
pp. 151 would generalize to a series of the form (Zill and Cullen, 2000)

T (x, y) =
∞
∑

n=1

[

Cn,1 cosh(ζny) + Cn,2 sinh(ζny)
]

sin(ζnx) ,

5.14Here, the mathematical context in Fig. 5.10 is integration along a line. However, the physical context is heat
conduction in units of J/s, i.e. heat flux (power per unit area) times area. Since this is only a 2–D problem, there is
no actual variation in the third dimension, i.e. “into the paper”, so we could think of this either as heat transfer rate
per unit depth, or in the sense of multiplying the result by a unit depth. The results are the same, though we show
the latter procedure here.
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where we would then have to solve for two countably infinite sets of eigen–values, Cn,1 and Cn,2.
Such problems are not fundamentally different from those we have already discussed, so we will
not examine them further.

However, what about problems that have non–homogeneous conditions on 2 different coordi-
nate boundaries, say at x = L and y = H? Here, the basic separation of variables method falters.
The explanation is readily found by reviewing any of the relevant problems we have already solved,
say again the finite Dirichlet case in §E.1 on pp. 151. In particular, we first obtain the set of
eigen–functions by solving the ODE for whichever coordinate has the homogeneous boundary con-
ditions. After solving the ODE for the second coordinate, we use the eigen–functions as a basis
for an expansion to determine the set of mode coefficients that will simultaneously cause the non–
homogeneous boundary for the second coordinate to be satisfied. Clearly, this basic procedure will
not work if both coordinates have at least one non–homogeneous boundary condition.

Although the basic SOV method does not work here, we can still further exploit the extremely
important property of superposition for linear equations by dividing such problems into a series of
simpler ones. The overall solution is then the sum of all the individual solutions (Fig. 5.11). This
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Figure 5.11. The Dirichlet problem having non–homogeneous boundaries at both the

x = L and y = H boundaries can be divided into 2 separate problems, each having just 1 of

the non–homogeneous conditions.

strategy obviously uses superposition in a much more sweeping way. The proof of this claim is
fairly straightforward, being something along the lines of the difference of solutions we showed in
§5.3. The two sub–problems shown in Fig. 5.11 are

∇2T1 = 0 : T1 = F (x) at y = H and T1 = 0 elsewhere

∇2T2 = 0 : T2 = G(y) at x = L and T2 = 0 elsewhere.

If it is true that T = T1 + T2, then we should expect this sum to describe the left–hand side of the
diagram in Fig. 5.11. For Laplace’s equation, we have

∇2T1 + ∇2T2 = ∇2
(

T1 + T2

)

= ∇2T = 0 , !
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and for the left, top, right, and bottom boundaries, respectively, we have

T1(0, y) + T2(0, y) = 0 + 0 = 0 = T (0, y) !

T1(x,H) + T2(x,H) = F (x) + 0 = F (x) = T (x,H) !

T1(L, y) + T2(L, y) = 0 + G(y) = G(y) = T (L, y) !

T1(x, 0) + T2(x, 0) = 0 + 0 = 0 = T (x, 0) , !

which does indeed describe the main problem in Fig. 5.11. A moment of consideration should
convince one that this principle holds in 3 dimensions, as well. Superposition thus allows us to
treat a vast number of problems by combining various combinations of simpler ones. It is one of
the most powerful and useful concepts we can exploit for linear differential equations!

There are several additional points to mention. First, this concept does not hold in general
for non–linear problems, i.e. those where either the PDE, the boundary conditions, or both are
non–linear.5.15 When using this method, one should be careful not to inadvertently create too
many sub–problems, less the solution process become unnecessarily tedious. For example, were
the main problem in Fig. 5.11 to have non–homogeneous conditions at all 4 boundaries, we could
still limit the division to 2 sub–problems because SOV is still applicable when opposite boundaries
are non–homogeneous. Finally, although the combination of SOV and superposition allows us,
in principle, to manage these more complicated problems, the basic SOV methods seems to be
reaching its limits. There are quite a number of other physical effects, including unsteadiness, heat
generation, and non–linearities, that will prompt us to examine more sophisticated mathematical
methods in the next chapter.

5.6. Three–Dimensional Steady Conduction

We alluded to applying the separation of variables method in 3–D in the previous section. Al-
though the overall process is largely the same as for 2–D problems, there are some minor procedural
differences that should be explained. We will sketch the process for the basic Dirichlet problem
having all homogeneous boundary conditions, except at z = D, where T (x, y,D) = F (x, y), as
shown in Fig. 5.12. The reader may wish for comparison purposes to refer periodically to §B.1 on
pp. 134 and §E.1 on pp. 151, where we originally introduced the SOV method in detail for problems
in (x, t) and (x, y), respectively. Here, T = T (x, y, z) is the solution we are seeking for the 3-D
Laplace equation:

(5.13)
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0

and we do so by assuming a separable form for the temperature of T (x, y, z) = Ψ(x)Γ(y)Ω(z). The
main difference now becomes obvious as we attempt to carry–out the actual separation process.

5.15Consider, for example, a non–linear operator of the form ϕ ∇2ϕ, where ϕ = ϕ(x, y) is some scalar function.
If we presume ϕ is the sum of the solutions of 2 simpler problems, ϕ1 and ϕ2, substitution shows the corresponding
operator

“

ϕ1 + ϕ2

”

∇2
“

ϕ1 + ϕ2

”

= ϕ1 ∇2ϕ1 + ϕ1 ∇2ϕ2 + ϕ2 ∇2ϕ1 + ϕ2 ∇2ϕ2 %= ϕ1 ∇2ϕ1 + ϕ2 ∇2ϕ2 .
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Figure 5.12. Representative three–dimensional steady Dirichlet conduction problem in

a parallelpiped.

Substituting the assumed form of the solution gives Ψ ′′ ΓΩ+ΨΓ ′′ Ω+ΨΓΩ ′′ = 0, so that dividing
by Ψ Γ Ω yields

Ψ ′′(x)

Ψ(x)
+

Γ ′′(y)

Γ(y)
+

Ω ′′(z)

Ω(z)
= 0 .

In 2–D, whether in (x, t) or (x, y), we were able to separate the two coordinates in a single step, as
shown e.g. in §E.1 on pp. 151. Here, we must take 2 steps, since there are 3 independent coordinates,
which will lead to 3 ODEs. Let us process Ψ first. Taking this term to the opposite side and again
invoking the constancy argument (as explained in §B.1), we find

Ψ ′′(x)

Ψ(x)
= −

[
Γ ′′(y)

Γ(y)
+

Ω ′′(z)

Ω(z)

]

= − ζ2
x .

The problem in Ψ is identical to the one shown in §B.1: the corresponding governing equation
being Eq. (B.6) on pp. 135, and boundary conditions being Eqs. (B.7) and (B.8). There, we found
the solution to be

Ψm(x) = Cx,m sin(ζx,mx) ζx,m =
m π

L
,

where ζx,m are the eigen–values for the x direction (note the extra x subscript) and Cx,m are the
yet–to–be–determined coefficients for the countably infinite modes m ∈ {1, 2, 3, . . . }.

We now do a second round of separation. Mindful of the modified notation for the x eigen–
values, we can rearrange the above equation as

Γ ′′(y)

Γ(y)
= −

Ω ′′(z)

Ω(z)
+ ζ2

x,m = − ζ2
y ,

again invoking the same constancy argument. Except for the different geometric dimension, the
problem in Γ is identical to the one we just solved in Ψ. That is, the ODE is the same and the
boundary conditions are both homogeneous. Therefore

Γn(y) = Cy,n sin(ζy,ny) ζy,n =
n π

H
,

where ζy,n are the eigen–values for the y direction and Cy,n are the yet–to–be–determined coeffi-
cients for the countably infinite modes n ∈ {1, 2, 3, . . . }.

This leaves the last ODE for the z coordinate as: Ω ′′/ Ω = ζ2
x,m + ζ2

y,n, which can be written

Ω ′′(z) −
(

ζ2
x,m + ζ2

y,n

)

Ω(z) = 0 .
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This is again a type of equation with which we have already dealt, c.f. the sub–problem in Γ for
the 2–D Dirichlet problem having mixed boundary conditions in §F.1 on pp. 158. In fact, given
that Ω(0) = 0 and that we realize ζ2

x,m + ζ2
y,n is also just a constant, it is exactly the same problem

as in §F.1. We can show by the same sort of developments that

Ωm,n(z) = Cm,n sinh
(√

ζ2
x,m + ζ2

y,n z
)

.

As usual, we subsume the previous mode coefficients into the current one and apply superposition,
whereby we can write the general solution as the double summation

(5.14) T (x, y, z) =
∞
∑

m=1

∞
∑

n=1

Cm,n sin(ζx,mx) sin(ζy,ny) sinh
(√

ζ2
x,m + ζ2

y,n z
)

.

Finally, the mode coefficients are determined in the routine way, i.e. by exploiting orthogonality
of the eigen–functions, so that the non–homogeneous boundary condition is satisfied. Except, here
we have double integrals because there are 2 infinite sets of eigen–functions. As usual, we evaluate
the solution at the boundary

T (x, y,D) = F (x, y) =
∞
∑

m=1

∞
∑

n=1

Cm,n sin(ζx,mx) sin(ζy,ny) sinh
(√

ζ2
x,m + ζ2

y,n D
)

,

subsequently operating with both eigen–functions to obtain

∫ H

0

∫ L

0
F (x, y) sin(ζx,mx) sin(ζy,ny) dx dy =

∫ H

0

∫ L

0

∞
∑

i=1

∞
∑

j=1

Ci,j sin(ζx,ix) sin(ζy,jy) sinh
(√

ζ2
x,i + ζ2

y,j D
)

sin(ζx,mx) sin(ζy,ny) dx dy .

Importantly, the double integral on the right hand side can be written in product form

(5.15)
∞
∑

i=1

∞
∑

j=1

Ci,j sinh
(√

ζ2
x,i + ζ2

y,j D
) ∫ H

0
sin(ζy,ny) sin(ζy,jy)dy

∫ L

0
sin(ζx,mx) sin(ζx,ix)dx ,

whereby the orthogonality property5.16 indicates that this product vanishes unless both i = m and
j = n. The normalization integrals have the identical form to that shown in Eq. (B.16) on pp. 138,
so that some additional development would show

∫ H

0

∫ L

0
F (x, y) sin(ζx,mx) sin(ζy,ny) dx dy = Cm,n ·

H

2
·

L

2
sinh

(√

ζ2
x,m + ζ2

y,n D
)

,

from which Cm,n is readily solved. This completes the general solution for the Dirichlet problem.
As usual, specific configurations would necessitate specification of the boundary condition, F (x, y),
subsequent evaluation of Cm,n, followed finally by algorithmic implementation to carry–out the
actual summation.

5.16See e.g. discussion in §B.3 on pp. 137, especially footnote B.5 on pp. 137.
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5.7. Additional Remarks

We have examined several multi–dimensional, steady heat conduction problems and, in the
process, have solidified the application of the separation of variables method. It is clear that there
are numerous additional possible configurations, based upon the combinations of dimensionality
and boundary conditions. Their solution procedures are largely methodological variations of the
same themes shown here and, of course, one starts to notice the pattern essentially of assembling
“components” of various ODEs to construct a general solution for a given configuration. Many
of these cases would further require framing the general solution as a superposition of 2 or even
3 sub–problems of the kind shown in Fig. 5.11. The possibilities become enormously larger when
various different coordinate systems are also considered (Hildebrand, 1976). The separation of
variables method starts to show its practical limits for many of these problems, and indeed, there
are numerous others that are not separable at all. For those, we shall have to examine more
sophisticated approaches.

5.8. Exercises

5.1
For the 2–D steady conduction configuration in the domain 0 ≤ x ≤ L and 0 ≤ y ≤ H,
we examined the so–called Neumann problem, where the boundaries at x = 0 and x = L
are adiabatic, T |y=0 = 0 and T |y=H = F (x). The solution is

T (x, y) = C0 y +
∞
∑

n=1

Cn cos(ζnx) sinh(ζny) ζn =
n π

L

C0 =
1

H L

∫ L

0
F (x) dx Cn =

2

L sinh(ζnH)

∫ L

0
F (x) cos(ζnx) dx .

Consider now the specific instantiation of this problem: L = H = 1 and F (x) = x.
Derive the exact solution for this problem, including determination of the full set of mode
coefficients, eigen–values, etc.

5.2
Referring to exercise 5.1: Render the solution either as a surface plot or a contour plot using
your favorite method, e.g. writing a program in any scripted or compiled language, using
MatLab, etc. Give enough documentation so that a colleague could duplicate the work,
e.g. a program listing with comments. Make sure to properly handle numerical problems,
e.g. pre–mature convergence due to the cyclical function and numerical overflow.
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5.3
The separation of variables (SOV) method routinely leads to solutions in the form of
infinite series. Consider, for example, the following solution for T (x, y) in a 2–D domain
of 0 ≤ x ≤ 1 and 0 ≤ y < ∞ for steady heat conduction, as obtained by SOV

T (x, y) =
4 T0

π

∞
∑

n=1,3,5,...

e−nπy sin(nπx)

n

=
4 T0

π

(
e−πy sin(πx)

1
+

e−3πy sin(3πx)

3
+

e−5πy sin(5πx)

5
+ · · ·

)

·

We can see by inspection that this series will converge very quickly if y is large because
the exponential term decays rapidly. Conversely, for very small y it can converge quite
slowly. It is often possible to sum a series analytically, reducing it to a single exact term,
and such would be extremely useful for slow–convergence cases. Demonstrate that this
particular solution can be analytically summed as

T (x, y) =
2 T0

π
arctan

[
sin(πx)

sinh(πy)

]

·

Suggested approach: This problem can be solved by converting to the complex domain.
Per Euler’s formula, eiβ = cos β+ i sinβ, where i =

√
−1 , note that sin(nπx) = 1

(

einπx
)

.
Use this conversion to re–write the series as an expansion of the complex variable z in the
form T =

∑

1(zn)/n and compare this to the expansion

ln

(
1 + z

1 − z

)

= 2

(
z1

1
+

z3

3
+

z5

5
+

z7

7
+ · · ·

)

,

the trick here being to recognize the proper specification of z. Convert the log–based result
back to the real domain using the log formula of the polar representation on the complex
plane

ln z′ = ln
(

r eiθ
)

= ln r + i θ ,

i.e. where z′ is another complex variable and the physical solution is the imaginary part
of that result. The hyperbolic identity sinhβ = (eβ − e−β)/2 will be helpful for the very
last step.
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5.4
The 2-D steady Dirichlet conduction problem in 0 ≤ x ≤ L and 0 ≤ y < ∞ having a
constant boundary temperature of T0 at y = 0 and homogeneous boundary conditions
elsewhere is

T (x, y) =
4 T0

π

∞
∑

n=1,3,5,...

1

n
sin(ζnx) e−ζny ,

where ζn = n π/L are the explicit eigenvalues. If the material’s thermal conductivity is k,
determine the total heat conduction along the boundary x = L, simplifying to the greatest
degree possible. You may assume the material has a depth b “into the paper” in which
there is no variation in T . Also, determine the total heat conduction along y = 0, showing
that it is precisely double the amount for x = L, as we would expect for a semi–infinite,
symmetric configuration. Hint: In both results, you should expect a series expansion in
n−1. This series is not trivial to evaluate, so you may leave it as is.



CHAPTER 6

Eigen–function Integral Transforms for Diffusion Equations

In §5.5 on pp. 55 we discussed the limitations of the basic separation of variables (SOV) method
for conduction problems. In many cases, both the solution process and the solution itself

will start to become impractical. Here, we discuss a more general method based on using the
eigen–function itself as part of an integral transform that will allow systematic solving of non–
homogeneous problems. The modus operandi of this technique is to remove one or more of the
second–derivative (diffusion) terms from the governing equation so as to reduce the PDE to an
ODE.6.1 Consider again the example of the unsteady 1–D Dirichlet problem, first discussed in §4.3
on pp. 30. The second–derivative term can be removed, rendering a first–order ODE in time, which
is readily solved for the transformed temperature. The transformed equation is almost always much
more straightforward to solve. The result is then inverted, using an inverse transform, to recover
the physical solution.

Integral transforms using the spatial eigen–function are particularly powerful for heat conduc-
tion problems. While it is true that there are many general methods for solving linear systems,
they are often accompanied by procedural difficulties. For instance, the Laplace transform can be
used to remove the partial derivative with respect to time. However, the inversion step is gen-
erally difficult, especially if the transformed result cannot readily be re–arranged as a series of
basic, easily–invertible forms. The methodology we discuss here has no such problem. Inversion is
straightforward because the the inversion rule is available at the outset of the problem.

The integral transform technique using the eigen–function as the transform kernel is actually
fundamentally rooted in the separation of variables technique. The transform and its inverse are
derived by considering the general representation of the solution as an eigen–function expansion,
i.e. a Fourier series. Indeed, the method makes direct use of eigen–functions, eigen–values, and
normalization integrals developed from SOV, and, in some sense, it could even be thought of as an
extension of the SOV method.

Application for heat conduction problems seems to date from the work of Doetsch (1936). It
has been heavily developed since the 1960s (e.g. Ölçer, 1964, 1965, 1969; Mikhailov, 1968) and is
well–represented in modern texts (e.g. Özişik, 1980; Cotta, 1993). Here, we will start with a gentle
introduction by way of some examples, then develop the more formal theory. The method will be
of particular use in solving the generalized Couette problem in §8.3 starting on pp. 100.

6.1. Revisiting the Dirichlet Problem: Developing an Integral Transform Pair

We first examined the 1–D unsteady conduction problem having Dirichlet boundary conditions
in §4.3 on pp. 30. Recall, in particular, the process of expanding the initial condition in §B.3

6.1Recall that this is the same modus as the similarity transform we examined for the Rayleigh problem in §4.6
on pp. 36.
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on pp. 137 in order to determine the mode coefficients, the form being given by Eq. (B.12) and
repeated here for convenience

T (x, 0) = F (x) =
∞
∑

n=1

Cn sin(ζnx) .

Imagine now instead of expanding merely the initial condition T (x, 0) in terms of the eigen–
functions, that we expand the entire solution in this manner6.2

(6.1) T (x, t) =
∞
∑

n=1

Cn(t) sin(ζnx) .

We could then proceed in the usual fashion of exploiting the orthogonality property of the eigen–
function, here sin(ζnx), to determine Cn(t).6.3 That is, we multiply by the eigen–function and
integrate over the domain

∫ L

0
T (x, t) sin(ζnx) dx =

∞
∑

m=1

Cm(t)

∫ L

0
sin(ζmx) sin(ζnx) dx

= Cn(t) N(ζn) ,

where N(ζn) is the usual normalization integral.6.4 This result implies that the solution in Eq. (6.1)
can also be written in the form

(6.2) T (x, t) =
∞
∑

n=1

[
1

N(ζn)

∫ L

0
T (x, t) sin(ζnx) dx

]

sin (ζnx) .

Admittedly, Eq. (6.2) has a certain “circular” or self–referential quality in that it states the solution
in terms of itself. This might initially appear to be of extraordinarily limited usefulness. However,
suppose we define a transformed temperature, T , as the integral in this expression. We could then
write T in terms of T , and vice versa as

(6.3) T (ζn, t) =

∫ L

0
T (x, t) sin(ζnx) dx

(6.4) T (x, t) =
∞
∑

n=1

T (ζn, t)

N(ζn)
sin (ζnx) ,

the former being the integral transform and the latter being the inversion.
Transform–inversion pairs, such as Eqs. (6.3) and (6.4), are the nucleus of this method. In

essence, a problem is first transformed to the T domain, where, as we will see, certain extremely
important simplifications become possible. The solution of T itself is then obtained. Finally,

6.2 Of course, we could immediately compare this expression to Eq. (B.11) on pp. 136 and Eq. (B.15) on pp. 138,
which together imply

T (x, t) =
∞X

n=1

»„
2
L

Z L

0

F (x) sin(ζnx) dx

«

e−αζ2
n

t

–

sin (ζnx) ,

after which we would quickly conclude that Cn(t) above is equal to the term in square brackets here. While true,
this observation does not contribute to the development of the integral transform pair that we are attempting to
illustrate here.

6.3For this particular example, the 1–D unsteady Dirichlet problem, this process is shown in §B.3 on pp. 137.
6.4 The norm in this particular case is L/2, as shown by Eq. (B.16) on pp. 138.
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inversion is used to recover the physical solution for T . As we alluded to above, this last step is
straightforward because the inversion law is already known.

Let us return to the Dirichlet example to finish illustrating this procedure. We note the following
critical aspect of the method: We already know the form of the eigen–function and eigen–values
at the outset of the problem.6.5 This insight is the intimate connection back to the SOV method.
Recall that the eigen–function and eigen–values are a product of the auxiliary eigen–problem that
arose in SOV by the very invocation of the separation assumption. For the Dirichlet problem, this
was specified by Eqs. (B.6) through (B.8) on pp. 135

(6.5) Ψ′′
n(x) + ζ2

nΨn(x) = 0

(6.6) Ψn(0) = 0 Ψn(L) = 0 ,

which are repeated here for convenience and whose solution is Ψn = Cn sin (ζnx), where the eigen–
values are explicitly defined as ζn = nπ/L.6.6 The appropriate corresponding auxiliary problem will
always furnish all eigen–related information, i.e. eigen–values, eigen–function, and normalization
integral, and the auxiliary problem is always derived from a homogenized version of the physical
problem. We will discuss these aspects further below.

6.2. Solving the 1–D Unsteady Dirichlet Problem using the Integral Transform

With the integral transform pairs in Eqs. (6.3) and (6.4) now in hand, let us actually solve the
1–D unsteady Dirichlet problem for T = T (x, t) from its beginning once again, except now using
the integral transform method. We re–state the problem here for convenience as6.7

∂T

∂t
= α

∂2T

∂x2
T (0, t) = T (L, t) = 0 T (x, 0) = F (x) .

The first step is eigen–function multiplication and integration of the PDE, as mentioned above

(6.7)

∫ L

0

∂T

∂t
sin(ζnx) dx = α

∫ L

0

∂2T

∂x2
sin(ζnx) dx .

Note here that we have already removed the constant diffusivity, α, to the outside of the right–hand
integral. With respect to the time–derivative term on the left, because integration is only a function
of x with constant limits and differentiation is only with respect to t, we can reverse their order,
ultimately observing

(6.8)

∫ L

0

∂T

∂t
sin(ζnx) dx =

∂

∂t

∫ L

0
T sin(ζnx) dx =

dT

dt
,

the last step being a consequence of employing the integral transform in Eq. (6.3). Note how we
have also changed the partial derivative sign to a regular derivative sign because T = T (ζn, t)
in Eq. (6.3), i.e. it is not any longer a function of x, but rather only of t and the (constant)
eigen–values.

6.5This is perhaps obvious, as we are already showing the eigen–function in the transform itself in Eq. (6.3).
However, the point is crucial and worth emphasizing because it holds in the general case.

6.6This solution is the basis of the particular transform–inverse pair in Eqs. (6.3) and (6.4), which is the appro-
priate pair for the 1–D Dirichlet problem.

6.7See Eq. (4.3) on pp. 30 and appendix B on pp. 134.
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For the space–derivative term on the right, we will do integration by parts (IBP) twice,6.8

whereby

∫ L

0

∂2T

∂x2
sin(ζnx) dx =

(

sin(ζnx)
∂T

∂x

)∣
∣
∣
∣

L

0

−
∫ L

0

∂T

∂x
ζn cos(ζnx) dx 1st IBP

2nd IBP =

(

sin(ζnx)
∂T

∂x

)∣
∣
∣
∣

L

0

− ζn

[
(

cos(ζnx) T
)∣
∣
∣

L

0
−
∫ L

0
T (−ζn) sin(ζnx) dx

]

=

(

sin(ζnx)
∂T

∂x
− ζn cos(ζnx) T

)∣
∣
∣
∣

L

0

− ζ2
n

∫ L

0
T sin(ζnx) dx .

=

(

""""""""""#0
sin(nπ)

∂T

∂x

∣
∣
∣
∣
x=L

−
"""""""""#0
ζn cos(nπ) T

∣
∣
∣
x=L

)

substitute ζn = nπ/L(6.9)

−

(

"""""""""#0
sin(0) ·

∂T

∂x

∣
∣
∣
∣
x=0

−
"""""""""#0
ζn cos(0) · T

∣
∣
∣
x=0

)

− ζ2
n T .

Let us discuss the actual results of this operation, along with some important observations that we
will later generalize. First, it clear that the integration by parts steps bring the boundary conditions
on x explicitly into the transform and that they are evaluated in the transform domain, i.e. T at
both x = 0 and x = L. Although they vanish here because the particular version of this Dirichlet
problem has homogeneous boundary conditions, we should suspect that, in general, this property
will allow us to treat non–homogeneous boundary conditions in the transform domain. That is,
their effects will be accounted for in the ODE (easier) part of the problem. This will prove to be a
tremendous simplification of the problem!

The second aspect is that the eigen–functions are also evaluated at the boundary, and these
also vanish in this particular case by virtue of Eqs. (6.5) and (6.6), i.e. the sine function is zero
on both boundaries. This may not be the case in general and we will find this term becomes part
of a more general statement at the boundary if the boundary conditions are of the most general
(Robbins) type, as illustrated in the succeeding example.

Lastly, the integral transform definition itself is again applied to the very last term, yielding
T in Eq. (6.9), but without any derivative. In other words, the operation has the overall effect of
removing the second–derivative in transform space, rendering a simple algebraic term in its place!

6.8 The basic form of integration by parts (Courant and John, 1965) is
Z

u dv =
`

u v
´
˛
˛
˛ −

Z

v du .

In the first and second rounds, respectively, we let

u = sin(ζnx) and dv =
∂2T
∂x2

dx so that du = ζn cos(ζnx) dx and v =
∂T
∂x

u = cos(ζnx) and dv =
∂T
∂x

dx so that du = − ζn sin(ζnx) dx and v = T .
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We can re–assemble the governing equation in transform space by substituting Eqs. (6.8) and
(6.9) into Eq. (6.7), whereby

dT

dt
= − α ζ2

n T ,

which is now an ODE. Its solution is6.9

T = Ct e−αζ2
nt ,

where Ct is yet to be determined.
We should pause a moment here to ponder how Ct is assigned. This equation and its solution

are in the transform domain, so we must also evaluate Ct from the initial conditions of the physical
problem, but also in the transform domain. This task is simple enough, since we already have the
transform law in Eq. (6.3), which for the initial condition becomes

T (ζn, 0) = F (ζn) =

∫ L

0
F (x) sin(ζnx) dx .

Substitution in the above shows

T (ζn, 0) = F (ζn) = Ct e−αζ2
n·0 ,

from which we conclude that Ct = F and that the solution in the transform domain is

(6.10) T (ζn, t) = F (ζn) e−αζ2
nt = e−αζ2

nt
∫ L

0
F (x) sin(ζnx) dx .

Inversion to obtain the actual physical solution is straightforward. Applying Eq. (6.4), we find

T (x, t) =
∞
∑

n=1

1

N(ζn)
F (ζn) e−αζ2

nt sin (ζnx)

=
2

L

∞
∑

n=1

( ∫ L

0
F (x) sin(ζnx) dx

)

sin (ζnx) e−αζ2
nt .

where ζn = nπ/L, from above. Note that we have used the fact that the norm is N = L/2, as
already noted in footnote 6.4 on pp. 64 and Eq. (B.16) on pp. 138.

6.3. Basis of Integral Transform Method in Separation of Variables

We have obviously obtained the exact same solution with the integral transform method as we
did when using SOV, c.f. footnote 6.2 on pp. 64. It is worth a post hoc examination of exactly how
this solution was developed and its basis in and relationship to the SOV method.

The latter was first demonstrated in detail in §B.1 on pp. 134 for the 1–D unsteady Dirichlet
problem. Essentially, the general solution for T (x, t) was separated into 2 uni–variate functions
Ψ(x) and Γ(t), the first of which proved to be an eigen–value problem, yielding a set of eigen–
values and corresponding eigen–functions. We then expanded the initial condition in Fourier sine

6.9 This equation can be written as T
′
+ α ζ2

n T = 0. It can be solved by the method of the auxiliary equation
(Ross, 1965), which in this case is ϕ + αζ2

n = 0, so that ϕ = −αζ2
n is the only root and the solution is its exponential.

See also Eq. (B.9) on pp. 136, where we used this same observation in solving the original Dirichlet problem using
separation of variables.
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series, c.f. Eq. (B.12) on pp. 137, so that the initial condition would also be satisfied. The norm
appeared as a necessary by–product.

The integral transform method is also based on a Fourier expansion, c.f. Eq. (6.1) on pp. 64.
Stated in a simplistic way, the difference is that the “mode coefficient” contains not only the norm
and boundary function integral, but also the functionality that accounts for time. This allows for
the definition of the integral transform pair, Eqs. (6.3) and (6.4) in this particular example. The
boundary conditions of the problem were evaluated explicitly in transform space, leading up to
a readily–solvable ODE. As we shall see below, it is at this stage that many more complicated
phenomena are manageable using the integral method. In a sense, this is where it will offer real
mathematical leverage. Finally, the solution itself is obtained through straightforward inversion,
whose rule is known at the outset because of the way the transform pair itself was developed.

6.4. 1–D Unsteady Conduction with Heat Generation and Robbins Conditions

The unsteady 1–D Dirichlet example that we just examined (repeated, actually) serves as a
very good illustration of some of the basic properties and procedures of the eigen–function integral
transform method. However, it does not actually demonstrate that the method really furnishes
any new and useful capability beyond what SOV already does routinely. Let us take a step further
toward both generality and abstraction with another example. Consider a 1–D unsteady conduc-
tion problem that adds two non–trivial complications, Robbins boundary conditions at both faces
and internal heat generation (Fig. 6.1). The mathematical statement of the problem consists of a

Robbins

boundary condition
boundary conditionx

L

q.
Robbins

Figure 6.1. One–dimensional transient problem having heat generation and boundary

conditions of the third kind.

slightly more generalized field equation, as well as convective boundary conditions on both faces6.10

1

α

∂T

∂t
=

q̇

k
+

∂2T

∂x2
(6.11)

h0 T∞ = h0 T
∣
∣
∣
x=0

− k
∂T

∂x

∣
∣
∣
∣
x=0

(6.12)

hL T∞ = hL T
∣
∣
∣
x=L

+ k
∂T

∂x

∣
∣
∣
∣
x=L

(6.13)

T (x, 0) = F (x) ,(6.14)

6.10Eq. (6.11) is a special case of Eq. (2.17) on pp. 13 for conduction only the x direction. Eqs. (6.12) and (6.13)
can be derived directly from the standard Robbins form in Eq. (2.25) on pp. 15.
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where q̇ = q̇(x) is a heat generation source term and h0 and hL are the convection coefficients at
the left and right faces, respectively. For the moment, we will assume that these coefficients are
constants. The problem is again to solve for T = T (x, t).

We asserted above that we will always be able to characterize the eigen–related entities a priori,
though we have not yet proved this statement. In the previous example, we had already solved the
problem using SOV, so the eigen entities were available. In this example, we will instead use the
eigen–function and eigen–values, Ψn(x) and ζn respectively, purely in their symbolic form without
yet invoking them specifically. The purpose of this abstraction is to show that the reduction of
the second–derivative term to an algebraic one in Eq. (6.9) was not just a fortuitous coincidence
of the specific eigen–function, sin(ζnx), for that problem,6.11 but is rather a basic consequence of
the auxiliary Helmholtz condition in Eq. (6.5) on pp. 65.6.12 Consequently, we will represent the
integral transform pair in the slightly more general form

(6.15) T (ζn, t) =

∫ L

0
T (x, t) Ψn(x) dx

(6.16) T (x, t) =
∞
∑

n=1

T (ζn, t)

N(ζn)
Ψn(x) ,

where Ψn = Ψn(x) and ζn are the appropriate eigen–function and eigen–values, respectively. More-
over, the homogenized boundary conditions for the auxiliary problem are obtained directly from
the physical boundary conditions. They are

h0 Ψn

∣
∣
∣
x=0

− k
dΨn

dx

∣
∣
∣
∣
x=0

= 0(6.17)

hL Ψn

∣
∣
∣
x=L

+ k
dΨn

dx

∣
∣
∣
∣
x=L

= 0 .(6.18)

The time–derivative, i.e. the left had side of Eq. (6.11), transforms in the same way as for the
Dirichlet example above from Eq. (6.8) on pp. 65 to dT/dt. However, the right hand side is now
a little more involved. We must do the proper transform for both the heat generation term and
the diffusion (second–derivative) term. For the latter, we again do 2 rounds of integration by parts
(IBP), once again picking the same assignments as described in footnote 6.8 on pp. 66. We find

∫ L

0

∂2T

∂x2
Ψn(x) dx =

(

Ψn
∂T

∂x

)∣
∣
∣
∣

L

0

−
∫ L

0

∂T

∂x

dΨn

dx
dx 1st IBP

2nd IBP =

(

Ψn
∂T

∂x

)∣
∣
∣
∣

L

0

−

[
(

T
dΨn

dx

)∣
∣
∣
∣

L

0

−
∫ L

0
T

d2Ψn

dx2
dx

]

=

(

Ψn
∂T

∂x
− T

dΨn

dx

)∣
∣
∣
∣

L

0

+

∫ L

0
T

d2Ψn

dx2
dx .(6.19)

6.11In Eq. (6.9), the two–step integration by parts allowed for direct application of the integral transform in the
last step because the sine function is proportional to its own second–derivative, being “− ζ2

n sin(ζnx)”.
6.12While all 1–D Cartesian problems are governed by the Helmholtz–type ODE in Eq. (6.5), the boundary

conditions will vary. For the 1–D Dirichlet problem, they are given by Eq. (6.6), which leads to the particular
eigen–function Ψn(x) = sin(ζnx) and ζn = nπ/L.
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We are now in at least a partial position to show both how non–homogeneous effects are readily
accounted for in the transform domain and how the reduction of the second–derivative term holds in
general and was not simply a fluke in the previous example. These aspects all stem from exploiting
the auxiliary eigen–value problem. Specifically, we use the fact that Ψ′′

n = − ζ2
nΨn from Eq. (6.5)

on pp. 65 and the observation that the boundary conditions can be re–arranged algebraically as

dΨn

dx

∣
∣
∣
∣
x=0

=
h0

k
Ψn

∣
∣
∣
x=0

dΨn

dx

∣
∣
∣
∣
x=L

= −
hL

k
Ψn

∣
∣
∣
x=L

·

We can then develop the form in Eq. (6.19) somewhat further, as follows.
∫ L

0

∂2T

∂x2
Ψn(x) dx =

(

Ψn
∂T

∂x
− T

dΨn

dx

)∣
∣
∣
∣
x=L

−
(

Ψn
∂T

∂x
− T

dΨn

dx

)∣
∣
∣
∣
x=0

+

∫ L

0
T
(

− ζ2
nΨn

)

dx

=

(

Ψn
∂T

∂x
+ Ψn T

hL

k

)∣
∣
∣
∣
x=L

−
(

Ψn
∂T

∂x
− Ψn T

h0

k

)∣
∣
∣
∣
x=0

− ζ2
n

∫ L

0
T Ψn dx

=

[
Ψn

k

(

k
∂T

∂x
+ hL T

)]∣
∣
∣
∣
x=L

+

[
Ψn

k

(

h0 T − k
∂T

∂x

)]∣
∣
∣
∣
x=0

− ζ2
n

∫ L

0
T (x, t) Ψn(x) dx

=
hL T∞

k
Ψn(x)

∣
∣
∣
∣
x=L

+
h0 T∞

k
Ψn(x)

∣
∣
∣
∣
x=0

− ζ2
n T (ζn, t) .(6.20)

Note that the two boundary evaluations are obtained directly from Eqs. (6.12) and (6.13) on
pp. 68. That is, the non–homogeneous boundary conditions are accounted for within the transform
domain. It may perhaps be an unconscious habit by this point to presume that the Ψn cancel at the
boundaries, but we remind the reader that this is not the case here because the physical boundary
conditions are non–homogeneous — the Ψn will take on sets of non–zero values that make sure
that those conditions are satisfied. Also, the second–derivative term again collapses by using the
integral transform definition in Eq. (6.15).

It now remains for the heat generation term to be properly transformed. This goes according
to the transform definition, as well, giving

(6.21)

∫ L

0

q̇(x)

k
Ψn(x) dx =

q̇

k
.

We can now assemble all the components of the transformed problem to obtain the ODE in
transform space. Specifically, we substitute the various transformed terms for their corresponding
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physical terms, including Eqs.(6.20) and (6.21) into Eq. (6.11) on pp. 68, finding

(6.22)
1

α

dT

dt
=

q̇

k
+

h0 T∞

k
Ψn(0) +

hL T∞

k
Ψn(L) − ζ2

n T (ζn, t) .

Before proceeding further, let us make a few comments regarding Eq. (6.22). This equation is
indeed an ODE, since T is not a function of x. The first 3 terms on the right hand side represent,
respectively, the heat generation term, which makes Eq. (6.11) non–homogeneous, and the non–
homogeneous boundary conditions at x = 0 and x = L, the components of the boundary conditions
in Eqs. (6.12) and (6.13). All the non–homogeneous components of the physical problem in (x, t)
are handled in the ODE! However, this equation is itself non–homogeneous and it does not appear
that we can readily make a clever change of variables to render it homogeneous.6.13

In order to solve Eq. (6.22), let us make a few careful observations of its mathematical depen-
dencies. Many of the parameters in this equation are constant: α, k, h0, hL, and T∞. Strictly
speaking, ζn is also constant, though there are a countably infinite number of these corresponding
to the set of eigen–modes. We have also been a little too informal with the eigen–function notation
here. Formally, Ψn = Ψn(ζn, x), so that what really appears in Eq. (6.22) is actually Ψn(ζn, 0)
and Ψn(ζn, L). That is, the Ψ is also a function of the eigen–values.6.14 This observation also
implies q̇ = q̇(ζn), as specified by Eq. (6.21). What these observations indicate is that every term in
Eq. (6.22) that does not involve T is at most a function of ζn. Therefore, let us define the formality

(6.23) G(ζn) =
α

k

[

q̇(ζn) + h0 T∞ Ψn(ζn, 0) + hL T∞ Ψn(ζn, L)
]

so that we can re–arrange Eq. (6.22) into the canonical form

(6.24)
dT

dt
+ α ζ2

n T (ζn, t) = G(ζn) .

Note from the initial condition of the physical problem in Eq. (6.14) on pp. 68 that the initial
condition for the transformed problem is derived directly from Eq. (6.15)

(6.25) T (ζn, 0) =

∫ L

0
T (x, 0) Ψn(x) dx =

∫ L

0
F (x) Ψn(x) dx = F (ζn) .

The ODE is first order and can be conveniently solved by the method of the integrating factor
(Martin and Reissner, 1956; Nelson et al., 1960), here eαζ2

nt being the appropriate factor.6.15 This

6.13Recall, for example, that we were able to change variables in the model of the generalized fin, converting
non–homogeneous Eq. (3.11) on pp. 20 to homogeneous Eq. (3.12).

6.14We have seen in numerous cases that Ψ is a function of both x and ζn, for example in §E.1 on pp. 151 where
we found Ψn = Cn sin(ζnx). In Eq. (6.22), these are evaluated at the boundaries, so they are really only functions
of ζn in this particular context.

6.15 The homogeneous form of Eq. (6.24) is T
′
+ α ζ2

n T = 0, which can be used to infer the integrating factor
that will make the equation exact. (We found a similar equation for the Dirichlet problem, c.f. footnote 6.9 on pp 67,
but did not need the integrating factor approach because the problem itself is homogeneous.) Multiplying by dt/T
and developing the equation shows

dT

T
+ α ζ2

n dt = 0 ln T +

Z

α ζ2
n dt = C1 eln T +

R

α ζ2
n

dt = eln T eα ζ2
n

R

dt = eC1 ,

whereby we can infer the integrating factor from the form

T eα ζ2
n

t

| {z }

factor

= C2 .
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can be done in a few straightforward steps: multiply Eq. (6.24) by the integrating factor, integrate
it, exploiting the fact that the left hand side is now exact, re–arrange to obtain T = T (ζn, t) on the
left, and finally apply the initial condition. These steps are shown as

∫ t

0

(

eα ζ2
nt′ dT

dt′
+ eα ζ2

nt′ α ζ2
n T (ζn, t′)

︸ ︷︷ ︸

exactly integrable

)

dt′ =

∫ t

0
eα ζ2

nt′ G(ζn) dt′

(

T (ζn, t′) eα ζ2
nt′
)∣
∣
∣

t

0
= G(ζn)

1

α ζ2
n

eα ζ2
nt′
∣
∣
∣
∣

t

0

T (ζn, t) eα ζ2
nt − T (ζn, 0)

︸ ︷︷ ︸

F (ζn)

""""#1
eα ζ2

n·0 =
G(ζn)

α ζ2
n

(

eα ζ2
nt − """"#1

eα ζ2
n·0

)

T (ζn, t) eα ζ2
nt =

G(ζn)

α ζ2
n

(

eα ζ2
nt − 1

)

+ F (ζn)

T (ζn, t) =
G(ζn)

α ζ2
n

[

1 − e−α ζ2
nt
]

+ F (ζn) e−α ζ2
nt .

Before we proceed further, let us make a few comments about the result thus far. First, it is easy
to check that this expression is indeed the solution to Eq. (6.24) by direct substitution. Second,
compare this result to that obtained for the simpler homogeneous Dirichlet problem of the previous
example in Eq. (6.10) on pp. 67. Its solution consisted only of the second term on the right shown
here. In essence, all the non–homogeneous effects at the boundaries and from heat generation
have been neatly bundled into the first term, specifically G(ζn). Third, we can get a very good
quantitative feel for how the conduction dynamics will evolve by looking simply at the time–related
terms here. At t = 0, the contribution to T will be strictly from F , the initial condition, since its
exponential will be 1 and the term in square brackets for the non–homogeneous effects will be zero.
As time proceeds, these contributions will start to “trade places” as it were, with the dynamics
eventually being dominated by the non–homogeneous conditions.

We can now take advantage of the inverse transform to complete the problem in a straightfor-
ward fashion. Invoking Eq. (6.16), we find

(6.26) T (x, t) =
∞
∑

n=1

Ψn(ζn, x)

N(ζn)

[
G(ζn)

α ζ2
n

(

1 − e−α ζ2
nt
)

+ F (ζn) e−α ζ2
nt

]

as the solution to the physical problem, where various non–homogeneous contributions are contained
in G(ζn) in Eq. (6.23). Of course, this is only the symbolic solution in abstract form. Though it
may still give a feeling of being incomplete, application to a specific problem is now a mathematical
formality, though admittedly not without some work. One would still have to execute the usual
steps of applying the actual eigen–function, computing the eigen–values and the norm, integrating
the initial condition, as well as applying the non–homogeneous parameters. We will defer these
steps until an example later in the chapter which yet generalizes this problem a bit more.
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6.5. General Theory of the Eigen–Function Integral Transform*

The examples we just examined give a glimpse of the significant mathematical utility provided
by this method for problems having diffusion–type derivatives. Here, we will develop the method
in general terms in order to formally demonstrate its applicability to more complicated problems.
Most advanced texts on this topic show a presentation roughly of what we are about to develop
here (e.g. Özişik, 1980; Cotta, 1993), although we will give a bit more detail that will undoubtedly
clarify certain aspects left unexplained in those treatments.

Consider the general conduction problem having a temperature T = T (r, t), where r are orthog-
onal coordinates, for example r = (x, y, z) in the rectangular system. The temperature distribution
is governed by a diffusion equation of the type shown in Eq. (2.17) on pp. 13, here written in general
vector form

(6.27)
1

α

∂T (r, t)

∂t
=

q̇(r, t)

k
+ ∇2T (r, t)

and boundary conditions of the general Robbins kind in non–homogeneous form. On the j–th
boundary, this expression is

(6.28) k
∂T

∂nj
+ hj T = fj(rj , t) ,

where ∂/∂nj is the derivative in the outward normal direction to that boundary, hj represents
convective conditions at this boundary, and fj is a specific boundary function at j which itself
can depend upon time, t, and the remaining independent coordinates at that boundary, rj . For
example, at a boundary of a constant value of x, say x = L, the normal derivative is ∂/∂nj = ∂/∂x
and there are two remaining independent coordinates, whereby rj = (y, z). Finally, there is general
initial condition

(6.29) T (r, t) = F (r) .

The steps for the general problem are the same as those we observed for the two examples above,
although there are some additional generalities we must derive.

First, we must develop the appropriate integral transform pair, which, like in the above examples
depends upon an auxiliary eigen–value problem in the form of a Helmholtz–type equation

(6.30) ∇2Ψn + ζ2
n Ψn = 0

(6.31) k
∂Ψn

∂nj
+ hj Ψn = 0 ,

where Ψn = Ψn(ζn, rζ) and rζ are all the coordinates having an associated eigen–function.6.16 The
auxiliary problem in Ψn can readily be produced by applying SOV to the homogeneous version of
the physical problem in Eqs. (6.27) and (6.28).

Let us digress into a bit of detail not found in the standard derivations (e.g. Özişik, 1980;
Cotta, 1993) that will be particularly helpful in understanding the notational implications of the
next several developments. We have previously used the symbol “Ψn” as the eigen–function for
a specific coordinate direction, usually x. When there were more than 1 set of eigen–functions,
e.g. as in §5.6 on pp. 57 for the steady 3–D conduction problem, where we had another set of
eigen–functions in y, we used a second, altogether different eigen–function symbol, Γ, in that

6.16Do not confuse the eigen–mode (index) n with the normal direction to the local boundary nj .
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particular instance. Here, we are treating all the coordinates in “one fell swoop”, so to speak.
The eigen–function Ψn(ζn, rζ) is actually the product of all the relevant, single coordinate–specific
eigen–functions. Again taking the steady 3–D problem in §5.6 as an example, this function would
be the product sin(ζx,mx) · sin(ζy,ny), as shown in Eq. (5.14) on pp. 59, and rζ = (x, y).

This observation now seems to raise a new problem, which is that there are 2 eigen–mode indices,
m and n, because the 3–D steady solution is actually represented as a double summation. Here,
we are only showing a single index, n, on our generalized “product” eigen–function, Ψn(ζn, rζ).
How can this be? We reconcile this seeming contradiction using the simple mathematical concept
of correspondence between members of infinite sets.6.17 That is, we can think of each value of the
“general” single index, n, as corresponding to a pair of the “coordinate–specific” indices:

“general” single index: 1 2 3 4 5 6 7 8 · · ·

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

“coordinate–specific” index pair: (1, 1) (2, 1) (1, 2) (1, 3) (2, 2) (3, 1) (4, 1) (3, 2) · · ·

This concept is surely much better visualized using the “diagonalization” representation, where we
march through the converse diagonals of the matrix of pairs of coordinate–specific indices, assigning
a “general” index to each coordinate–specific pair, the latter shown as a subscript for each pair.6.18





























(1, 1)1 (1, 2)3 → (1, 3)4 (1, 4)10 → (1, 5)11

↓ ↗ ↙ ↗ ↙

(2, 1)2 (2, 2)5 (2, 3)9 (2, 4)12 .

↙ ↗ ↙

(3, 1)6 (3, 2)8 (3, 3)13 . .

↓ ↗ ↙

(4, 1)7 (4, 2)14 . . .

↙

(5, 1)15 . . . .

↓





























6.17 The concept of correspondence is one of the main tools in set theory to understand the cardinalities of sets. It
can be used, for example, to show perhaps somewhat surprisingly that the cardinality of the set of natural numbers is
equal to the cardinality of the set of all the pairs of natural numbers using the “diagonalization” representation of the
matrix above (Hahn, 1956). That is, each number can be shown to be in one–to–one correspondence with each pair

of numbers. Note that we do not proceed strictly in the horizontal or vertical directions, i.e. (1, 1), (1, 2), (1, 3), . . . or
(1, 1), (2, 1), (3, 1), . . . , respectively, because those series are infinite in one of the indices at a constant value of 1 for
the other. We would never “get to the next series”, so to speak. The concept has more practical implications too,
for example in summation of multiple series, as discussed in §H.3 starting on pp. 178.

6.18This concept holds for triple eigen–functions, as well, for example

(1, 1, 1)1, (2, 1, 1)2, (1, 2, 1)3, (1, 1, 2)4, (1, 1, 3)5, . . .

although this is very difficult to represent visually as is done in the above matrix.
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Note the further significance of this representation in the context of the orthogonality property of
multiple, i.e. products of eigen–functions. That is, the orthogonality property can be cast directly
in terms of the single general index. As an example, we point again to the steady 3–D conduction
problem, specifically Eq. (5.15) on pp. 59, where we observed that all terms vanish except those
where equivalence was realized for both eigen–values simultaneously. In other words, both eigen–
values are “bound together” under the single, general eigen–value, so the orthogonality property
will still hold for equivalence of just the general, single index alone.6.19 That is, we have

(6.32)

∫

r

Ψm(ζm, rζ) Ψn(ζn, rζ) dr =

{

0 for m -= n
N(ζn) for m = n.

where N(ζn) is the usual normalization integral (norm)

N(ζn) =

∫

rζ

Ψ2
n(ζn, rζ) drζ ,

where we again observe that this expression may represent more than one coordinate direction,
e.g. rζ = (x, y) implies this is a double integral having drζ = dx dy for the 3–D steady conduction
problem.

Returning now to the development of the solution, the functional expansion, first proposed for
the basic 1–D Dirichlet problem in Eq. (6.1), can then be written

T (r, t) =
∞
∑

n=1

Cn(t) Ψn(ζn, rζ) ,

whence the orthogonality procedure is undertaken
∫

rζ

T (r, t) Ψn(ζn, rζ) drζ =
∞
∑

m=1

Cm(t)

∫

rζ

Ψm(ζm, rζ) Ψn(ζn, rζ) drζ

= Cn(t) N(ζn) .

Consequently, we can again form our seemingly circular expression

T (r, t) =
∞
∑

n=1

[

1

N(ζn)

∫

rζ

T (r, t) Ψn(ζn, rζ) drζ

]

Ψn(ζn, rζ) ,

by which we really mean to separate this expression into a transform and an inversion pair, given
respectively by

(6.33) T (ζn, t) =

∫

rζ

T (r, t) Ψn(ζn, rζ) drζ

(6.34) T (r, t) =
∞
∑

n=1

T (ζn, t)

N(ζn)
Ψn(ζn, rζ) .

These are the general representations of the transform–inversion pairs that will be used. Note again
that the single series form accounts for multiple spatial dimensions according to the “correspon-
dence” principle above.

6.19The general orthogonality property is proved in §6.6 below.
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Next, we operate on both sides of the governing (physical) Eq. (6.27) using the eigen–function
product

1

α

∂

∂t

∫

rζ

T (r, t) Ψn(ζn, rζ) drζ =
1

k

∫

rζ

q̇(r, t) Ψn(ζn, rζ) drζ +

∫

rζ

∇2T (r, t) Ψn(ζn, rζ) drζ ,

which we write in shorthand as

(6.35)
1

α

dT

dt
=

q̇

k
+

∫

rζ

Ψn(ζn, rζ) ∇2T (r, t) drζ ,

where we have again changed partial derivative in t to an ordinary one following the observation
that the transformed variable is not a function of any of the spatial dimensions. As with the
examples above the task is to use this form to eliminate the second derivatives, represented now in
the general case by the Laplacian, ∇2.

Let us now invoke a relationship that exists between the scalar functions Ψn and T by virtue
of Green’s second theorem with an eye toward decomposing the integral in Eq. (6.35). Written
formally in 3–dimensions, this is6.20

(6.36)

∫∫∫ (

Ψn ∇2T − T ∇2Ψn

)

dv =

∫∫ (

Ψn
∂T

∂n
− T

∂Ψn

∂n

)

dA ,

however we shall change the notation to correspond to our “general single index” convention dis-
cussed above. Re–arranging the terms, we find

(6.37)

∫

rζ

Ψn ∇2T drζ

︸ ︷︷ ︸

field term

=

∫

rζ

T ∇2Ψn drζ

︸ ︷︷ ︸

field term

+
∑

j

∫

rj

(

Ψn
∂T

∂nj
− T

∂Ψn

∂nj

)

drj ,

︸ ︷︷ ︸

boundary term

where drj is the appropriate differential expression for boundary j and the summation indicates
that the integral is taken over all boundaries.6.21

The terms on the right–hand side of Eq. (6.37) are then further developed. The field term is
immediately simplified by invoking the auxiliary problem in Eq. (6.30) on pp. 73, specifically the
form ∇2Ψn = − ζ2

n Ψn, which can be substituted to give
∫

rζ

T ∇2Ψn drζ = −
∫

rζ

T ζ2
n Ψn drζ = − ζ2

n

∫

rζ

T Ψn drζ = − ζ2
n T .

Note that the last term results from direct application of the integral transform in Eq. (6.33) on
pp. 75. Conversely, the boundary term in Eq. (6.37) is handled by complementation of the boundary
conditions for the physical and auxiliary problems. Specifically, multiply Eq. (6.28) on pp. 73 by

6.20Green’s theorem can be derived from the Divergence theorem as shown in appendix G, in particular as
Eq. (G.3) on pp. 166. Our specific application of the theorem here relies on assigning the scalar functions as ϕ1 = Ψn

and ϕ2 = T .
6.21It is common practice to introduce

P
into this expression (e.g. Özişik, 1980) basically as an indicator that

we will be applying the method for physical configurations that can be naturally described by orthogonal coordinate
systems, e.g. (x, y, z), where there will be discrete boundaries at constant values of each coordinate, e.g. “the boundary
at x = L”.
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Ψn, multiply Eq. (6.31) on pp. 73 by T , and subtract the results, finding

k Ψn
∂T

∂nj
+ hj Ψn T = Ψn fj(rj , t)

−
(

k T
∂Ψ

∂nj
+ hj T Ψ

)

= − 0

k

(

Ψn
∂T

∂nj
− T

∂Ψ

∂nj

)

= Ψn fj(rj , t) .

Once we divide through by k, it is clear that we can substitute Ψn fj/k in for the boundary term
in Eq. (6.37). Consequently, using the above two developments, Eq. (6.37) can be recast as

(6.38)

∫

rζ

Ψn ∇2T drζ = − ζ2
n T +

∑

j

∫

rj

Ψn fj(rj , t)

k
drj .

Finally, let us now reconstruct the full transformed Eq. (6.35) being careful to restore all the
functional notation

(6.39)
1

α

dT (ζn, t)

dt
=

q̇(ζn, t)

k
− ζ2

n T (ζn, t) +
∑

j

∫

rj

Ψn(ζn, rζ) fj(rj , t)

k
drj .

Clearly, each term is a function of, at most, t and ζn and the PDE in Eq. (6.27) on pp. 73 has now
been reduced to an ODE. Moreover, the boundary conditions, which are non–homogeneous in the
general case, Eq. (6.28), have already been incorporated into this result. The only substantive step
that remains is to solve Eq. (6.39), subject to the transformed initial condition

(6.40) T (ζn, 0) =

∫ L

0
T (x, 0) Ψn(x) dx =

∫ L

0
F (x) Ψn(x) dx = F (ζn) .

Similar to what we did in Eq. (6.23) on pp. 71 for the preceding example problem, let us gather all
the non–homogeneous terms in Eq. (6.40) into a single “source term” and re–arrange the expression
as

(6.41)
dT (ζn, t)

dt
+ α ζ2

n T (ζn, t) = G(ζn, t) ,

where the source term is

(6.42) G(ζn, t) =
α

k



 q̇(ζn, t) +
∑

j

∫

rj

Ψn(ζn, rζ) fj(rj , t) drj



 .

Careful inspection will indicate two relevant points. First, the form of Eq. (6.41) is the same as
that of Eq. (6.24) on pp. 71 for the Robbins example. This implies that the same integrating
factor, eαζ2

nt, will be applicable to the solution process.6.22 Second, we allowed for time–dependent
boundary conditions in the original problem statement, Eq. (6.28) on pp. 73, so we will not be able
to carry–out the actual integration below without fully specifying G(ζn, t).

6.22This integrating factor was derived in footnote 6.15 on pp. 71.
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Let us now proceed to solve Eq. (6.41). Once again, we will annotate the integrating factor
solution procedure. We have6.23

∫ t

0

(

eα ζ2
nt′ dT

dt′
+ eα ζ2

nt′ α ζ2
n T (ζn, t′)

︸ ︷︷ ︸

exactly integrable

)

dt′ =

∫ t

0
eα ζ2

nt′ G(ζn, t) dt′

(

T (ζn, t′) eα ζ2
nt′
)∣
∣
∣

t

0
=

T (ζn, t) eα ζ2
nt − T (ζn, 0)

︸ ︷︷ ︸

F (ζn)

""""#1
eα ζ2

n·0 =

T (ζn, t) eα ζ2
nt =

∫ t

0
eα ζ2

nt′ G(ζn, t) dt′ + F (ζn)

T (ζn, t) = e−α ζ2
nt

( ∫ t

0
eα ζ2

nt′ G(ζn, t) dt′ + F (ζn)

)

.

The last step is now the straightforward inversion of T to obtain the actual solution in physical
space. Applying Eq. (6.34), we find

(6.43) T (r, t) =
∞
∑

n=1

1

N(ζn)
Ψn(ζn, rζ) e−α ζ2

nt

( ∫ t

0
eα ζ2

nt′ G(ζn, t) dt′ + F (ζn)

)

,

where again F (ζn) and G(ζn, t) are defined by Eqs. (6.40) and (6.42), respectively.

6.6. General Theory of Orthogonality*

Footnotes B.5 on pp. 137 and C.2 on pp. 142 demonstrate the orthogonality property for a
few specific instances of eigen–functions. However, to complete our discussion of the general form
of the integral transform method in the last section, we must also show that the orthogonality
property of the eigen–functions holds under general terms, as well. In particular, let us prove that
the cancellation property indicated in Eq. (6.32) on pp. 75 applies for 2 different eigen–modes, i.e.
when m -= n.

Consider eigen–functions for 2 different eigen–modes, i.e. Ψm(ζm, rζ) and Ψn(ζn, rζ). Each of
these satisfies its own Helmholtz–type auxiliary relation of the type shown in Eq. (6.30) on pp. 73

∇2Ψm + ζ2
m Ψm = 0 and ∇2Ψn + ζ2

n Ψn = 0 ,

where m -= n and therefore ζm -= ζn. Multiply the left equation by Ψn and the right equation by
Ψm, then subtract the results

Ψn ∇2Ψm + ζ2
m Ψn Ψm = 0

Ψm ∇2Ψn + ζ2
n Ψm Ψn = 0

Ψn ∇2Ψm − Ψm ∇2Ψn +
(

ζ2
m − ζ2

n

)

Ψm Ψn = 0 .

6.23Compare the result here to exercise 1.2 on pp. 7.
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Move the Laplacian terms to the right. Then, integrate over the domain, for example as shown in
Eq. (6.32) on pp. 75, after which we apply Green’s second integral theorem6.24

(

ζ2
m − ζ2

n

)

Ψm Ψn = Ψm ∇2Ψn − Ψn ∇2Ψm

(

ζ2
m − ζ2

n

)
∫

r

Ψm(ζm, rζ) Ψn(ζn, rζ) dr =

∫

r

(

Ψm ∇2Ψn − Ψn ∇2Ψm
)

dr

=

∫

S

(

Ψm
∂Ψn

∂n̂
− Ψn

∂Ψm

∂n̂

)

dS ,(6.44)

where S is the surface (boundary) of the domain and where we are again careful to realize the
distinction between the potentially confusing notation of the eigen–mode (index) n and the normal
direction to the local boundary n̂.

Now, we note that each eigen–problem is governed by homogeneous boundary conditions of the
type shown in Eq. (6.31) on pp. 73

k
∂Ψm

∂n̂
+ h Ψm = 0 and k

∂Ψn

∂n̂
+ h Ψn = 0

and that again multiplying these equations by Ψn and Ψm, respectively, and subsequently subtract-
ing the results will show that

Ψm
∂Ψn

∂n̂
− Ψn

∂Ψm

∂n̂
= 0 .

Consequently, the right hand side of Eq. (6.44) vanishes, leaving

(

ζ2
m − ζ2

n

)
∫

r

Ψm(ζm, rζ) Ψn(ζn, rζ) dr = 0 ,

and, because we explicitly invoked the condition ζm -= ζn, it must be the case that the integral
itself vanishes, thereby proving the cancellation property.

6.7. Exercises

6.1
The integral transform solution has been formally derived under “general boundary con-
ditions” of the 3–rd kind, for example

k
∂T

∂n
+ h T = f ,

where n is the outward normal direction to the boundary. The Dirichlet boundary con-
dition of the 1–st kind can be obtained simply by setting k = 0. However, this requires
a modification in the term G(ζn, t) because k is in the denominator. In particular, show
that the problem can be resolved by replacing Ψm/k with −h−1 · ∂Ψm/∂n.

6.2
Given the auxiliary eigen–problem Ψ′′

n(x) + ζ2
nΨn(x) = 0 having boundary conditions

Ψn(0) = 0 and
d Ψn

dx
+ h Ψn = 0

at x = L, show that eigen–values, ζn, are the positive roots of ζn cot
(

ζnL
)

= −h.

6.24See appendix G, especially Eq. (G.3) on pp. 166.



CHAPTER 7

Introduction to Convection

Up until now, we have studied the mechanism of conduction, which is the special case of heat
transfer through a medium where there is no bulk medium motion. We were not especially

specific about what the medium consisted of, though we suspect by the few examples we furnished,
most will have taken it to be solid matter. The medium can just as well be liquid or gas, provided
those fluids are at rest. Once they are moving, heat energy is also macroscopically transported
by that very motion. This more general mode of heat transfer is called convection. Here, we
shall introduce some of the foundational ideas for convection, including the now–much–larger set of
governing equations (and various special cases) and we will also place the concept of the convection
coefficient on firmer theoretical ground.

What we will quickly see in these developments is that convection is a fundamentally more
complicated proposition than conduction. A few specific exceptions notwithstanding, the latter is
governed by linear differential equations, for which there is an enormous body of mathematical
theory that can be brought to bear for specific problems. We have examined some of these in
the previous chapters. Conversely, convection depends on fluid motion, which — a few specific
exceptions notwithstanding — is governed by non–linear equations. There is still no general math-
ematical theory or framework for non–linear differential equations, meaning one must typically
fall back on ad hoc methods or approximations (Hildebrand, 1976). The literature in this area
is immense (e.g. van Dyke, 1964; Bender and Orszag, 1999; Nayfeh, 2004) and we will only have
the luxury of sampling a few small bits. In what may be somewhat of a surprise, many of these
methods are little, if at all more complicated than those for linear equations, yet they are capable
of very accurate results. We will concentrate on these approaches.

7.1. Conservation Laws for Energy, Mass, and Momentum

Convection is governed by 3 of the most basic conservation laws for physical systems7.1

• conservation of mass (continuity)
• conservation of momentum (Newton’s Second Law of motion)
• conservation of energy (the First Law of thermodynamics).

It will be clear that these represent a direct generalization of the purely conductive mechanism of
heat transfer for the allowance of motion and that the conduction equation itself could be imme-
diately recovered as a special case by simply substituting zero for every appearance of a velocity
component. There are a number of complementary ways in which these equations can be derived,
for example using Reynolds’ Transport Theorem (Currie, 1993), from physical arguments (White,

7.1We limit our discussion here to non–mixed, non–reactive fluids. Were we to consider the heat transfer aspects
of more complicated systems for factors such as these, we would have to account for conservation of other entities,
for example conservation of chemical species, the laws of chemical reactions, etc.
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1974), invoking traditional differential analysis (Burmeister, 1983; Bejan, 1984; Munson et al.,
2006), etc. We developed the conduction equation using standard analysis of a differential element
in §2.3. Here, we will merely sketch the derivation of the general equations for incompressible
flow using a combination of ad hoc arguments and appeals to to more fundamental sources that
delve into their mathematical and physical foundations (White, 1974; Panton, 1984). The reader
is referred to those texts for full details.

7.1.1. The Continuity Equation. The main restriction we will place on our study of con-
vection is that the fluid, and thus the underlying flow is incompressible, meaning the density, ρ, is
constant. As a thermodynamic variable, the density varies according to pressure and temperature
as (Panton, 1984)7.2

d ρ

ρ
= ω dP − β dT ,

where the bulk expansion coefficient, β, and the compressibility coefficient, ω, are fluid properties
given respectively by

(7.1) β(P, T ) = −
1

ρ

∂ρ

∂T

∣
∣
∣
∣
P

ω(P, T ) =
1

ρ

∂ρ

∂P

∣
∣
∣
∣
T

and, for a truly incompressible fluid, ω = β = 0. For our purposes of convection heat transfer, we
can always take liquids as being incompressible, as well as gases that are moving at low to moderate
speeds.

The continuity equation is a statement of conservation of mass. One of the implications of
an incompressible fluid is that velocity is an exact proxy for the rate of mass flow because the
fluid can neither expand nor contract. Consequently, we can derive the incompressible form of
the continuity equation by a straightforward, ad hoc argument that references the conservation
principles developed in §2.3. Specifically, we re–label the heat transfer notation in Fig. 2.3 on
pp. 11 to instead represent velocity components (and, by proxy, mass transfer rates). For example,
the heat transfer at the left face of the elemental control volume in the x direction, ql, now becomes
the velocity at that face, ul, and so forth.7.3 Moreover, since the fluid is incompressible, the total
rate of flow into the element must be equal to the total rate of flow out, otherwise expansion or
compression would be occurring. This implies

ul δy δz + vb δx δz + wf δx δy = ur δy δz + vt δx δz + wn δx δy ,

7.2Note that this expression is nothing more than the differential of ρ = ρ(P, T ), i.e. written properly according
to the Chain Rule as

dρ =
∂ρ
∂P

dP +
∂ρ
∂T

dT

when the definitions of β and ω in Eq. (7.1) are substituted.
7.3As in §2.3, the re–labeled velocity components are expansions in Taylor series, omitting all higher–order terms:

ul = u − ∂u
∂x

δx
2

and ur = u +
∂u
∂x

δx
2

vb = v − ∂v
∂y

δy
2

and vt = v +
∂v
∂y

δy
2

wf = w − ∂w
∂z

δz
2

and wn = w +
∂w
∂z

δz
2
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which, after substituting expressions for ul and the other quantities and doing a little algebra, leads
to the conservation equation

(7.2)
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 .

Of course, this formula is one specific representation in rectangular coordinates of the general
expression7.4

(7.3) ∇ ·V = 0 .

Interestingly, this equation describes both steady and unsteady flows. There is no ∂/∂t term for
incompressible flow as there would be for unsteady flows for compressible fluids (Burmeister, 1983).
This observation is consistent with the view of incompressibility as being a phenomenon of total
rate of mass influx being equal to the total rate of outflux. This “quasi–steady–state” interpretation
implies that there is neither any “rate of increase” of mass within the element, which would indicate
compression, nor “rate of decrease”, which would be expansion, regardless of whether the actual
flow is steady or not. The velocity distributions even for unsteady flows adjust immediately such
that Eq. (7.3) is always satisfied.

7.1.2. The Energy Equation. We developed what we have been calling the conduction
equation in §2.3. Specifically, Eq. (2.16) on pp. 12 describes conduction heat transfer under fairly
general conditions and we examined a number of configurations governed by various special cases
of this expression, some of which are listed in §2.4. The general equation was derived for a fixed,
but arbitrary (x, y, z) point in space, according to the notion that there is no motion of the medium
itself. Convection basically relaxes this restriction of an element restricted to a fixed point to allow
for motion.

Recall that fluid motion is routinely described from the Eulerian perspective (Currie, 1993).
That is, physical entities are specified by the independent variables for position, (x, y, z), as mea-
sured with respect to some coordinate system, and for time, t. For example, a fluid particle moves
dr from position r to position r + dr in an instant of time (Fig. 7.1). In other words, its (x, y, z)
location is a function of time due to its motion. This simple observation has far–reaching mathe-
matical implications. For example, if we go back and consider the differential element in Fig. 2.3
(pp. 11) to be a “particle” within the fixed (motionless) medium, as we originally did, its functional
description of temperature is

T = T (x, y, z, t) ,

again noting that the particle’s (x, y, z) location does not change. However, this same particle when
moving has a temperature described functionally as

T = T
(

x(t), y(t), z(t), t
)

.

7.4 The “del operator” in rectangular coordinates is

∇ = î
∂
∂x

+ ĵ
∂
∂y

+ k̂
∂
∂k

,

where the corresponding velocity vector is V = u î + v ĵ + w k̂. Numerous publications list the vector operators
in common coordinate systems, primarily cylindrical and spherical coordinates (Kays and Crawford, 1980; Panton,
1984). Perhaps the most comprehensive catalog in this regard is by Moon and Spencer (1961), who furnish the
properties for 40 different coordinate systems. See footnote 7.12 on pp. 88 for additional commentary.
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r + dr
x

y

z

r

Figure 7.1. Motion of a fluid particle along a pathline as describe by a radius vector r

emanating from the origin of an inertial coordinate system.

According to our original derivation in §2.3, we require the time–rate–of–change of the temperature,
which for the former expression for fixed media was found to be simply ∂T/∂t. For the case of
motion, it is clear that we must apply the Chain Rule, the result being what is usually called either
the total derivative or the material derivative (using D as the associated notation)

D T

D t
=

∂ T

∂ t
+

∂ T

∂ x

d x

d t
+

∂ T

∂ y

d y

d t
+

∂ T

∂ z

d z

d t

=
∂ T

∂ t
︸ ︷︷ ︸

local

+ u
∂ T

∂ x
+ v

∂ T

∂ y
+ w

∂ T

∂ z
︸ ︷︷ ︸

convective

,

where we have used the observation that the velocity components, (u, v, w), are simply the time
rates–of–change of their respective coordinates. Evidently, motion generalizes the “local” time
rate–of–change term with several new terms that essentially comprise the additional “convective”
time rate–of–change. These account for change realized by the mechanism of convective transport.
Although we wrote this expression once again in rectangular coordinates, a moment’s inspection
should indicate that this concept can be generalized for any entity and written in any coordinate
system as

(7.4)
D ( )

D t
=

∂ ( )

∂ t
+ V ·∇( )

where the appropriate forms are again substituted for V and ∇.
One more aspect will sufficiently generalize the energy equation for our purposes, and that is

the description of how mechanical energy is “degraded” into heat energy. Here, we defer to White
(1974) and Panton (1984), who show that the so–called “viscous dissipation function”, Φ, describing
this phenomenon is7.5

Φ = τ : ∇V ,

7.5 Vector notation seems to get a little unwieldy at this point. Essentially, τ and ∇V are matrices and the
colon notation is sometimes used to indicate the “inner product” of two matrices (Eves, 1966; Panton, 1984). The
same entity is perhaps more clearly expressed in index notation

Φ =
X

i

X

j

τij
∂ ui

∂ xj
where τij = µ

„
∂ ui

∂ xj
+

∂ uj

∂ xi

«
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where τ is the viscous stress tensor.
Adding these two generalizations to the conduction equation, Eq. (2.16) on pp. 12, we find that

the energy equation for “simple” convection can be written as

(7.5) ρ cp

[
∂T (r, t)

∂t
+ V ·∇T

︸ ︷︷ ︸

convective
acceleration

]

= q̇(r, t) + ∇ ·
[

k(T ) ∇T (r, t)
]

+ τ : ∇V
︸ ︷︷ ︸

viscous
dissipation

,

where the two new sets of terms introduced by the allowance of fluid motion are labeled.
As an example, let us write this general representation out in long–hand in the rectangular

coordinate system, (x, y, z), where the velocity vector is V = u î + v ĵ + w k̂ and where we assume
a constant conductivity, k, so that this property can be moved outside of the dilation (“del dot”)
term. The velocity gradient and viscous stress tensors are, respectively,

∇V =












∂u

∂x

∂u

∂y

∂u

∂z

∂v

∂x

∂v

∂y

∂v

∂z

∂w

∂x

∂w

∂y

∂w

∂z












τ =












µ

(
∂u

∂x
+

∂u

∂x

)

µ

(
∂u

∂y
+

∂v

∂x

)

µ

(
∂u

∂z
+

∂w

∂x

)

µ

(
∂v

∂x
+

∂u

∂y

)

µ

(
∂v

∂y
+

∂v

∂y

)

µ

(
∂v

∂z
+

∂w

∂y

)

µ

(
∂w

∂x
+

∂u

∂z

)

µ

(
∂w

∂y
+

∂v

∂z

)

µ

(
∂w

∂z
+

∂w

∂z

)












the latter of which represents an incompressible fluid and is clearly symmetric. Here, µ is the
so–called dynamic viscosity . Taking their inner product, along with the other terms, we find

ρ cp

[
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

]

= q̇ + k

[
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

]

+ 2 µ

[
(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

(7.6)

+ µ

[
(
∂u

∂y
+

∂v

∂x

)2

+

(
∂u

∂z
+

∂w

∂x

)2

+

(
∂v

∂z
+

∂w

∂y

)2
]

,

noting that Φ is always positive, since all its terms are quadratic. This observation is consistent
with the second–law of thermodynamics, as Φ represents a source of heat energy as resulting from
irreversible conversion of mechanical energy.

7.1.3. The Momentum Equations. The basis of the conservation of momentum is Newton’s
second law, roughly understood in an elementary context as the net force being equal to mass times
acceleration. More formally, it is

sum of the forces = rate of change of momentum,

is the viscous stress tensor for a linear, i.e. Newtonian incompressible fluid, and µ is the dynamic viscosity of the
fluid. Strictly speaking, the summation signs are not entirely necessary here, since there is an implied summation
convention for repeated indices.
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where the momentum, mV, can change because of change in speed, change in direction, or both.
Here, we will always take m as being fixed,7.6 so that, in the context of the previous section, we
can immediately write the right hand side of the equation as δx δy δz · ρ (being mass) multiplied
by the total derivative, DV/Dt.7.7 The other side of the equation is arguably the more challenging
here, because we have to account for shear, pressure, and gravitational (or other force–related)
contributions. Let us consider only 1 of the 3 coordinate directions, say x, to illustrate matters,
the remaining 2 being procedurally identical.

Consider the element in Fig. 7.2 having the forces acting on the 6 surfaces labeled. Surface forces

yδ

z

y

x
b

Fl F

Ff

F

n rF

tF

δx
δz

Figure 7.2. Differential element of fluid with all surface forces in the x direction shown:

normal forces are present on the right (r) and left (l) faces, while shear forces act on the

top (t), bottom (b), near (n) and far (f) faces. In general, there can be a body force such as

a component of gravity also acting in the positive x direction (not shown). Corresponding

forces in the y and z directions are likewise not shown.

arise from surface stresses acting on specific areas of the element. These forces can be subdivided
into normal contributions, i.e. Fl and Fr on the left and right faces, respectively, and those which
act tangentially, i.e. Fb and Ft on the bottom and top faces and Fn and Ff on the near and far
faces, respectively. We introduce the following nomenclature for these stresses:

• σxx — This is a stress which acts on a face normal to the x direction (this is the first x)
in the x direction. Forces Fl and Fr in Fig. 7.2 represent σxx.

• τyx — This describes a stress which acts on a face normal to the y direction in the x
direction, e.g. Ft and Fb in Fig. 7.2.

• τzx — This is a stress which acts on a face normal to the z direction in the x direction,
e.g. Fn and Ff in Fig. 7.2.

Note that the first subscript gives the face which the stress acts on, while the second gives the
direction7.8.

7.6There are problems where mass is not constant, for example in propulsion where fuel is consumed and the
overall mass of a rocket is decreasing.

7.7 Note that DV/Dt is a vector quantity, meaning

Du
Dt

î +
Dv
Dt

ĵ +
Dw
Dt

k̂ ,

and that these components belong respectively to 3 corresponding momentum equations in the (x, y, z) directions.
7.8A convenient memory aid is “f ire department” for the order of f ace and d irection.
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To quantify the forces shown in Fig. 7.2, we resort once again to Taylor series expansions of the
relevant variables from the center of the differential volume to the boundaries. That is, we assume
that σxx, τyx, and τzx are defined in the center of the differential control volume. According to the
standard 1–term truncated series (omitting higher order terms), we find

Fr =

(

σxx +
∂σxx

∂x

δx

2

)

δy δz Fl =

(

σxx −
∂σxx

∂x

δx

2

)

δy δz

Ft =

(

τyx +
∂τyx

∂y

δy

2

)

δx δz Fb =

(

τyx −
∂τyx

∂y

δy

2

)

δx δz

Fn =

(

τzx +
∂τzx

∂z

δz

2

)

δx δy Ff =

(

τzx −
∂τzx

∂z

δz

2

)

δx δy .

At this point, let us add the contribution of a body force, which will usually be gravity7.9. Here,
the force is the product of mass and acceleration (gravity), which yields ρ · δx δy δz · gx, where gx

is the component of the gravity vector in the x direction.
Now, the net force is simply the sum of these contributions

∑

Fx = Fr − Fl + Ft − Fb + Fn − Ff + ρ gx δx δy δz

=

(

ρ gx +
∂σxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z

)

δx δy δz ,

and, in light of the above discussion, including footnote 7.7 and the formula for the total derivative
in Eq. (7.4) on pp. 83, we can immediately write

δx δy δz ρ
Du

Dt
=

(

ρ gx +
∂σxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z

)

δx δy δz .

Canceling the elemental volume δx · δy · δz and expanding the expression for the total derivative,
we can write the complete equation for the x direction as

(7.7) ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= ρ gx +
∂σxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
·

By similar procedures, we obtain the y and z direction equations, respectively, as

(7.8) ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= ρ gy +
∂τxy

∂x
+

∂σyy

∂y
+

∂τzy

∂z

(7.9) ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= ρ gz +
∂τxz

∂x
+

∂τyz

∂y
+

∂σzz

∂z
·

Eqs. (7.7) through (7.9) are completely general in the sense that they do not yet make any modeling
assumptions for the stress terms. In fact, they contain too many unknowns to solve, i.e. 3 velocity
components and additional stress components.

What are still missing are constitutive relationships between velocity components and stresses.7.10

Essentially, these are the analogs for momentum of what Fourier’s Law is for conduction (c.f.
Eq. (2.1) on pp. 8), and, like that relationship, these “laws” are actually empirical and describe

7.9Although gravity is typically associated with the y direction, this is actually only a consequence of choosing
coordinates in a certain way. In general, the gravity vector does not have to be aligned with any single coordinate
direction and we assume here that there is a component gx.

7.10Constitutive equations actually relate velocity gradients to stresses, not velocity components directly.
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certain specific classes of fluids. Here, we will limit our discussion to linear, i.e. so–called Newto-
nian fluids, where stresses are linearly related to deformation rates. We already reported the shear
stresses (c.f. footnote 7.5 on pp. 83), i.e.
(7.10)

τxy = τyx = µ

(
∂u

∂y
+

∂v

∂x

)

τyz = τzy = µ

(
∂v

∂z
+

∂w

∂y

)

τzx = τxz = µ

(
∂w

∂x
+

∂u

∂z

)

and the normal stresses are (Bejan, 1984):

(7.11) σxx = − P + 2 µ
∂u

∂x
σyy = − P + 2 µ

∂v

∂y
σzz = − P + 2 µ

∂w

∂z
·

We can now substitute these constitutive relations into Eqs. (7.10) and (7.11) into the equations
we derived for the conservation of momentum, i.e. Eqs. (7.7) through (7.9). Several terms in
each equation regroup into the form of the continuity equation, Eq. (7.2), and therefore can be
dropped.7.11 We are left with the following final form of the x momentum equation, and by similar
procedures, the corresponding y and z momentum equations as well

(7.12) ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= ρ gx −
∂P

∂x
+ µ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

(7.13) ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= ρ gy −
∂P

∂y
+ µ

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)

(7.14) ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= ρgz −
∂P

∂z
+ µ

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)

·

7.11For example, in the x direction, omitting the body force, we find the “right hand side” (RHS) of Eq. (7.7)
to be

RHS =
∂
∂x

„

− P + 2 µ
∂u
∂x

«

+
∂
∂y

»

µ

„
∂u
∂y

+
∂v
∂x

«–

+
∂
∂z

»

µ

„
∂w
∂x

+
∂u
∂z

«–

,

= − ∂P
∂x

+ 2 µ
∂2u
∂x2

+ µ
∂2u
∂y2

+ µ
∂2v

∂y∂x
+ µ

∂2w
∂z∂x

+ µ
∂2u
∂z2

·

Note that we have assumed µ is constant, so that it can be taken outside of the derivatives. Presuming the order of
differentiation is irrelevant, that is for example

∂2

∂y ∂x
=

∂2

∂x ∂y
,

we can then write

RHS = − ∂P
∂x

+ 2 µ
∂2u
∂x2

+ µ
∂2u
∂y2

+ µ
∂2v

∂x∂y
+ µ

∂2w
∂x∂z

+ µ
∂2u
∂z2

= − ∂P
∂x

+ µ
∂2u
∂x2

+ µ
∂2u
∂y2

+ µ
∂2u
∂z2

+ µ
∂
∂x

„
∂u
∂x

+
∂v
∂y

+
∂w
∂z

«

·

We see that the last term in brackets is the continuity equation, which equals zero according to Eq. (7.2) on pp. 82.
Therefore, this group of terms drops out entirely.
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Note that we can combine Eqs. (7.12) through (7.14) into the compact vector form7.12

(7.15) ρ

(
∂V

∂t
+ V ·∇V

)

= ρ g − ∇P + µ ∇2V .

Taken with the statement of conservation of mass, which is Eq. (7.3) on pp. 82, Eqs. (7.15) are
collectively known as the Navier–Stokes equations for incompressible flow. When, in addition,
speaking of the energy equation as part of this group, we will refer to this set of laws collectively
as the “convection equations”.

7.2. General Remarks on the Convection Equations

Closer inspection of Eqs. (7.12) through (7.14) immediately reveals why convection heat transfer
is mathematically much more complicated than conduction. The “convective terms” on the left–
hand side of these 3 equations are all non–linear, meaning in this case that there are 9 instances
where velocity components are multiplied by their own derivatives. There is no general mathemat-
ical theory or framework for non–linear differential equations that corresponds, for example, to the
separation of variables method for linear equations (Hildebrand, 1976), though there are various
ad hoc methods and approximations that are useful for specific classes of problems.7.13

As written,7.14 conservation of energy, Eq. (7.5) on pp. 84, depends upon, but is entirely un-
coupled from the conservation laws of mass and momentum, Eq. (7.3) on pp. 82 and Eqs. (7.12)
through (7.14), respectively. More specifically, mass and momentum comprise 4 equations in 4
unknowns: pressure distribution, P , and the velocity field, V, which contains the 3 velocity com-
ponents (u, v, w). These 4 equations can be solved with total disregard for conservation of energy.
Subsequently, V can be inserted in the specified manner into the conservation of energy statement,
which is then solved for temperature, T .7.15 In this specific sense, “convection” itself is non–linear,
though the specific component of the energy equation is not.

There are also various exceptions to this strict uncoupling. For example, if temperature differ-
ences are sufficiently large such that viscosity is no longer a constant, but rather µ = µ(T ), then
both the energy and the momentum equations and functions of both V and T . Another important
case is that of free convection, where a non–constant density is reconciled with the overall incom-
pressible flow assumption via the Boussinesq approximation. Here, T appears in the momentum
equation by virtue of modeling the bulk expansion coefficient, β in Eq. (7.1) on pp. 81, by an
explicit finite difference. It should be clear that such contingencies render an already–challenging
problem even more so.

7.12 Let us expand briefly on a point made in footnote 7.4 on pp. 82. Eq. (7.15) is shown in vector operator form,
so in a subtle sense, it is more general than Eqs. (7.12) through (7.14) that are written specifically in rectangular
coordinates. Similar generality applies to continuity, Eq. (7.3) vs. Eq. (7.2), and conservation of energy, Eq. (7.5) vs.
Eq. (7.6). Vector operators for numerous coordinate systems are given by Moon and Spencer (1961).

7.13In fact, the Navier–Stokes problem itself is particularly deep and is regarded as one of the outstanding
unsolved problems in mathematics. It is one of the 7 so–called “Millennium Prize” problems (Dickson, 2000), offering
a US $1 million award for rigorous demonstration of certain smoothness and boundedness properties in its 3–D form.

7.14We remind the reader that this discussion applies strictly to equations as shown here, i.e. in their incom-
pressible form.

7.15The phenomenon we are describing is perhaps most obvious in Eq. (7.6) on pp. 84. The convective acceleration
terms on the left–hand side each consist of a product of a known velocity component and a first partial derivative
of T . There are no terms in this equation that are products of T and any of its own derivatives, so the “convective
terms” in this instance are linear, i.e. first–derivatives of T , though with non–constant coefficients.
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7.3. Dimensionless Representation of the Convection Equations

We have previously examined the so–called Robbins configuration for conduction in §4.4 and
§4.5 based on the dimensionless method of framing the problem. Though dimensionless analysis
furnishes a number of kinds of insights and advantages for scientific and engineering work (c.f.
footnote 4.6 on pp. 34), its main benefit in that particular instance was the reduction from 8
independent parameters to 3 dimensionless ones, those being dimensionless coordinates x and t
and the Biot number.7.16 In other words, the non–dimensionalizing process offered the maximal
compression of information to specify a particular instance of the problem. This is obviously of
enormous value in obtaining maximal generality (and thus utility) of solution. The essential step
was to first non–dimensionalize the governing equation and the boundary and initial conditions,
the results being Eqs.(4.9) through (4.11), and then to proceed in the usual mathematical fashion
of developing the solution.

As observed above, convection is a generalization of conduction that accounts for fluid motion
and the governing equations are commensurately more complicated. Here, it will be of even greater
significance to be able to frame problems in a non–dimensional form on certain occasions. In
this section, we will briefly sketch the non–dimensionalizing process for the mass, momentum, and
energy equations of convection heat transfer based essentially upon the procedures already shown
in §4.4. We will also review the resulting dimensionless numbers that coalesce from this procedure.

Here, we will assume the availability of relevant length and velocity scales of L and u∞, respec-
tively, i.e.

x∗ =
x

L
y∗ =

y

L
z∗ =

z

L
u∗ =

u

u∞
v∗ =

v

u∞
w∗ =

w

u∞
,

where the “starred” symbol (∗) is the conventional notation for the dimensionless analog of a
dimensional quantity. Recall in §4.4 “time” was scaled according to the rate of heat diffusion,
c.f. Eq. (4.6) on pp. 34, consistent with the diffusion–only mechanism of conduction and lack of a
bulk–motion velocity. The fact that there is now a non–zero reference velocity implies scaling time
as

t∗ =
u∞

L
t .

Finally, we will assume a reference pressure P∞ and scale pressure difference according to a multiple
of the dynamic pressure

P ∗ =
P − P∞

ρ u2
∞

·

We note that these choices represent the somewhat generic way of non–dimensionalizing the con-
vection equations and that specific types of problems could necessitate somewhat different scaling.

The actual non–dimensionalizing procedure is quite straightforward, following basically along
the lines of the approach shown in §4.4. Specifically, use Chain Rule to transform derivatives to
the “starred” system, e.g.

∂

∂t
=

∂

∂t∗
∂t∗

∂t
=

u∞

L

∂

∂t∗
and

∂

∂x
=

∂

∂x∗
∂x∗

∂x
=

1

L

∂

∂x∗ ,

etc., then use additional algebra to re–arrange terms and discern relevant dimensionless numbers
that characterize the system. Conservation of mass has no parameters and, consequently, realizes

7.16See Eq. (4.12) on pp. 35.
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the same form as its dimensional ancestor in Eq. (7.3) on pp. 82

(7.16) ∇∗ ·V∗ = 0 .

Applying dimensionless derivatives for the momentum Eqs. (7.15) implies

ρ
u2
∞
L

(
∂V∗

∂t∗
+ V∗ ·∇∗V∗

)

= ρ g −
1

L
ρ u2

∞ ∇∗P ∗ +
u∞

L2
µ ∇∗2V∗ .

which can be re–arranged to the form

(7.17)
∂V∗

∂t∗
+ V∗ ·∇∗V∗ =

L

u2
∞

g − ∇∗P ∗ +
1

Re
∇∗2V∗ ,

where

(7.18) Re =
ρ u∞ L

µ
=

u∞ L

ν
=

inertial forces

viscous forces

is the Reynolds number . The physical implication of Re is the relative magnitude of inertial
vs. viscous forces, which is a direct consequence of its scaling of the viscous (momentum diffusion)
terms, ∇∗2V∗, relative to the un–modified inertial terms on the left–hand side of Eq. (7.17). Viscous
effects are dissipative, meaning small values of Re imply large damping of any flow disturbances, the
result being a tendency to limit and/or degrade instabilities that would lead to a transition from
laminar to turbulent flow. Conversely, high values of Re imply little damping and correspondingly
larger tendencies toward turbulent flow.

Observe that we have left the gravitational term in a somewhat unorthodox form, L g/u2
∞.

Gravitational effects are important primarily in flows where a liquid free surface is relevant, e.g.
so–called “open channel” flows, which are driven by strictly by gravity. In such cases, one coordinate
is typically chosen to coincide with the gravitational vector. For example, if alignment with y is
selected, then g = (0, g, 0). The unorthodox term is then readily recognized as 1/Fr2, where
Fr = u∞/

√
L g is the Froude number , which indicates the ratio of inertial forces to gravitational

forces. Open–channel flows are routinely highly turbulent because their liquid mediums (usually
water) have high density, c.f. Eq. (7.18). Such problems are beyond the scope of our basic treatment
here, so we will not take the gravitational term as being critical for further discussions.

Finally, let us apply the dimensionless analysis to conservation of energy, Eq. (7.5), where we
will take the conductivity, k, as being a constant and further assume that temperature can be
non–dimensionalized as

T ∗ =
T − Ts

T∞ − Ts
,

where T∞ and Ts are constant reference temperatures for the fluid and a bounding surface, re-
spectively. We will also make the change of variables τ = µ τ̃ to draw–out the dynamic viscosity
explicitly in the equation. We find

ρ cp
(T∞ − Ts) u∞

L

[
∂T ∗

∂t∗
+ V∗ ·∇∗T ∗

]

= q̇ + k
T∞ − Ts

L2
∇∗2T ∗ + µ

( u∞

L

)2
τ̃ ∗ : ∇∗V∗ ,
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which can be re–arranged as

∂T ∗

∂t∗
+ V∗ ·∇∗T ∗ =

q̇ L

ρ cp (T∞ − Ts) u∞
+

k (T∞ − Ts) L

L2 ρ cp (T∞ − Ts) u∞
∇∗2T ∗

+
µ u2

∞ L

L2 ρ cp (T∞ − Ts) u∞
τ̃ ∗ : ∇∗V∗ ,

and subsequently written in dimensionless form as7.17

(7.19)
∂T ∗

∂t∗
+ V∗ ·∇∗T ∗ = q̇∗ +

1

Re · Pr
∇∗2T ∗ +

Br

Re · Pr
τ̃ ∗ : ∇∗V∗ .

There are a number of interesting aspects of this equation.
First, we notice a dimensionless energy generation term, q̇∗. In a way, this is an obsolete hold–

over (for our purposes) from pure conduction, where we had allowed for various mechanisms of
energy generation. For convection, we will take viscous dissipation as the sole generation mecha-
nism, where it even exists at all (discussed below). Therefore, we will essentially take q̇∗ = 0 from
this point on, although we recognize that there are more “exotic” problems where this term would
be relevant.

There are 2 new dimensionless numbers here, too. First is the Prandtl number ,

(7.20) Pr =
ν

α
=

momentum diffusivity

thermal diffusivity
,

which is the ratio of the kinematic viscosity, also (appropriately) called the momentum diffusivity,
and the thermal diffusivity. It is a dimensionless measure of the relative rates at which momentum
and heat diffuse. For example, gases have Pr around 1, meaning momentum and heat diffuse
roughly at the same rate, while oils and liquid metals have high and low Pr, respectively. This
will have implications in different kinds of flows, for example those having a boundary layer, that
we will discuss later. Notice that Pr is comprised solely of material properties, so it is actually a
property of the fluid itself, unlike, for example, the Reynolds number, which is comprised of both
fluid–specific and problem–specific variables.

The second new dimensionless number in Eq. (7.19) is the Brinkman number ,7.18

(7.21) Br =
µ u2

∞
k (T∞ − Ts)

=
heat generation

heat transfer
,

7.17The coefficient of the Laplacian of temperature is developed as

k (T∞ − Ts) L
L2 ρ cp (T∞ − Ts) u∞

=
k

L ρ cp u∞
=

α
L u∞

=
α

L u∞
· ν

ν
=

ν
L u∞

· α
ν

=
1

Re · Pr

while the coefficient of the dissipation term is processed as

µ u2
∞ L

L2 ρ cp (T∞ − Ts) u∞
=

µ u2
∞

k (T∞ − Ts)
· k

ρ cp
· 1

u∞ L
=

µ u2
∞

k (T∞ − Ts)
· α

u∞ L
· ν

ν
=

Br
Re · Pr

·

7.18Some texts prefer the Brinkman number (Mills, 1999), while others (Özişik, 1985; Bergman et al., 2011)
discuss the scaling of dissipation according to the Eckert number

Ec =
u2
∞

cp (T∞ − Ts)
,

from which it is straightforward to demonstrate the relationship Br = Ec · Pr.
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which is a measure of the amount of heat generation via the mechanism of viscous dissipation
relative to the rate of heat transfer. Clearly, all 3 parameters are relevant to heat generation in
the most general case, so that low Re and Pr, and high Br will render dissipation an important
contribution.

7.4. The No–Slip Viscous Boundary Condition and the Nusselt Number

So far we have considered the convection coefficient, h, only to the extent that it has helped
frame certain types of boundary conditions for conduction problems.7.19 To a large extent, and
especially for applications, the goal of convection analysis is actually the determination of h itself
because the heat transfer is then immediately available from Newton’s Law of Cooling, Eq. (2.24)
on pp. 14. There is an important dimensionless interpretation of h when taken in the context of
viscous flow.

Recall that viscous flows are governed at boundaries by the so–called “no–slip” boundary con-
dition.7.20 Specifically, for stationary boundaries, the adjacent fluid is at rest, the implication
being that heat transfer at that particular location is strictly by conduction (Fig. 7.3). Of course,

y flow

no  slipbody

Figure 7.3. In a viscous flow, the fluid velocity at the boundary matches the velocity of

the boundary itself, i.e. there is no “slipping”. If the boundary is at rest, the fluid at that

location is at rest, as well, so that heat transfer exclusively at that location is strictly via the

mechanism of conduction, i.e. diffusion.

convection becomes important any distance away from the boundary.
Given these observations, we can conclude from Fig. 7.3 that, at the boundary location y = 0,

but on the fluid side,7.21 the heat transfer resulting from any temperature difference between flow
and the body is due to conduction only. Furthermore, this heat transfer must be equal to that by
the larger mechanism of convection for the flow because there are no heat storage or generation
mechanisms acting at the boundary. In effect, conduction within the fluid at the boundary equals
convection within the fluid, i.e.

(7.22) −k
∂T

∂y

∣
∣
∣
∣
y=0

= h
(

T |y=0 − T∞
)

,

assuming a fluid freestream temperature of T∞. Notice the superficial resemblance to the conduction
boundary condition of the 3rd kind, Eq. (2.25) on pp. 15. However, these equations are physically

7.19We have considered both the general “boundary condition of the third kind” in §2.5, c.f. Eq. 2.25 on pp. 15
and a convection convection as the “built–in” boundary condition in deriving the fin equation in §3.2 on pp. 18.

7.20The no–slip boundary condition is not obvious and, in fact, has a complicated history in its own right (Panton,
1984). However, it has been shown empirically to be a very good description of of the behavior of fluids at a boundary
and critical to the proper modeling of the motion of viscous fluids, in general (Schlichting, 1979).

7.21 In the context of calculus, we might frame this as a “one–sided limit”, i.e. the limit as we approach y = 0
from the positive side, y → 0+, but still within the restriction of the continuum assumption, of course!
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different in an important way — the Fourier term for Eq. (2.25) is on the “body” side, while here
it represents the “fluid” side (y → 0− vs. y → 0+, respectively, in the context of footnote 7.21).
On a more practical level, the thermal conductivity, k, appearing in Eq. (2.25) is that of the solid
body, while here it is of the flowing fluid.

We can now apply the dimensional analysis using the definitions from §7.3 above, specifically,
spatial rates–of–change are scaled by length L and temperature is scaled using T∞ and the boundary
temperature

∂

∂y
=

1

L

∂

∂y∗
and T ∗ =

T − T |y=0

T∞ − T |y=0

,

meaning that the boundary equation above is

−
k (T∞ − T |y=0 )

L

∂T ∗

∂y∗

∣
∣
∣
∣
y∗=0

= h (T |y=0 − T∞) .

A little algebra shows

(7.23) Nu =
h L

k
=

∂T ∗

∂y∗

∣
∣
∣
∣
y∗=0

=
convection heat transfer

conduction heat transfer
,

which is known as the Nusselt number . Formally, it is clear that the Nusselt number is the dimen-
sionless temperature gradient at the boundary. Moreover, knowledge of the Nusselt number implies
h, so that it is not much of an exaggeration to say that the Nusselt number is the desired solution,
in a practical sense, to the convection problem. The Nusselt number can also be interpreted as
the ratio of convection to conduction, in a sense the “amplification” of heat transfer furnished by
convection over just conduction alone, assuming Nu > 1. Specifically, if spatial rates–of–change
scale with L, then ∂T/∂y ∼ ∆T/L, where ∆T = T∞ − T |y=0 and

Nu ∼
h ∆T

(
k ∆T

L

) ·

Again, it is important to recognize that the thermal conductivity, k, in Eq. (7.23) is that of the
moving fluid.

We will drop the “star” notation (∗) for discussions of convection in succeeding chapters for
convenience of presentation, reverting to it only briefly as necessary to avoid ambiguity.



CHAPTER 8

Internal Convection: Laminar Flow in Ducts

As was emphasized in §7.2, the admission of fluid motion essentially pushes the dynamics
beyond the linear realm into the non–linear. Here, the collection of problems that can be

solved by purely analytical means is limited and one must typically resort to numerical and ex-
perimental methods to make headway on “real world” problems that have any real complications
in terms of geometry or prescribed flow conditions (c.f. Table 1.1 on pp. 6).8.1 However, there are
several classes of flows that can be solved exactly, as well as a broader collection that can be solved
approximately, e.g. using integral methods. While their practical use is somewhat limited, these
are still enormously useful both in conceptual and mathematical contexts.

8.1. Laminar Fully–Developed Flow: Parallel Motion

A rudimentary phylogeny of incompressible flows from the perspective of “mathematical solve-
ability” is given in Fig. 8.1. Both the Navier–Stokes equations, Eq. (7.15) on pp. 88, and the

irrotational

incompressible  flow

viscous
(N−S  eqns)

exactly  solveable

parallel  flows Beltrami  flows

boundary  layer
(Prandtl  eqns)

similarity

inviscid
(Euler  eqns)

(Bernoulli  eqn)
streamline

(potential  eqns)

Figure 8.1. Phylogeny of incompressible flows, roughly according to the conventions

prescribed by Wang (1989, 1991)

so–called Euler equations for inviscid flow are non–linear systems.8.2 For our purposes in studying
convection, we will concentrate on 2 scenarios: flows of the boundary–layer type, which are also still

8.1We again remind the reader that we are speaking of viscous flows in this statement, not inviscid or further
idealized cases, e.g. potential flows and those described by the Bernoulli equation (Fig. 8.1), for which there is an
enormous literature on exact solutions. Introductory texts, such as Munson et al. (2006), are a good starting point
for these configurations.

8.2The Euler equations can be derived by applying the inviscid constitutive relationships to the general stress–
based momentum conservation statements in Eqs. (7.7) through (7.9) on pp. 86. The constitutive relationships for
inviscid flow are that all normal stresses are equal to the pressure and all shear stresses vanish (Munson et al., 2006).
We will not study this system in any particular depth.

94
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non–linear (next chapter), and a subset of exactly–solvable viscous flows that are actually linear:
parallel flows.8.3

Parallel flows are those in which 2 of the 3 velocity components vanish, so that, without loss
of generality V = (u, 0, 0). This restriction has several far–reaching implications. First, consider
conservation of mass in the form of Eq. (7.2) on pp. 82. For v = w = 0, this equation simplifies to

∂u

∂x
= 0 ,

which says that the velocity profile is not changing in the flow direction, x, i.e. the flow is fully
developed.8.4 We immediately infer that the parallel flow assumption will be most applicable to
internal duct flows (flows primarily along a particular axial direction), where the duct is long (flow
is fully–developed).

A second implication is that the substantive portions of the y and z momentum equations, i.e.
Eqs. (7.13) and (7.14) on pp. 87, vanish. In particular, the pressure gradient terms are the only ones
remaining (again presuming we are omitting the body force term related to gravity, as discussed
in §7.2), meaning that these equations are reduced to the trivial statements that pressure in their
respective coordinate directions is constant.

Third, the one remaining momentum equation in x is linearized, since ∂u/∂x = v = w = 0
means that the non–linear convective terms all cancel

∂u

∂t
+

!
!

!!$
0

u
∂u

∂x
+

%
%

%%&
0

v
∂u

∂y
+

!
!

!!$
0

w
∂u

∂z
= −

∂P

∂x
+

1

Re






%
%

%&
0

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2




 ,

leaving

(8.1)
∂u

∂t
= −

∂P

∂x
+

1

Re

(
∂2u

∂y2
+

∂2u

∂z2

)

as the governing equation for momentum conservation for parallel flow.8.5

There is a subtle fourth point regarding turbulence, which arises by amplification of distur-
bances when viscous effects become sufficiently small relative to inertial effects. Turbulence cannot
occur in flows governed by Eq. (8.1) because the inertial terms have vanished — this expression
fundamentally describes laminar flows. However, this is most emphatically not to say that turbu-
lence cannot arise in primarily axial flows — it certainly can! Those instances are governed by more
complicated equations and are, strictly speaking, not parallel flows because fluctuating components
of velocity exist in the y and z directions.

8.3The reader should have a good idea of at least the concept of similarity solutions from §4.6 on pp. 36.
Conversely, Beltrami flows seem anecdotally to be appreciably less familiar. Given vorticity ω = ∇ × V, Beltrami
flows are those which satisfy ∇× (ω ×V) = 0. The subsequent linearization renders the no–slip boundary condition
difficult to satisfy, so physical manifestations of such flows are difficult to obtain (Wang, 1989, 1990, 1991).

8.4“Fully developed” and ∂/∂x = 0 are almost, but not quite synonymous because the latter does not apply to

pressure. In other words, for flows whose motion is driven by a pressure gradient it must be the case that ∂P/∂x %= 0,
otherwise the fluid would be at rest, and such flows can still be fully developed in terms of velocity profile.

8.5Eq. (8.1) is obviously reported in its dimensionless context and is valid for Cartesian (rectangular) coordinates.
The diffusion term on the right can be written in terms of the Laplacian, ∇2u, where the del operator can be cast in
various other coordinate systems. See e.g. footnote 7.4 on pp. 82.
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Finally, according to the same arguments above, the energy equation simplifies to

(8.2)
∂T

∂t
+ u

∂T

∂x
=

1

Re · Pr

[
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

]

+
Br

Re · Pr

[
(
∂u

∂y

)2

+

(
∂u

∂z

)2
]

·

These equations can be applied to various parallel flow configurations.

8.2. The Planar Couette Problem

The planar Couette problem is defined as the steady flow between 2 infinite parallel plates
separated by a distance L, where one of the plates moves in its own plane at a constant velocity u0.
It is one of the most basic viscous flow models (Özişik, 1985; Anderson, 1991; Mills, 1999), as well
as being a good model for certain physical devices such as a low–clearance journal bearing having
no vertical loading (Fig. 8.2). According to the no–slip boundary condition discussed in §7.4, the

Ly

x

u

flow

o

stator  surface

rotor  surface

R

Figure 8.2. Parallel plane Couette flow as a model for a concentric–cylinder (rotor–

stator) journal bearing having a very thin gap, i.e. where R ' L. Here, a cylindrical

configuration (left panel) is well–approximated in rectangular geometry (right panel).

velocity at y = L is equal to the speed of the top plate, while the velocity at y = 0 is 0, since that
plate is at rest. However, we will examine this configuration from the dimensionless perspective,
where L and u0 are the length and velocity scales, respectively, i.e. y∗ = y/L and u∗ = u/u0.
Dispensing with the “star” notation (∗) for convenience, we have boundary conditions for velocity
of

u
∣
∣
∣
y=0

= 0 and u
∣
∣
∣
y=1

= 1

Motion is driven by external sources and there is no significant pressure gradient. Moreover, we will
assume, for the time being, that the fluid domain extends significantly “into and out of the paper”
in the z direction, so that boundaries are far away and gradients in this direction are thus negligible.
Finally, let us assume the flow has been established so that steady–state operation may be assumed.
Under these conditions, conservation of momentum in Eq. (8.1) reduces to d2u/dy2 = 0 and the
velocity profile under the above boundary conditions is8.6

(8.3) u = y .

8.6In Eq. (8.1), u = u(y, z, t), but given independence from z and t and the absence of pressure gradient, u = u(y),
so that the equation simplifies to d2u/dy2 = 0. It is readily integrated as u = C1 y + C2, where C1 = 1 and C2 = 0
are also readily determined from the boundary conditions. We remind the reader that this solution is dimensionless,
i.e. we mean u∗ = y∗, from which the actual (dimensional) distribution u = u0 y/L is easily recovered.
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Conservation of energy in Eq. (8.2) also simplifies. There is no prescribed axial temperature
gradient in x, which is consistent with the axi–symmetric nature of the bearing in Fig. 8.2, i.e. that
there is no rotational dependence. Taken with the above observations of independence with respect
to t and z, the temperature problem reduces to T = T (y) and Eq. (8.2) simplifies to

d2T

dy2
= − Br ,

where we have used the fact that du/dy = 1 from the solution of the momentum problem.
Before integrating this equation to obtain T , let us briefly discuss the boundary conditions that

would be appropriate for the stationary and sliding surfaces. In an actual bearing problem, as
in Fig. 8.2 for example, the conditions at y = 0 and y = L would not be prescribed per se, but
rather would be incidental to the larger thermodynamics of the bearing as a whole. In particular,
we might assume that the frictional heat that is generated would be transferred both into the
spinning shaft and the bearing block. Given the establishment of a steady–state, the shaft might
reach some elevated, but as yet unknown uniform temperature throughout its cross–section. Heat
conducted through the bearing block would probably be governed ultimately at its exterior surface
by a Robbins boundary condition of the 3rd kind, perhaps reflecting some sort of forced cooling of
the block. From an engineering standpoint, this problem would require simultaneous solution of T
throughout the various different parts of the device.

We shall solve only the more “academic” problem limited strictly to the flow. The above discus-
sion suggests that we should prescribe boundary conditions of the first kind, specific temperatures,
at both y = 0 and y = L. Take these as T0 and TL, respectively. Switching temporarily back to
the “star” notation (∗) to define dimensionless temperature, we refer back to §7.3, which suggests

T ∗ =
T (y) − T0

TL − T0
,

so that T ∗ = 0 at the bottom (stator) and T ∗ = 1 at the top (rotor).8.7 Now, dropping the “star”
notation (∗) again, the boundary conditions for temperature are

T
∣
∣
∣
y=0

= 0 and T
∣
∣
∣
y=1

= 1

whereby the solution is found to be8.8

(8.4) T = −
Br

2
y2 +

(

1 +
Br

2

)

y .

The velocity profile in Eq. (8.3) is linear, having no parameters, but the temperature profile is
parabolic and depends upon the Brinkman number (Fig. 8.3). For Br = 0, heat transfer is by pure
conduction and the profile is linear, T = y, from Eq. (8.4). Increasing Br represents progressively
larger viscous dissipation in the flow, which affects not only the fluid temperature, but also heat
transfer at the boundaries.

8.7 Implicitly, we are assuming TL > T0, without loss of generality. This also implies that the definition of the
Brinkman number in Eq. (7.21) on pp. 91 for this problem is Br = (µ u2

∞)/(k [TL − T0]).
8.8The governing equation is integrated twice as T = − Br y2/2 + C1 y + C2 and a little algebra shows C2 = 0

and C1 = 1 + Br/2.
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Figure 8.3. Temperature distribution as a function of the Brinkman number in 1–D

Couette flow.

Interestingly, because the convective terms vanish for this problem in the energy equation, heat
transfer in the vertical direction can be calculated directly from Fourier’s Law. It is relatively
straightforward to show

q′′ = −
k (TL − T0)

L

dT

dy
,

where dT/dy is dimensionless. The salient point here is that the sign of the derivative determines
the direction of heat transfer.8.9 As we just observed, in pure conduction, T = y, so dT/dy = 1
and q′′ = −k(TL − T0)/L, i.e. a constant rate of heat transfer in the negative y direction, from
the rotor to the stator. Also, the maximum (dimensionless) temperature is T = 1 at the top
plane. The situation can be stated more deftly in terms of the Nusselt number, which can obtained
almost effortlessly here because we cast the problem in dimensionless terms at the outset. Recalling
from Eq. (7.23) on pp. 93 that the Nusselt number is the dimensionless temperature gradient at a
boundary, we can readily see at the bottom plane, for example, that

(8.5) Nu =
dT

dy

∣
∣
∣
∣
y=0

=

(

− Br · y + 1 +
Br

2

)∣
∣
∣
∣
y=0

= 1 +
Br

2
·

The heat transfer to the journal housing is linear in Br and for the special case of Br = 1, we have
Nu = 1, consistent with the discussion above.

Fig. 8.3 clearly shows that non–zero Brinkman numbers raise the fluid temperature, and a
sufficiently large Br actually results in fluid temperatures that exceed T at the top boundary.
Here, the slope flips sign and heat transfer is in the positive y direction, i.e. to the rotor, while
still maintaining its movement in the negative y direction at the bottom. In essence, there is a
net generation of thermal energy and transfer to both boundaries. Given the exact solution, we
can exactly quantify the terms of this phenomenon. Clearly, the maximum temperature within the

8.9Since TL > T0, we note that the quantity k(TL − T0)/L is also greater than zero.
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dimensionless domain of 0 ≤ y ≤ 1 must occur where dT/dy = 0. We can once again take the
derivative of the solution in Eq. (8.4), as we just did to calculate Nu. Setting it to zero indicates

dT

dy
= − Br · y + 1 +

Br

2
= 0

is the relevant equation and its solution

(8.6) ymax =
1

Br
+

1

2

determines where the maximum, if any, resides. Observing once again that the physical domain
of this problem is limited to y ≤ 1, this equation is only satisfied for Br ≥ 2. The physical
interpretation is as follows

• Br < 2: Fluid in the domain does not exceed the maximum T = 1 at the top wall.
• Br = 2: A maximum exists and happens to be equal to T = 1 and this maximum occurs

at the top wall. Since, by definition, dT/dy = 0 here, there is no heat transfer either way
at this location. Tendency of upward heat transfer from the generation/dissipation effect
is exactly balanced by the tendency for downward heat transfer due to the temperature
difference between the two boundaries. The top boundary is effectively adiabatic.

• Br > 2: A maximum exists and it resides within the fluid domain according to Eq. (8.6)
and this maximum exceeds T = 1. Its magnitude is readily calculated by substituting
Eq. (8.6) into Eq. (8.4).8.10 The y location of maximum temperature and its value are
shown in Fig. 8.4, as is Nu at the bottom wall. As Br → ∞, the location of the maximum
asymptotically approaches mid–channel, y = 1/2, according to Eq. (8.6), but the maximum
temperature continues to grow linearly.

It is important to keep in mind that the entire modeling framework we have assumed thus far for
convection is based upon material properties holding constant. Although high Brinkman numbers
can certainly be obtained, the resulting range of temperatures would be very large, so property
variation would become important for most fluids, as would the tendency to de–stabilize into more
sophisticated fluid motions (Joseph, 1964, 1965). These are more complicated dynamics and outside
our current scope. Consequently, the trends shown in Fig. 8.4 for the limit of large Br are not
physically obtainable for many real fluids.

8.10The maximum temperature, Tmax, thus obtained is

Tmax = − Br
2

„
1

Br
+

1
2

«2

+

„

1 +
Br
2

« „
1

Br
+

1
2

«

= − Br
2

„
1

Br2
+

1
Br

+
1
4

«

+
1

Br
+

1
2

+
1
2

+
Br
4

= − 1
2 Br

− 1
2

− Br
8

+
1

Br
+ 1 +

Br
4

Tmax =
Br
8

+
1
2

+
1

2 Br
·
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Figure 8.4. Maximum temperature and its location in 1–D Couette flow and Nusselt

number at the bottom wall.

8.3. The General Couette Problem

The planar Couette configuration in Fig. 8.2 depends only on one independent coordinate.
Consequently, it is a rather straightforward problem, by which we mean that it can be solved by
direct integration. The physical interpretation of that model is that there is no variation in the
direction “into and out of the paper”, or equivalently, that there are no boundaries in that direction.
The device’s depth dimension is infinite. Here, we will add the physically–relevant restriction of
end–boundaries, so that the device is finite, i.e. physically realizable, as shown in Fig. 8.5. Once

stator
y z

x

H

L

rotor

Figure 8.5. Parallel Couette flow in the rectangular cross–section as a model for a

finite–width concentric–cylinder (rotor–stator) journal bearing having a very thin gap. As

in Fig. 8.2 on pp. 96, the cylindrical configuration (left panel) is well–approximated in rect-

angular geometry (right panel). However, this model is more physically realistic than the

planar version in Fig. 8.2 because it specifies end–surfaces that contain the fluid.
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again the flow is in the x direction, but is now bounded by physical surfaces in both the y and z
coordinates. That is, it takes place in the cross–sectional domain 0 ≤ y ≤ L and 0 ≤ z ≤ H.

Let us first be very systematic in defining the problem, especially in terms of its dimensionless
aspect. If we maintain the dimensionless basis of the planar problem in y from the previous section,
then the domain in z is non–dimensionalized as

y coordinate z coordinate

0 ≤ y ≤ L 0 ≤ z ≤ H

0 ≤
y

L
≤ 1 0 ≤

z

L
≤

H

L

according to our design in §7.3 on pp. 89. Therefore, let us define the aspect ratio of the domain as
φ = H/L, so that if we again drop the “star” notation (∗), the dimensionless problem domain is

0 ≤ y ≤ 1 and 0 ≤ z ≤ φ ,

as shown in Fig. 8.6. As with the planar problem, we will take the flow here to be steady–state

z

y
1

φ
(0,0)

Figure 8.6. Dimensionless domain for the finite–width Couette problem. Flow is the x

direction, i.e. “into the paper”.

and have no gradients in the flow direction, i.e. in x, including a pressure gradient, which is again
consistent with the axi–symmetric nature of the bearing, i.e. that there is no rotational dependence.
Conservation laws for momentum and energy in Eq. (8.1) and Eq. (8.2) then simplify, respectively,
to8.11

(8.7)
∂2u

∂y2
+

∂2u

∂z2
= 0

(8.8)
∂2T

∂y2
+

∂2T

∂z2
= − Br

[
(
∂u

∂y

)2

+

(
∂u

∂z

)2
]

,

where u = u(y, x) and T = T (y, z). Boundary conditions on velocity are much the same as for
the planar problem, with the exception of adding the end–boundaries. As this is viscous flow, all

8.11Eq. (8.7) is, by now, immediately recognized as a Laplace equation. Likewise, Eq. (8.8) has the Laplacian
operator on the left, but has terms on the right–hand–side, as well. In the order of operations of solving this system,
these terms are known because the problem in u is addressed first. Consequently, the right–hand–side is taken as a
source term, in which case expressions of this form are known as Poisson equations.
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boundaries are “no–slip”, implying

(8.9) u
∣
∣
∣
y=0

= u
∣
∣
∣
z=0

= u
∣
∣
∣
z=φ

= 0 and u
∣
∣
∣
y=1

= 1 ,

the last equation at y = 1 representing the motion “into the paper” of the rotating shaft.
For the energy equation, we will make a slight change, a simplification actually, because this

problem is already quite a bit more complex than its planar cousin in the previous section.8.12

Specifically, instead of different boundary temperatures for the rotor and stator (and perhaps even
the additional end–boundaries here), let us take all surfaces in Fig. 8.6 to be at the same constant
temperature, T0. The viscous dissipation is then the only mechanism “driving” the temperature
problem. This implies a slight modification of the dimensionless temperature and the Brinkman
number from the planar Couette problem. Switching momentarily to the “star” notation (∗), we
define8.13

T ∗ =
T (y, z) − T0

T0
Br =

µ u2
0

k T0
·

Consequently, the boundary conditions for temperature are homogeneous of the first kind

(8.10) T ∗
∣
∣
∣
y=0

= T ∗
∣
∣
∣
z=0

= T ∗
∣
∣
∣
z=φ

= T ∗
∣
∣
∣
y=1

= 0 .

Of course, the problem for u(y, z) could readily be managed using SOV, although the one for
T (y, z) is clearly much more difficult. In the interest of continuity, we shall address both using the
eigen–function integral transform method introduced in chapter 6.8.14 A detailed analysis is given
in appendix H starting on pp. 167, with the solution for u(y, z) shown in Eq. (H.5) on pp. 169 and
the solution for T (y, z) given by Eq. (H.15) on pp. 178.8.15

The immediate question revolves around how the idealized (planar) Couette problem differs
quantitatively from the finite configuration of this section, but the answer actually depends to
some degree on the point–of–view from which the question is being asked. For instance, if one is
concerned strictly with the temperature distribution at the centerline, the issue is really framed as
finding how far away the side walls of the device must be before their effect is negligibly small at
the center. This question is readily answered by merely plotting T (y,φ/2) for various aspect ratios
alongside the planar result in Eq. (8.4) on pp. 97.8.16 Some such curves are plotted in Fig. 8.7.
It is immediately clear that the centerline temperature profiles converge very quickly to the 1–D
result and that for φ > 2, wall effects will be negligible strictly at the center. Conversely, small
values of φ result in asymmetries that shift the regions of maximum temperature toward the sliding

8.12We will handle the overall finite problem using the integral transform technique established in chapter 6
specifically, as developed by Wendl and Agarwal (2002). Therefore, we are not actually making the simplification for
mathematical expedience, but rather simply because the lengths of mathematical expressions themselves borderline
on being unwieldy.

8.13The basic Brinkman number is defined in Eq. (7.21) on pp. 91. The specific form for the planar Couette
problem was given in footnote 8.7 on pp. 97.

8.14We note that the momentum problem has actually been solved already in the form of the equations shown in
§E.3, though the coordinate basis is different. Also, that particular treatment is based on the physical (dimensional)
rather than a dimensionless one. While the appropriate transform could be devised to use this result directly, it will
arguably be more convenient to rework it according to the problem specification here.

8.15The reader is referred to those results. They are not repeated here because T (y, z) is especially lengthy.
8.16Here, we must redefine boundary conditions on the 1 dimensional problem to match those of the 2–D problem,

i.e. equal temperatures at the boundaries.
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at the centerline for aspect ratios of 2, 1, 0.5 compared to planar profile, which implies an

infinite aspect ratio.

surface. The reason for this behavior is relatively easy to see if we look at the corresponding velocity
profiles at the centerline (Fig. 8.8). Smaller aspect ratios, which imply increased wall effects from
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Figure 8.8. Centerline velocity profiles corresponding to the respective temperature

curves in Fig. 8.7.

the closer proximities of the solid surfaces at z = 0 and z = φ, impart more “drag” on the fluid
motion and velocities in the middle of the channel, i.e. around y = 1/2, are dramatically reduced.
More importantly, the gradient, ∂u/∂y, is reduced, meaning that the dissipation source term in
the conservation of energy statement, Eq. (8.8) on pp. 101, is smaller. Conversely, the velocity
profile must recover for y > 1/2 such that it still satisfies the boundary condition at the sliding
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surface, so the gradient is even higher in this region because it has to “make up the shortfall” from
the higher–drag, lower–velocity center region. This is particularly obvious for the φ = 1/2 velocity
curve. Consequently, the dissipation effect is much higher near the sliding boundary for these cases,
which is commensurately reflected by shifts in the temperature profile.

The other, broader point–of–view is to examine the differences over the whole flow domain.
The planar 1–D solution in the depth dimension is simply an infinite continuation of the symmetric
(parabolic) temperature curve in Fig. 8.7 and it has no sense of satisfying any sort of “wall boundary
conditions” in that dimension. Conversely, the actual 2–D profile is significantly different because
of these wall boundaries. The profile for the particular case of φ = 1 is plotted in Fig. 8.9. The
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Figure 8.9. T (y, z)/Br plotted as a surface for 2–D Couette flow having homogeneous

boundary conditions and an aspect ratio of φ = 1.

shifting of the maximum temperature at the centerline of z = 1/2 is apparent. However, it is also
clear that T (y, 1/2) taken alone leaves much to tell. For example, it is easy to “ridges” of high
temperature that run roughly from the middle region of the domain along diagonals toward the 2
corners where the velocity discontinuities are: (y, z) = (1, 0) and (1, 1). Of course, this phenomenon
makes complete sense in light of our discussion above regarding the gradient ∂u/∂y. Specifically,
the flow not only has to meet the sliding plate boundary condition as y → 1, but it also has to
meet the no–slip conditions of the stationary walls as z → 0, 1. Consequently, not only will ∂u/∂y
be high in these corner regions, but ∂u/∂z will be, as well! Thus, the source term in the energy
equation is even commensurately higher. The very large gradients shown in Fig. 8.9 near these
corner regions indicates that heat transfer in both the y and z directions will be highest here. In
general, heat transfer will also be much higher to the rotor at y = 1 than to the bearing itself at
y = 0, although even along the rotor the heat transfer is clearly varying, being again highest at the
corners and lower in the middle.
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8.4. Convection in a Circular Duct

Finally, let us now consider the very common configuration of steady, fully–developed, laminar
flow in a pipe (Fig. 8.10). The equations are nominally the same as those discussed in §8.1 for

Rr
x

flow

Figure 8.10. Convection resulting from fully–developed laminar flow in a circular cross–

section pipe.

parallel flow, except of course where we write them in cylindrical coordinates. Referencing appen-
dix I and invoking the same restrictions for steady, parallel flow discussed in §8.1, we find that the
momentum equation simplifies to

(8.11)
1

r

d

dr

(

r
du

dr

)

=
1

µ

∂P

∂x
,

where it is important to note that we have changed the partial differential signs, ∂, to regular
differential signs, d, to reflect the fact that the cylindrical coordinate system describes the circular
pipe cross–section using only r, i.e. just 1 coordinate.8.17 Consequently, this is an ODE whose
solution has the form u = u(r).

For the energy problem, we will invoke the common simplification of no heat generation (Özişik,
1985; Bergman et al., 2011), as well as the temperature profile being axi–symmetric, i.e. ∂/∂θ = 0,
whereby the energy equation is

(8.12) u
∂T

∂x
= α

[
∂2T

∂x2
+

1

r

∂

∂r

(

r
∂T

∂r

)]

·

Here, we have not assumed single–variable dependence upon r and are instead allowing for the
possibility that the temperature could develop along the flow axis, x, as well, i.e. T = T (x, r). This
contingency is intuitive, given that we might specify, for instance, some particular heating rate
along the axis.

Eq. (8.11) describes the basic flow for all laminar fully–developed convection scenarios in a
circular pipe. It is readily solved by direct integration as8.18

u(r) =
1

µ

∂P

∂x

r2

4
+ C1 ln(r) + C2 ,

8.17Contrast this, for example, to the rectangular cross–section for the Couette problem §8.3, which required 2
coordinates, y and z. This necessitated a partial rather than ordinary differential equation.

8.18That is, the pressure gradient and the viscosity are assumed to be known and constant. Consequently,
Eq. (8.11) is simply integrated twice.
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where C1 and C2 are constants of integration. Using the boundary conditions for evaluation, we
then find the standard parabolic laminar flow profile8.19

(8.13) u(r) = 2 u

[

1 −
( r

R

)2
]

,

where u is the prescribed average velocity (see footnote 8.19). Eq. (8.13) is then the velocity profile
in Eq. (8.12), for which a variety of configurations can be modeled with appropriate boundary
conditions.

8.5. The Case of Constant Prescribed Heat Flux

There are 2 common cases of laminar pipe flow convection that are widely discussed in texts,
the first being the scenario where a constant heat flux is applied to the pipe wall along the flow
direction. This is a very good physical model not only for actual configurations where uniform
heating is applied, e.g. electric resistance heating or radiant heating, but also for counter–flow
heat exchangers where the heat capacity rates are comparable.8.20 Mathematically speaking, this
problem is relatively straightforward, once we have resolved a subtle issue in its formulation. That
issue involves identifying a suitable reference temperature is much more a matter of insightful
deduction, as we now show.

Thus far, we have always had the benefit of an obvious reference temperature to serve as a basis
for non–dimensionalization, use in Newton’s Law of Cooling, definition of the Brinkman number,
etc. Here, there is neither a far–field “freestream” (constant) temperature, as there routinely is

8.19 One boundary condition is immediately given by the no–slip requirement, u = 0 at r = R, where R is the
pipe radius, but the second boundary condition may not be completely obvious. It can be derived from either of the
following physical observations:

• the mathematical function is “well–behaved”, so that the natural log term must remain finite at r = 0
• because of symmetry of the overall problem, the velocity profile must also be symmetric about r = 0

Both these observations yield the same result that C1 = 0. For example, u|r=0 = 0 + C1 ln 0 + C2 = finite, so that
C1 = 0. Applying no–slip, we find

u|r=R =
1
µ

· dP
dx

· R2

4
+ C2 = 0 so that C2 = − 1

µ
· dP

dx
· R2

4
·

Substituting C1 and C2 and simplifying, we find the exact solution is

u(r) = − 1
4 µ

· dP
dx

R2

»

1 −
“ r

R

”2
–

,

however, it is even more convenient to represent this result in a more compact form using the average velocity, u.
Using the integral volume flow rate formula (Munson et al., 2006) with a differential “ring element”, we find

Q =

Z

A

V · n̂ dA =

Z R

0

u 2πr dr = −
Z R

0

1
4 µ

· dP
dx

R2

»

1 −
“ r

R

”2
–

2 π r dr

= − π R2

2 µ
· dP

dx

Z R

0

»

1 −
“ r

R

”2
–

r dr = − π R2

2 µ
· dP

dx

»
r2

2
− r4

4 R2

– ˛
˛
˛
˛

R

0

= − π R2

2 µ
· dP

dx
· R2

4
= − π R4

8 µ
· dP

dx
then u =

Q
A

= − R2

8 µ
· dP

dx
·

Eq. (8.13) follows directly.
8.20In such instances, the bulk temperature difference between the hot–side and cold–side flows will be approx-

imately constant, as can be discerned from a “thumbnail diagram” (Özişik, 1985), whereby heat flux between the
streams is likewise approximately constant.
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for external flows, nor a defined (also usually constant) boundary temperature on the pipe wall.
Instead, we define what is commonly called a “bulk temperature” (Özişik, 1985; Bergman et al.,
2011) as our reference based on the rate at which thermal energy passes through an arbitrary cross–
section. Here, the dimensional argument observes that cp has physical units of J/(kg K), so cpT is
the thermal energy per unit mass, J/kg, of the flow and, furthermore, this quantity multiplied by
the mass flow rate through a cross–section is the rate at which thermal energy passes through that
cross–section. Setting the integrated quantity equal to the definition of bulk temperature according
to the mass flow rate, we have

(8.14)

∫∫

A

cp T
︸︷︷︸

J/kg

ρ u dA
︸ ︷︷ ︸

kg/sec

= ṁ cp Tm ,

where Tm is the bulk (mean) temperature of the thermal energy passing through the section. For
a circular cross–section, this general principle takes the specific form8.21

(8.15) Tm =
2

u R2

∫ R

0
u T r dr ,

where u is again the average velocity derived in footnote 8.19.
Note that Tm as defined by Eq. (8.15) is generally not constant, but will vary with axial distance.

Because we will define a constant flux for the boundary, we should also presume that the unknown
wall boundary temperature of the pipe, TR, also varies axially:

Tm = Tm(x) and TR = TR(x) .

If the fluid is being heated (TR > Tm), then Tm will increase along the flow direction, and vice
versa, and, if that is the case, then clearly dTm/dx -= 0. Invoking the “star” notation (∗) again for
the moment, let us define the dimensionless form of temperature for this problem as8.22

(8.16) T ∗ =
T (x, r) − TR(x)

Tm(x) − TR(x)
·

Here, it is clear that all 3 temperatures change along the axial direction, x.
An important experimental observation in this class of flows is that the dimensionless tempera-

ture in Eq. (8.16) is approximately fully–developed, i.e. is not a function of x (Kays and Crawford,
1980), which has several important implications. First, if ∂T ∗/∂x = 0, then T ∗ cannot be a function

8.21Here, cp is assumed constant. For a circular cross–section A = πR2 and for the corresponding differential
“ring element”, dA = 2 π r dr, so that

Tm =
1
ṁ

ZZ

A

T ρ u dA =
1

ρ u π R2

Z R

0

T ρ u 2 π r dr

implies Eq. (8.15). Note that some texts also call Tm the “mixing cup temperature” (Kays and Crawford, 1980;
Burmeister, 1983).

8.22 Note that this definition of the dimensionless temperature switches the order of the boundary conditions
somewhat from what we are used to seeing, i.e. if r∗ = r/R, then

T ∗
˛
˛
˛
r∗=0

= 1 and T ∗
˛
˛
˛
r∗=1

= 0 .
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of x, which implies that ∂T ∗/∂r likewise cannot be a function of x. We can evaluate

∂T ∗

∂r

∣
∣
∣
∣
r=R

=
∂

∂r

[
T (r, x) − TR(x)

Tm(x) − TR(x)

]∣
∣
∣
∣
r=R

=
1

Tm(x) − TR(x)

∂T

∂r

∣
∣
∣
∣
r=R

and by the same argument conclude that this result is also not a function of x. In other words,
∂T ∗/∂r at the boundary remains fixed as the flow proceeds in the x direction. Let us define
Newton’s Law of Cooling the pipe surface as

(8.17) q′′R = h (TR − Tm) ,

so that applying heat to the pipe from the outside is positive transfer of thermal energy to the flow,
even though this is in the −r direction. With this sign convection, Fourier’s Law of Conduction
is8.23

(8.18) q′′R = k
∂T

∂r

∣
∣
∣
∣
r=R

,

so that substituting these expressions, we find

1

Tm(x) − TR(x)

∂T

∂r

∣
∣
∣
∣
r=R

= −
h

q′′R
·

q′′R
k

=

∣
∣
∣
∣

h

k

∣
∣
∣
∣

,

from which we must conclude that the local convection coefficient h is independent of x for fully
developed flow.8.24 Note from Fourier’s Law that if h is now constant and q′′R is certainly constant
because it is our chosen scenario, then the difference between TR and Tm must also be constant,
which implies that they must be changing at the same rate, i.e.

dTm

dx
=

dTR

dx
·

Let us now go even one step further. We evaluate ∂T ∗/∂x using T ∗ as defined above. Our
initial proposition of fully developed conditions requires ∂T ∗/∂x = 0. Evaluating, we find

∂T ∗

∂x
=

∂

∂x

[
T (x, r) − TR(x)

Tm(x) − TR(x)

]

=
1

Tm(x) − TR(x)
·
∂ [T (x, r) − TR(x)]

∂x
−

T (x, r) − TR(x)

[Tm(x) − TR(x)]2
·

d [Tm(x) − TR(x)]

dx

= 0 .

8.23 Note here the conspicuous absence of the negative sign as compared to the conventional definition, e.g.
Eq. (2.1) on pp. 8. The absence is because, if ∂T/∂r is indeed positive, then temperatures closer to the pipe wall are
larger than those further near the center, and heat transfer is “positive into the fluid”, consistent with what we have
just defined as the sign convection. The issue is basically that the coordinate r is in the opposite orientation with
respect to the conventional flow/boundary arrangement that we have been using thus far. Footnote 8.26 on pp. 111
formalizes this notion.

8.24Since the thermal conductivity k is constant, h must not be a function of x if the expression as a whole
cannot be a function of x.
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Noting that we can multiply through by the non–zero quantity Tm−TR, we can use this expression
to solve for ∂T/∂x as

∂T

∂x
−

dTR

dx
−

T − TR

Tm − TR

(
dTm

dx
−

dTR

dx

)

= 0

∂T

∂x
=

dTR

dx
+ T ∗

(
dTm

dx
−

dTR

dx

)

(8.19)

where we have again invoked the definition of T ∗ from Eq. (8.16). The second term vanishes since
it was just shown that dTm/dx = dTR/dx, indicating ∂T/∂x = dTR/dx, as well. That is, we
ultimately have

(8.20)
∂T (x, r)

∂x
=

dTm

dx
=

dTR

dx
·

In other words, the streamwise (axial) temperature gradient anywhere in the cross–section is equal
to the streamwise gradient of the mean temperature and of the boundary wall temperature, if the
applied heat flux at the boundary is constant. This result will be used in solving for the temperature
distribution T (x, r) in the pipe and, ultimately, the Nusselt number for laminar fully developed
flow.

Stepping back, we see that there is still insufficient information to flesh–out the terms in
Eq. (8.12) on pp. 105. Specifically, while we have connected ∂T/∂x to the gradients of Tm and TR,
we still do not know what these terms are, nor do we yet know how to specify ∂2T/∂x2. However,
let us consider a simple energy balance that relates the applied heat flux to the change in mean
temperature (Fig. 8.11). The rate at which heat is added to the element from the boundary is dq.

dx

m T   + d Tm m

flow

dq

T

Figure 8.11. Energy balance for a differential heated element laminar flow in a circular

cross–section pipe.

Recalling from Eq. (8.14) that the rate at which thermal energy is convected through a cross–section
is ṁ · cp multiplied by the local mean temperature, we can write the balance

dq + ṁ cp Tm = ṁ cp

(

Tm +
dTm

dx
dx

)

,

which says simply that the rate of energy entering the left from the flow plus the rate of energy
entering from the applied heat at the boundary must equal the rate at which thermal energy leaves
via the flow out of the right–side cross–section. Given that the boundary heating rate is simply the
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flux times the differential area, i.e. dq = q′′R dA = q′′R P dx (where P is the perimeter, or actually
the circumference for the special case of a circular cross–section), a little algebra shows

dTm

dx
=

q′′R P

ṁ cp
= a constant.

This observation now unlocks the basic framing of the problem, because, by virtue of Eq. (8.20),
we can prescribe ∂T/∂x in Eq. (8.12) and, because that quantity is now seen to be a constant,
∂2T/∂x2 is clearly 0. Moreover, we know u from the solution of conservation of momentum given
by Eq. (8.13) on pp. 106. Assembling all of these components into the conservation of energy
statement in Eq. (8.12) on pp. 105, we see that the raw “constant–flux” version of convective pipe
flow, i.e. as it looks before any simplification, is described by

2 u

[

1 −
( r

R

)2
]

q′′R P

ṁ cp
= α

1

r

∂

∂r

(

r
∂T

∂r

)

,

and, after a little work can be put into the form

∂

∂r

(

r
∂T

∂r

)

=
4 q′′R
k R

r

[

1 −
( r

R

)2
]

,

where we have simplified using A = πR2, ṁ = ρuA, P = 2πR, etc. This expression is something
of an anomaly because formally T = T (x, r) suggesting that this is indeed a PDE, as shown on
the left–hand side, however we have also already exploited several observations that show that the
right–hand side is only a function of r and not of x. Let us reconcile this issue by re–framing in
terms of the dimensionless temperature, T ∗ in Eq. (8.16) on pp. 107, which is fully–developed and
therefore not a function of x8.25

(8.21)
d

dr

(

r
dT ∗

dr

)

= ϕ r

[

1 −
( r

R

)2
]

where ϕ =
4 q′′R

k R (Tm − TR)
is constant

and where the equation is now clearly an ODE.
As with the flow profile problem, this equation can be solved by direct integration, although

there are a few artful operations, including re–using the mean temperature definition to eliminate
parameters. These operations, shown in appendix J, specifically §J.1 on pp. 184, ultimately yield
a “universal profile” of

(8.22) T ∗ =
96

11

(
r∗ 4

16
−

r∗ 2

4
+

3

16

)

,

where r∗ = r/R, as originally defined in footnote 8.22 on pp. 107. A similar “universal profile” is
easily written directly from Eq. (8.13) on pp. 106 by defining u∗ = u/u, so that

(8.23) u∗ = 2
(

1 − r∗ 2
)

.

These universal profiles are plotted in Fig. 8.12.
As a final step, let us calculate the Nusselt number for the constant heat flux configuration.

Owing to the interpretation of Eq.(7.23) on pp. 93 of Nu being simply the dimensionless tempera-
ture gradient at the boundary, we could, in principle determine the Nusselt number directly from

8.25It is a subtle point worth repeating. Even though Eq. (8.16) nominally indicates that T ∗ is a function of x,
we have shown that T , TR, and Tm all vary with x at the same rate, which was the finding of Eq. (8.20). This means
their differences in Eq. (8.16) are constant with respect to x.
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Figure 8.12. Universal profiles for steady, fully–developed flow in a circular pipe, as

specified by Eq. (8.23), and the corresponding temperature profile for constant flux boundary

condition, as given by Eq. (8.22). Profiles are axi–symmetric, so they are actually “shapes

of revolution” around r∗ = 0.

Eq. (8.22). However, there are 2 subtleties for which we would have to account. First, the conven-
tional length scale for pipe flow is the pipe diameter, not the radius upon which r∗ is predicated.
Second, the Nu was defined in the context of a coordinate whose origin was the wall and pointed
into the flow domain. Here, r originates at the center (axis) is the flow and points toward the wall,
so an extra negative sign would be needed to resolve this difference.8.26 Conversely, we could also
pursue the more conventional argument introduced in §7.4 of equating convection and conduction
at the boundary, in this case Eqs. (8.17) and (8.18), respectively, to find

(8.24) h (TR − Tm) = k
∂T

∂r

∣
∣
∣
∣
r=R

,

from which we ultimately find8.27

Nu =
48

11
≈ 4.364 .

8.26 It is very easy to demonstrate this formally, as well. Let y = R − r be a new coordinate with an origin at
the pipe wall and pointing toward the center. Then, by Chain Rule

d
dr

=
d
dy

dy
dr

= − d
dy

·

This formalizes the notion discussed previously in Footnote 8.23 on pp. 108.
8.27Since Eq. (8.22) for T ∗ can be trivially re–written in terms of dimensional quantities, i.e.

T − TR

Tm − TR
=

96
11

»
1
16

“ r
R

”4
− 1

4

“ r
R

”2
+

3
16

–

it is easy to see that

∂T
∂r

˛
˛
˛
˛
r=R

= (Tm − TR)
96
11

»
1
4

r3

R4
− 1

2
r

R2

– ˛
˛
˛
˛
r=R

=
Tm − TR

R
· 96

11

„

− 1
4

«

= − 24 (Tm − TR)
11 R

·

Equating the conduction and convection heat transfers at the wall, as shown in Eq. (8.24), a little algebra readily
shows the result Nu = hD/k = 48/11 if substituting R = D/2.
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8.6. Remarks on the Case of Constant Prescribed Temperature

The constant heat flux configuration in the previous section appears in most introductory
books (e.g. Özişik, 1985; Bergman et al., 2011) because the energy equation reduces to an ODE
and is therefore not terribly difficult to solve.8.28 As a general rule, these same texts will report
the solution for another important case, the constant temperature boundary, but invariably do
not show its derivation. Indeed, the same is true for advanced texts (Kays and Crawford, 1980;
Burmeister, 1983). The result that is uniformly reported is

Nu ≈ 3.66 .

The constant–temperature boundary configuration is an important model for a broad range of
heat–exchangers having nearly constant wall temperatures, for example where there is a phase
change (evaporator or condenser), or where the heat capacity of one of the streams is much larger
than the other.

Here, we will only make a few remarks on this configuration to point out that its proper
consideration is more complex than most previous treatments generally acknowledge.8.29 The usual
approach is again based on the premise that T ∗, as defined in Eq. (8.16) on pp. 107, does not
change in the flow direction, i.e. is fully–developed. That observation, taken with the prescribed
constant–temperature boundary condition, leads to the conclusion from Eq. (8.19) on pp. 109 that

(8.25)
∂T

∂x
= T ∗ dTm

dx
,

so that the conservation of energy statement that properly governs this case is derived from
Eq. (8.12) on pp. 105

u T ∗ 1

α
·

dTm

dx
=

∂2T

∂x2
︸ ︷︷ ︸

axial
conduction

+
1

r

∂

∂r

(

r
∂T

∂r

)

·

For the constant flux boundary condition in the previous section, ∂T/∂x = dTm/dx was likewise
a constant, which subsequently meant that the phenomenon of axial conduction, as quantified by
the second–derivative term, vanished identically. Strictly speaking, there is no such simplification
here. Indeed, it can be shown that8.30

Tm(x) =
[

Tm(0) − TR
]

e
− h P

ṁ cp
x

+ TR ,

i.e. that Tm(x) asymptotically approaches the constant boundary temperature, TR, which leads to

∂2T

∂x2
=
[

Tm(0) − TR
]
(

h P

ṁ cp

)2

e
− h P

ṁ cp
x

.

The contribution of this term may or may not be negligible, depending upon the combination of
parameters, although, as mentioned above, most texts do in fact examine this configuration in

8.28The solution is tedious, but does not require advanced mathematical techniques of the kind we have called
on for some other problems.

8.29We are not making the claim that Nu ≈ 3.66 is an unreasonable model for certain specific cases, only that
the problem formulation, as posed in almost all texts that one might care to examine, omits some important details
relevant to the inherently more general nature of this case versus that of constant heat flux.

8.30See Eqs. (J.1) and (J.3) on pp. 186, respectively, for Tm and the second–derivative of ∂2T/∂x2.
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the context of dropping it altogether (Kays and Crawford, 1980; Burmeister, 1983; Özişik, 1985;
Bergman et al., 2011). One might argue that ∂2T/∂x2 becomes negligible if x is large enough or if
Tm(0)−TR is small enough, but under these conditions, we also see that Tm(x) → TR, meaning the
flow would have essentially attained the (uninteresting) state of thermal equilibrium. Rather, the
admissibility of neglecting axial conduction depends on (hP )/(ṁcp), which, if its value is sufficiently
small, will result in a shallow curve for Tm(x), whose slope changes very slowly, and small ∂2T/∂x2.

It is not entirely trivial to assess the size of (hP )/(ṁcp) for a typical application, but dimen-
sionless analysis again “comes to the rescue” if we observe that8.31

(8.26)
h P

ṁ cp
=

4 Nu

D · Re Pr
≈

10

D · Re · Pr
, where Re ≤ 2100 .

The figure of 2100 for the Reynolds number is the rough limit under which the laminar flow model
can be assumed to be valid (Munson et al., 2006).

It is true that Nu is precisely what we do not know for this configuration. However, if we assume
for estimation purposes that it does not differ significantly, i.e. by orders of magnitude, from the
figure of Nu ≈ 3.6 quoted above, we arrive at Eq. (8.26) as a plausible approximation. The picture
is now much more clear: any flow for which the combination of parameters in the denominator is
large admits the assumption of negligible axial conduction in the flow, while small combinations
negate it. The latter includes low Reynolds number flows, especially when pipe diameter itself is
small, as well as for any flow where Pr is small, e.g. liquid metals. For example, mercury has a
Prandtl number on the order of 0.01 (Özişik, 1985). This aspect is critical in determining to what
degree the classical solution actually applies.

If the vanishing axial conduction assumption is not valid, the problem becomes significantly
more complicated, not so much because the conservation law for energy, Eq. (8.12) on pp. 105,
is itself especially difficult to solve, but rather because of uncertainty in its boundary conditions.
That is, the equation cannot be reduced to an ODE, remaining a full PDE, and therefore requiring
boundary conditions for T at suitable upstream and downstream locations. For the latter, one
might specify a “long pipe”, i.e. T (x, r) → TR for x → ∞, implying the flow eventually reaches
thermal equilibrium.

The more problematic boundary is the upstream one. An obvious boundary condition would be
a uniform “inlet” temperature profile, but in such cases, the velocity flow profile will itself generally
not be fully developed. In other words, the developing flow “entrance” problem will have to be
solved, as well, meaning we are now dealing with non–linear terms in the momentum equations.
The exception, of course, is for high–Pr fluids, whose hydrodynamic entry length is very short
compared to their thermal entry length (Özişik, 1985) and for such problems we would simply

8.31For the circular pipe, the perimeter is P = 2πR and ṁ = ρuπR2. Observing that the diffusivity is α = k/(ρcp)
and furthermore, Pr = ν/α, as defined in Eq. (7.20) on pp. 91. Moreover, given that D and u are the length and
velocity scales, respectively, for pipe flow, we have Nu = hD/k from Eq. (7.23) on pp. 93 and Re = uD/ν = 2uR/ν
from Eq. (7.18) on pp. 90.

h P
ṁ cp

=
h 2 π R

ρ u π R2 cp
=

2 h
ρ u R cp

=
2 · k · Nu
D (ρ cp)
| {z }

2 h
ρ cp

× 2
ν · Re
| {z }

1
u R

=
4 α · Nu
ν D · Re

=
4 Nu

D · Re Pr
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invoke the original assumption of vanishing axial conduction, since the combination in Eq. (8.26)
is likely to be acceptably small.

8.7. Exercises

8.1
The most basic model of Couette flow is the so–called “thin gap”
configuration for infinite parallel plates. However, if we want to
account for curvature of the kind that would approximate a rotating
cylinder within a journal with a wide gap, the governing equations
for momentum and energy are

d

dr

[
1

r

d

dr

(

r u
)
]

= 0

k
1

r

d

dr

[

r
dT

dr

]

= − µ

(
du

dr
−

u

r

)2

,

where u is the velocity in the rotation direction, T is temperature,
and µ and k are fluid viscosity and thermal conductivity, respectively.
The inner and outer cylinder radii are a and b, respectively.

b r

a

Determine the velocity profile, u(r), if the inner cylinder rotates counter–clockwise at a
rate ω, while the outer is stationary.

8.2
Referring to exercise 8.1: Determine the temperature profile, T (r), if both the inner and
outer cylinder surfaces are maintained at a constant boundary temperature of T0.

8.3
Referring to exercise 8.2: Show that the solution can be non–dimensionalized post hoc,
being expressible as

T ∗(r∗) =
Br

1 − R−2

[

1 −
1

r∗2
−
(

1 −
1

R2

)
ln(r∗)

ln(R)

]

+ 1 ,

where R = b/a is the radius ratio, 1 ≤ r∗ ≤ R is the dimensionless radius (independent
coordinate), T ∗(r∗) = T (r)/T0 is the dimensionless temperature, and

Br =
µ (ω a)2

k T0

is the Brinkman number.

8.4
Referring to exercise 8.3: From our study of the idealized problem, we already under-
stand the physical effect of the Brinkman number on the temperature distribution and
consequent heat transfer. Use the solution in the previous section to make some brief
observations of how the geometry affects the temperature distribution by plotting the so-
lution for an arbitrary Brinkman number, say Br = 4, for several different radius ratios.



CHAPTER 9

External Convection

In chapter 8 we discussed several basic cases of convection in confined domains, i.e those
domains being fully bounded in directions lateral to the primary flow direction. Although the

underlying flows were all viscous, we did not place any real emphasis on discussing the phenomenon
of the boundary layer because they were all fully–developed, i.e. the partial derivative of a quantity
in the flow direction was 0. What this meant in essence was that viscous effects were important
throughout the entire flow domain, not just a small part of it.

External flows are a fundamentally different animal in the sense that they are only partially
bounded, so there is no basic requirement that the flow ever become fully–developed. Consider
the canonical example of 2–D flow over a flat plate, (Fig. 9.1), where a uniform approach flow of

fluid  elementsuoo

x
δ

y

free  stream

boundary
layer

Figure 9.1. Anatomy of a simple boundary layer for flow over a sharp–leading–edge flat

plate. The dashed curve represents the boundary layer edge, under which viscous effects are

important and outside of which they can be neglected. The phenomenon is illustrated by the

small squares, which represent differential fluid elements.

constant velocity u∞ encounters a flat plate having a sharp leading edge,9.1 and where (u, v) are the
velocity components in the (x, y) directions, respectively. The no–slip boundary condition applies
at the wall surface, y = 0, from which viscous effects immediately begin to manifest themselves.
Fluid elements start to distort and rotate, with a velocity profile developing such that u is higher
at the top of each element than on its bottom. Macroscopically, the velocity profile decays within
the boundary layer, but remains uniform outside of it, as depicted in the diagram. The dashed
curve denotes the edge of the region in which viscous effects are acting. This region is the boundary
layer and its vertical size, as quantified by the boundary layer thickness, δ = δ(x), grows with x.
However, the domain is not bounded in the vertical direction, so this development process is not

9.1The sharp leading edge is a pedagogical device routinely invoked to justify ignoring any complicated fluid
motion that would otherwise occur in the immediate neighborhood of (x, y) = (0, 0) as the flow impinges on the plate
edge. In actuality, the so–called boundary layer equations we will derive in §9.1 are not even strictly valid in the
immediate small neighborhood of the this edge because the distance x down the plate is comparable to the upstream
distance x < 0, which streamwise diffusion effects act.
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constrained. It either continues indefinitely, if the plate is infinite in the x direction, or it evolves
into a some sort of trailing flow motion behind the plate if the plate is finite.

The defining feature of the boundary layer is that it is very thin, so that gradients of the
type shown in Fig. 9.1 for velocity are extremely pronounced.9.2 This property has important
implications for simplifying the governing equations for momentum and energy, as we will show
in the following section. This class of flows will place us in the “boundary layer” section of the
phylogeny in Fig. 8.1 on pp. 94.

9.1. Prandtl’s Order–of–Magnitude Derivation of the Boundary Layer Equations

Ludwig Prandtl originally conceived of the boundary layer in 1904 as a thin region near the
boundary within which viscous effects are confined and outside of which the flow remains basically
inviscid (Blasius, 1908). This idea was the key to unifying the somewhat paradoxical observations
of the day that drag measurements (for which viscous effects are important for streamline shapes,
e.g. ship hulls) were not consistent with the seemingly inviscid nature of a flow.9.3 The physical
implications are actually quite simple, as depicted in Fig. 9.1. The primary motion is in the x
direction, so that u ' v, while the primary gradient is in the y direction, so that ∂/∂y ' ∂/∂x.
The mathematical implications of these 2 observations are significant, as we will demonstrate using
Prandtl’s “order–of–magnitude” argument to simplify the convection (Navier–Stokes) equations
given by Eqs. (7.16), (7.17), and (7.19) starting on pp. 90. Let us consider the “standard” version
of the problem, which is steady, two–dimensional, and neglects body forces, dissipation, and other
types of heat generation (Schlichting, 1979; Kays and Crawford, 1980; Panton, 1984). Under these
conditions, the governing equations are

∂u

∂x
+

∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= −

1

ρ
·
∂P

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)

u
∂v

∂x
+ v

∂v

∂y
= −

1

ρ
·
∂P

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+

∂2T

∂y2

)

·

For the purposes of this section only, let us define an “order–of–magnitude” notation using square
braces, e.g. [1], [ε], and [ε2], which represent orders–of–magnitude of unity, ε, and ε2, respectively,
where ε is a small parameter. We will denote the orders–of–magnitude of the individual terms by
displaying this notation directly below each one.

Following the basic presentation by Schlichting (1979), let u ∼ [1] and ∂/∂x ∼ [1], so that
∂u/∂x ∼ [1] · [1]. Given u ' v and ∂/∂y ' ∂/∂x from above, we assign v ∼ [ε] and ∂/∂y ∼ 1/ε,

9.2Fig. 9.1 is not drawn to scale, but rather is stretched vertically so as to make the velocity profile visible.
9.3It is not overstating matters to say that the idea of the boundary layer opened the modern era of the science

of fluid mechanics, as we recognize it today. Eckert (2006, chapter 2) relates the interesting history of Prandtl’s
developmental work at the University of Göttingen in the important period from 1904 up to the First World War.
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so that conservation of mass is
∂u

∂x
︸︷︷︸

[1]·[1]

+
∂v

∂y
︸︷︷︸

[ε−1]·[ε]

= 0 ,

meaning both terms are of the same order of magnitude. Consequently, neither of these terms
drops.

Given what we now know about u, v, and the derivatives, we can deduce the orders–of–
magnitude of the other terms in this system, dropping those terms that are much smaller than
the overall order of the system, which is order [1] according to conservation of mass. For example,
the x momentum equation is

u
∂u

∂x
︸ ︷︷ ︸

[1]·[1]·[1]

+ v
∂u

∂y
︸ ︷︷ ︸

[ε]·[ε−1]·[1]

= −
∂(P/ρ)

∂x
+ ν
︸︷︷︸

[ε2]

(
∂2u

∂x2
︸ ︷︷ ︸

[1]·[1]

+
∂2u

∂y2
︸ ︷︷ ︸

[ε−2]·[1]

)

·

The size of all the terms involving velocity components are immediately determined by what we have
already discerned above. Notice the important assignment of the kinematic viscosity as ν ∼ [ε2]
to force the overall order of the viscous contribution to be order [1].9.4 We invoke this condition
because the viscous contribution should be neither significantly more nor significantly less than
the convective contribution within the boundary layer. Both are important. Note that the overall
order of the equation is [1], but that ∂2u/∂x2 is of a significantly lesser order–of–magnitude, [ε2].
This term will be dropped in the final boundary layer equation set. Note also that it is not yet
clear how to assign the order–of–magnitude of the pressure equation

Given that ν ∼ [ε2] is now fixed for the system, the y momentum equation is

u
∂v

∂x
︸ ︷︷ ︸

[1]·[1]·[ε]

+ v
∂v

∂y
︸ ︷︷ ︸

[ε]·[ε−1]·[ε]

= −
∂(P/ρ)

∂y
+ ν
︸︷︷︸

[ε2]

(
∂2v

∂x2
︸ ︷︷ ︸

[1]·[ε]

+
∂2v

∂y2
︸ ︷︷ ︸

[ε−2]·[ε]

)

·

The important observation here is that the overall order of the entire equation is [ε], which has 2
implications. First, it suggests that the term containing the pressure gradient is of order [ε], as well
because the pressure gradient is not obviously more or less important than the other terms.9.5 Fur-
thermore, because ∂(P/ρ)/∂y is very small, the pressure is essentially constant across the boundary
layer. In essence, the pressure reduces to P = P (x), implying that the streamwise pressure gradient
can be derived simply by considering the inviscid flow outside the boundary layer. This observa-
tion then ultimately implies we can drop the pressure term in the x momentum equation, as well,
because we are considering the horizontal flat plate with constant freestream velocity, u∞.9.6 The

9.4That is, the product of the viscosity and the ∂2u/∂y2 term is order [1].
9.5Note that if we were to have made the apparently reasonable assumption of ∂(P/ρ)/∂x ∼ [1] in the x–

momentum equation, then we would have had (P/ρ) ∼ [1] and, consequently, ∂(P/ρ)/∂y ∼ [ε−1] since ∂/∂y ∼ [ε−1].
This would mean that this single pressure gradient term would be significantly larger than every other term in the
entire set of equations!

9.6Since P = P (x), the streamwise pressure gradient is the same in both the boundary layer and the inviscid
freestream domain. In the latter, the Bernoulli equation applied in the streamwise direction requires a constant
pressure, if both the kinetic energy and potential energy terms are fixed, the former being true because the freestream
velocity is constant and the latter being true because the plate is horizontal. The same conclusion would be reached
if arguing on the basis of the order–of–magnitude of P/ρ itself based on the fact that indeed ∂(P/ρ)/∂y ∼ [ε].
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second major implication is that the entire y momentum equation, being only of order [ε], is small
compared to the x momentum equation, being of order [1]. The entire y momentum equation can
therefore be dropped.

For the energy equation, we assume T ∼ [1] and write

u
∂T

∂x
︸ ︷︷ ︸

[1]·[1]·[1]

+ v
∂T

∂y
︸ ︷︷ ︸

[ε]·[ε−1]·[1]

= α
︸︷︷︸

[ε2]

(
∂2T

∂x2
︸ ︷︷ ︸

[1]·[1]

+
∂2T

∂y2
︸ ︷︷ ︸

[ε−2]·[1]

)

,

where we have assigned α ∼ [ε2] for reasons similar to ν above. Again, the overall order of the
equation is [1], but ∂2T/∂x2 is of a significantly lesser order–of–magnitude, [ε2]. This term will
likewise be dropped in the final boundary layer equation set.

Given all the above considerations, we can write the final set of Prandtl’s boundary layer
equations for the flat plate as

∂u

∂x
+

∂v

∂y
= 0(9.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(9.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
,(9.3)

where u = u(x, y), v = v(x, y), and T = T (x, y). Recall that the momentum equation in the y
direction has vanished. While the conservation of momentum statement in Eq. (9.2) still retains
non–linear terms, this system is obviously still enormously more amenable to solution than the full
Navier–Stokes equations.

Boundary conditions simplify, too. There is only 1 remaining derivative in v, so that variable
needs only 1 boundary condition, the obvious one being no–slip at the plate surface, y = 0. The
velocity component u still has a second–derivative in y, signaling 2 boundary conditions are still
required. Here, we will take the obvious no–slip at y = 0 and freestream conditions at the edge
of the boundary layer, y = δ. The first–derivative in x for u also requires 1 boundary condition,
which we will take as some prescribed upstream flow condition. We summarize these as

u(x, 0) = v(x, 0) = 0 no–slip(9.4)

u(x, δ) = u∞ freestream(9.5)

u(0, y) = u∞ upstream (approach flow)(9.6)

The similarity of the energy equation to the momentum equation suggests the boundary conditions
for T might be similar to those for u. We will indeed examine the case where T itself is specified
at the 3 required boundary locations, but remind the reader that other boundary conditions are
possible, e.g. for specified boundary flux at y = 0.

9.2. Kármán–Pohlhausen Approximate Integral Method

Although the boundary layer equations are significantly simplified, as compared to the full
Navier–Stokes equations, the statement of conservation of momentum still retains non–linear terms
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in the likes of u · ∂u/∂x and v · ∂u/∂y, so the overall system remains somewhat formidable. We
mentioned already on several occasions, e.g. in §7.2, that there is not yet a general mathematical
theory for non–linear differential equations (Hildebrand, 1976). Perhaps somewhat surprisingly,
non–linear problems can sometimes be solved to a very good degree of approximation using opera-
tions that are no more complicated than those in introductory calculus. In this section, we discuss
one such method due to the apparently independent work of von Kármán (1921) and Pohlhausen
(1921).9.7

One of the main hurdles or advantages, depending upon one’s perspective, for the semi–infinite
plate is that there is no obvious length scale. The key aspect of the Kármán–Pohlhausen approach
is the development of an integral equation that relates streamwise developments to conditions at
the plate surface, y = 0. This is shown in detail in §K.1 in appendix K on pp. 187. The result,
given by Eq. (K.3) on pp. 188, can be re–arranged slightly to give9.8

d

dx

∫ δ

0
ρ
(

u∞ − u
)

u dy = µ
∂u

∂y

∣
∣
∣
∣
y=0

.

In this form, it can be seen that the Kármán–Pohlhausen equation says that the rate of change of
the so–called momentum boundary layer thickness (Munson et al., 2006) along the plate (left side)
is equal to the shear stress at the plate surface, y = 0, (right side). This equation permits one to
derive the boundary layer growth law, δ = δ(x), for any estimated “trial” velocity profile. Here, δ
is indeed the sufficient length scale to furnish the needed closure.

The Kármán–Pohlhausen equation is obtained by integrating the boundary layer conservation
laws, Eqs. (9.1) through Eqs. (9.3), over the boundary layer thickness, thus transforming an exact
differential system into an approximate integral system. The latter only requires satisfaction of
conditions at the boundaries and has no say in what happens “inside the control volume”, so to
speak. This observation is easily demonstrated by applying the Kármán–Pohlhausen equation in
practice. We may assume any boundary layer profile that can be made to satisfy certain conditions
at y ∈ {0, δ}. For example, it is very common to model u as a 3–rd order polynomial, from which
we ultimately find9.9

(9.7) u =
3 u∞

2 δ
y −

u∞

2 δ3
y3 and δ =

4.641 x√
Rex

·

It is worth noting again that this solution requires nothing more than basic calculus operations.
Moreover, the boundary layer growth law compares favorably to the exact solution, which specifies
a constant of 5.00, as opposed to 4.64 in the polynomial approximation. Table 9.1 gives the
corresponding constants for several such approximations.

A similar procedure is adopted for the temperature distribution in the thermal boundary layer.
Indeed, a 3–rd order polynomial approximation for temperature, coupled with slightly more involved
mathematical considerations as compared to the momentum problem, yield T and ultimately the
convective solution in the form of the Nusselt number

(9.8) Nux ≈ 0.3313 Re1/2
x Pr1/3 .

9.7Much of Theodore von Kármán’s work emphasized the ability to solve complex flow physics problems using
only fairly straightforward mathematical methods (Eckert, 2006, chapter 5).

9.8There is a similar statement for the thermal boundary layer given by Eq. (K.4) on pp. 189.
9.9These results are derived in detail in §K.3 starting on pp. 189. The profile described by Eq. (9.7) is plotted in

Fig. 9.2 on pp. 122 as part of a comparison of a number of solution methods for the boundary layer equations.
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Table 9.1. Constants in δ = C x/
√

Rex for several u approximations

model C model C

exact 5.00 cubic 4.64

linear 3.46 sine 4.79

parabolic 5.48

9.3. Similarity Transform for Laminar Flow Over a Semi–Infinite Flat Plate

As we said, the flat plate is one of the simplest representations of external flow, but the fact
that there is no obvious finite length scale makes for some peculiarity. The Kármán–Pohlhausen
method can be thought of as a tool to deduce a length scale in the form of the boundary layer
thickness. Another method exploits a similarity approach to transform the mass–momentum PDE
system to an ODE, for which the solution procedure will be yet further simplified.9.10 In particular,
it is shown in appendix L, specifically Eq. (L.1) on pp. 198, that if we take the similarity variable

ϕ = y

√

u∞

ν x
,

the boundary layer PDEs can be reduced to a single ODE for a function f(ϕ)

(9.9) f ′′′ +
f f ′′

2
= 0 f(0) = f ′(0) = 0 f ′(∞) = 1 ,

where the velocity profile is given by u = u∞ f ′.
While solving an ODE is ordinarily much preferable to a PDE, this equation is still non–

linear, and, as we pointed out previously, there is no general mathematical theory for non–linear
differential equations (Hildebrand, 1976). This aspect, coupled with the problem’s basic importance
in thermofluids, means that Eq. (9.9) has actually been probed with a variety of rather different
and interesting methods. These methods include the following.

Blasius (1908) first solved this problem using an expansion in small values of ϕ patched to an
asymptotic expansion for large values of ϕ. Such methods are fairly sophisticated (van Dyke, 1964;
Bender and Orszag, 1999; Nayfeh, 2004), rather involved, and beyond the scope of our discussion.
The more direct approach is numerical integration. Eq. (9.9) can be solved with high–order accuracy
methods, e.g. fourth–order Runge–Kutta (Conte, 1965; Bejan, 1984), for which solutions can be
computed extremely accurately. The solution by Howarth (1938) is perhaps the de facto standard
(Schlichting, 1979; Burmeister, 1983). Yet a third approach is due to Piercy and Preston (1936),
who split Eq. (9.9) into different levels of approximation in such a way as to recast the problem
into one of iterating on f(ϕ) directly. This method seems to have receded into obscurity to some
degree,9.11 but we feel it is worth detailed discussion for several reasons. First, it is conceptually
straightforward, being derivable with standard calculus techniques. Second, it offers the possibility
of an exact solution, in the sense that accuracy can be as good as one likes, without the extreme
tedium and mathematical caveats of asymptotic expansions (van Dyke, 1964). Third, convergence

9.10Recall that lack of a length scale also prompted a similarity approach for the Rayleigh conduction problem
discussed in §D.1 on pp. 146.

9.11While mentioned briefly in Kays and Crawford (1980), it seems to be absent from many of the leading texts
that discuss the boundary layer.
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seems to be very fast, for example exceeding the Kármán–Pohlhausen method on the first round if
using a good initialization of f(ϕ). We will examine this method in the next section.

9.4. Momentum Solution via the Piercy–Preston Successive Integration Method

As mentioned, this technique cleverly splits Eq. (9.9) into 2 iterative levels

(9.10) f ′′′
i +

fi−1 · f ′′
i

2
= 0 ,

where i−1 denotes the previous solution and i is the improved solution. §L.3 shows the derivation of
the so–called Piercy–Preston integrals, Eqs. (L.9) and (L.10) on pp. 202, which specify the updating
process, essentially providing fi(fi−1), i.e.

fi(ϕ) =

∫ ϕ
0

[
∫ ϕ
0 exp

(

−
1

2

∫ ϕ
0 fi−1(ϕ) dϕ

)

dϕ

]

dϕ

∫∞
0 exp

(

−
1

2

∫ ϕ
0 fi−1(ϕ) dϕ

)

dϕ

·

One initializes f1(ϕ), then obtains successively better solutions, f2, f3, . . . using this integral. In
their original paper, Piercy and Preston (1936) simply took f1 representing the freestream flow,
u = u∞, from which a single iteration shows9.12

(9.11)
u

u∞
≈ f ′

2(ϕ) = erf
( ϕ

2

)

,

whereas in a later paper Watson and Preston (1951) obtained improved results taking f1 describing
a uniform flow u = κ u∞, where κ is an undetermined constant, a degree–of–freedom essentially,
that can be deduced from the Kármán–Pohlhausen integral, i.e. Eq. (K.4) on pp. 189. A single
iteration shows

(9.12)
u

u∞
≈ f ′

2(ϕ) = erf

( √√
2 − 1 ϕ

2

)

·

In both Eqs. (9.11) and (9.12), erf is the Gauss error function. Watson and Preston (1951) also
discuss more complicated initializations of f1(ϕ), as well as some standard generalizations of the
boundary layer problem.

It is a natural question to wonder how accurate Eqs. (9.11) and (9.12) are, which will be
suggestive of just how fast the Piercy–Preston method converges, as well as how these solutions
compare to the Kármán–Pohlhausen method, whose solution is fixed once the general model for a
profile is prescribed. Before a comparison can be made, however, we must reconcile the 2 different
bases for measuring vertical distance from the plate: the similarity variable, ϕ, in the Piercy–
Preston results, which is the vertical coordinate vs. the boundary layer thickness, δ, in the Kármán–
Pohlhausen method, which serves as a length scale against which the distance y is measured. The
former depends upon similarity arguments and is fixed, while the latter varies, depending upon one’s
choice for the general model of the prescribed profile. For convenience, we restate the definitions

δ =

√

280

13

ν x

u∞
ϕ = y

√

u∞

ν x
,

9.12The results in Eqs. (9.11) and (9.12) are derived in §L.4 starting on pp. 202.
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the former, being the exact result in Eq. (K.6) on pp. 190 from prescribing a 3–rd order polynomial
profile for the Kármán–Pohlhausen method and the latter being the general similarity parameter
for flat plate boundary layer flow derived in Eq. (L.1) on pp. 198.9.13 Given that the Kármán–
Pohlhausen method measures with y/δ, we find the relationship9.14

y

δ
= y

√

13

280

√

u∞

ν x
=

√

13

280
ϕ ,

so that the 3–rd order polynomial Kármán–Pohlhausen result from Eq. (9.7) on pp. 119 can be
re–written in the compatible form

(9.13)
u

u∞
=




3

2

√

13

280
ϕ −

1

2

(√

13

280
ϕ

)3


 ϕ ≤
√

280

13
·

The accompanying limit is a consequence of a subtle technicality in that all Kármán–Pohlhausen
profiles are defined only within 0 ≤ y ≤ δ, with conditions outside of this domain being taken
identically as freestream. Therefore, the boundary layer solution is restricted to y/δ ≤ 1, which
implies the limit.

Fig. 9.2 compares these 3 solutions to the numerical result by Howarth (1938), which is consid-
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Figure 9.2. Comparison of the boundary layer profile, as obtained by several different

methods: Howarth (1938) numerical integration (solid curve), considered “exact”, Kármán–

Pohlhausen solution (dashed curve) in Eq.(9.13), Piercy–Preston solution (dotted curve)

from Eq. (9.11), and Watson–Preston solution (dash–dot curve) from Eq. (9.12). Plot also

shows initializations of the Piercy–Preston and Watson–Preston solutions.

ered the de facto standard (Schlichting, 1979; Burmeister, 1983). The first observation is that the
Kármán–Pohlhausen (KP) and Watson–Preston (WP) solutions recapitulate the Howarth profile

9.13The expression for δ in Eq. (9.7) on pp. 119 is an approximation, but the velocity profile in that equation in
which δ is used is exact.

9.14Note that both ϕ and y/δ are inherently dimensionless.
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quite well, especially near the plate boundary. The slopes of these 3 curves seem to be visually
indistinguishable at ϕ = 0, suggesting that both KP and WP should give very good estimates of
shear stress at the wall. At the other end, KP and WP seem to a little short and long, respectively,
with respect to the edge of the boundary layer. Conversely, the original Piercy–Preston (PP) solu-
tion is clearly inferior to the other 2 results in that it plainly over–predicts the gradient at the wall
and underpredicts the boundary layer thickness.

Fig. 9.2 also shows the initializations of the PP and WP methods, vertical lines (uniform profiles)
of u/u∞ = 1 and u/u∞ ≈ 0.414, respectively. Given that we performed only a single iteration for
each method, the accuracy that we did realize actually seems quite impressive. It suggests that the
basic iterative method does indeed converge relatively fast and that improved initializations and/or
additional iterations will yet further improve the results. In practice, further refinement will not
be without increased mathematical challenge.

9.5. Solving for Convection in the Context of the Similarity Model

As we discussed in §9.3, the similarity framework leads to an ODE for f(ϕ), which can be
solved by a variety of methods, one of which we discussed in §9.4. The remaining task is then to
use the momentum solution within the energy equation to solve for the temperature distribution,
and finally the Nusselt number. Appendix L, specifically §L.5 starting on pp. 205, shows that under
the similarity framework, the energy PDE also collapses to an ODE of the form

d2T

dϕ2
+

f · Pr

2

dT

dϕ
= 0 ,

which can be integrated in very much the same manner as to how the Piercy and Preston (1936)
method processes the momentum equation.9.15 The general solution for T is

T (ϕ) =

∫ ϕ
0 exp

(

−
Pr

2

∫ ϕ
0 f(ϕ) dϕ

)

dϕ

∫∞
0 exp

(

−
Pr

2

∫ ϕ
0 f(ϕ) dϕ

)

dϕ

,

which, again presuming f(ϕ) is known, is a formality to integrate.9.16 §L.5 further shows that,
under the similarity framework, the Nusselt number is given by9.17

(9.14) Nux =
√

Rex · T ′(0) =

√
Rex

∫∞
0 exp

(

−
Pr

2

∫ ϕ
0 f(ϕ) dϕ

)

dϕ

·

For example, the Howarth (1938) numerical approach leads to the well–known “exact” result

(9.15) Nux ≈ 0.332 Re1/2
x Pr1/3 ,

9.15Once the momentum problem is solved, f is presumed known. Thus, f ·Pr/2, which is the coefficient of the
1–st derivative term, is entirely known and the equation is seen to be separable, c.f. the discussion in §L.5. While the
momentum ODE in Eq. (9.9) may look different, it has the same structure in that its 2 terms differ by exactly 1 level
of their derivative: 2–nd and 1–st derivatives in the energy equation, and 3–rd and 2–nd derivatives in the momentum
equation. The cleverness of the Piercy and Preston (1936) method lies in the way they split the momentum Eq. (9.10),
such that the coefficient of the lesser–order term becomes known, whereby that equation also becomes separable.

9.16Though a formality, this equation will generally be very difficult to complete in actual practice without
resorting to numerical integration at some point, c.f. §L.6 starting on pp. 208.

9.17This is Eq. (L.16) on pp. 208.
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which is sometimes called the “Blasius curve”.
Generally speaking, modern texts like Kays and Crawford (1980), Burmeister (1983), and Bejan

(1984), give very little detail as to how such results as Eq. (9.15) are ultimately derived. An
important point in this regard is that it is not like how the corresponding result for the Kármán–
Pohlhausen method in Eq. (9.8) is determined. Recall that in that case, the “construction” of
the Nusselt number is essentially an algebraic process, once the boundary layer growth laws are
determined.9.18 Conversely, in the case of the similarity framework, and irrespective of the actual
mathematical or numerical technique used to find f(ϕ), the integral in Eq. (9.14) implies that
Nux is actually some sort of (invariably) complicated function of Pr.9.19 The much–simplified
form in which results are usually reported, e.g. the “Blasius curve” in Eq. (9.15), actually comes
from regressing these curves. Specifically, the complicated dependence upon the Prandtl number,
Pr, is assumed to be expressible in a much simpler regressed form of a · Prb, where a and b are
undetermined constants. The entire process is shown in detail, including regression, for the Piercy–
Preston examples we have examined here in §L.6 starting on pp. 208. In particular, we find that
the original Piercy and Preston (1936) velocity profile in Eq. (9.11) on pp. 121 leads to

(9.16) Nux ≈ 0.383 Re1/2
x Pr0.348 ,

while the improved Watson and Preston (1951) profile in Eq. (9.12) on pp. 121 leads to

(9.17) Nux ≈ 0.339 Re1/2
x Pr0.342 .

These curves, sans Reynolds number, are plotted in Fig. L.2 on pp. 212, along with the “Blasius
curve” in Eq. (9.15) for comparison. The results are surprisingly good, given that only 1 iteration
was executed.

9.6. Additional Remarks

We have only examined arguably the most basic external flow. There are numerous other
relevant flows that exhibit boundary–layer–like dynamics. A very interesting generalization was
reported by Falkner and Skan (1931), who allowed the approach flow from a non–zero angle of
attack (Fig. 9.3). It can be shown that a similarity parameter of

x

β π 2

Figure 9.3. Boundary layer configuration for a wedge, which is equivalent to the ap-

proach flow at non–zero angle of attack.

ϕ = y

√

(m + 1) u∞

2 ν
x(m−1)/2 where m =

β

2 − β

9.18These operations are given in detail in §K.3 starting on pp. 189.
9.19For example, Eq. (L.18) on pp. 209 represents the general form for the single–iteration Piercy and Preston

(1936) method and appears sufficiently complex so as not even to be obviously integrable without resorting to
numerical techniques.
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leads to reduction to an ODE of

f ′′′ + f f ′′ + β
(

1 − f ′2) = 0

with the same boundary conditions as for the flat plate ODE in Eq. (9.9) on pp. 120. In fact, the
flat plate configuration is clearly a special case of this so–called Falkner–Skan ODE for β = 0.9.20

Many texts examine this configuration in detail (e.g. White, 1974; Schlichting, 1979; Panton, 1984).
There are broader classes of boundary layer flows where the similarity approach will fail outright

and others where obtaining any analytical results requires combining similarity variables with other
approaches. White (1974, §4-4) recounts quite a number of examples. In general, these cases
are fraught with mathematical difficulty and require additional techniques beyond what we have
discussed here.

9.7. Exercises

9.1
The Kármán–Pohlhausen integral method allows for
various kinds of approximations (trial profiles) for the
velocity and temperature distributions of Prandtl’s
laminar boundary layer flow. Consider the flat plate
configuration, where we use linear approximations for
the profiles, as shown for example for u(x, y) in the
diagram.

u

y

xδ

Denote the freestream velocity for the flow as u∞ and the momentum boundary layer
thickness as δ = δ(x). If we approximate the velocity distribution by the linear relationship

u

u∞
= a1 + a2

y

δ
,

where a1 and a2 are constants to be determined, show that δ grows as

δ ≈
3.464 x√

Rex

using the Kármán–Pohlhausen momentum integral equation, where Rex is the appro-
priately defined Reynolds number. Pay attention to selecting the 2 most appropriate
boundary conditions to evaluate the 2 constants.

9.20Actually, most discussions of the Falkner–Skan problem use the similarity variable for this problem quoted
above that makes the factor of 1/2 in Eq. (9.9) disappear. We again make the point that the successful similarity
variable is not necessarily unique, c.f. footnote D.1 on pp. 147.
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9.2
Referring to exercise 9.1: Denote the freestream temperature of the flow as T∞, the con-
stant plate temperature as TS , and the thermal boundary layer thickness as δt = δt(x). If
we approximate the temperature distribution by the linear relationship

T − TS

T∞ − TS
= b1 + b2

y

δt
,

where b1 and b2 are constants to be determined, show that δt grows as

δt = δ Pr−1/3 ≈
3.464 x

Re1/2
x Pr1/3

using the Kármán–Pohlhausen energy integral equation, where Pr is the fluid Prandtl
number. Pay attention to selecting the 2 most appropriate boundary conditions to evaluate
the 2 constants.

9.3
Referring to exercises 9.1 and 9.2: Use the results obtained thus far to show that the
Nusselt number for the Kármán–Pohlhausen method using linear approximations for u
and T in the boundary layer is

Nux ≈ 0.289 Pr1/3 Re1/2
x .



CHAPTER 10

Epilogue

As we mentioned in the preface, our scope was limited to a number of fundamental
conduction and convection problems, for which we were able, for the most part, to both pose

and solve in analytical terms. It might be said that these problems were examined from “first
principles”, with the commensurate benefits being not only exposure to the physical configurations
themselves, but also to the underlying mathematical techniques that form a sound foundation for
more difficult problems. Here, the word “difficult” can be taken as synonymous with “realistic”, or
perhaps “real world”.

There is no shortage of complications that will occur in real problems, for example non–
linearities due to property variation and complicated fluid motion, unsteady effects (including
at the boundaries), complex and perhaps varying geometry, turbulence, phase change, chemical
reaction, etc. In fact, in many instances one can expect that the actual heat transfer dynamics will
involve both conduction and convection, for example heat exchangers, and maybe even radiation,
as well. There is obviously great worth in having a command of the techniques for treating such
problems, not only in mathematical terms, but also in experimental and numerical ones, too.10.1

However, in the real world, the practitioner should also pay close attention to what might be called
the “parsimony principle of problem solving”. That is to say, one should arrive at a solution having
the appropriate level of sophistication and precision dictated by relevant considerations of economy,
time, and the problem’s importance within any larger context.

To take heat exchangers again as an example, a problem may be nothing more than to perform
“sizing analysis” to replace a retired unit and there may only be a few possible answers based
on availability from a manufacturer. Here, “back of the envelope” calculations more than suffice.
Conversely, one may be trying to arrive at an optimal design for a new type of heat exchanger whose
precise operation is integral to a larger instrument or process and in this case the analysis and testing
procedures would be much more substantial. In short, the latter solution would be significantly
more expensive and could take much longer to obtain, even though these factors would be entirely
justified.

Looking back in history, it seems many of the greatest scientists and engineers were very good
at this aspect of problem solving. John von Neumann certainly was, likewise for Stanislaw Ulam,
Richard Feynman, the duo of Simon Ramo and Dean Wooldridge, Vannevar Bush, Claude Shannon,
Richard Hamming, etc. A very long list of such individuals could easily be recited. Even Einstein
himself had a pragmatic view of the role of parsimony in technical work. Needless to say, these
people were all highly proficient across the methodological spectrum, which perhaps gave them the

10.1Recall the discussion of the “methodological triumvirate” in §1.5 on pp. 5. Heat transfer, like most areas
of mechanics, stands squarely at the intersections of pure mathematical theory, empirical science, and engineering
application and design optimization. While one may study the topic from one particular perspective, as we have done
here, it is wise to remember its significantly broader nature.
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luxury of picking the most fitting approach for a particular problem. I cannot say there is an exact
recipe of steps to follow in order to become good at this aspect, but ability will certainly tend to
develop with experience.

The whole matter has been eloquently discussed many times, but I think it is especially well
summed–up by Fontolliet (1986) who, in his book on the analysis and design of telecommunication
systems, wrote:

“The ability to leave things out is as important a requirement in engineering as
the ability to calculate. Knowing how to omit things is a difficult and subtle art
which requires in–depth knowledge of nature and techniques, and at the same time
sure judgment to evaluate the degree of approximation necessary, which can still be
compatible with the prescribed goals. The engineer must know that simple models
are false, but also that those which are not simple are unusable. Between the
perfectionism which is fatal because of its excessive cost and an empiricism which
is dangerous because of its unpredictable nature, an appropriate compromise must
be found which satisfies quality requirements and economic imperatives . . . Reality
is always more complex than the theory which attempts to describe it. In effect, to
understand this reality, we are obliged to simplify and schematize it.”



APPENDIX A

Bessel’s Modified Differential Equation for Annular Fins

Eq. (3.21) on pp. 24 is the specific form of the fin equation that is obtained when specifying
the geometric attributes of the annular fin:

d

dr

(

2 π r L
dθ

dr

)

−
4 π h

k
r θ = 0 ,

where θ = θ(r) is the temperature distribution in the radial direction. Gathering constants and
taking the derivative of the product in the first term, we can write this in the canonical form of a
Bessel equation, specifically a modified, or hyperbolic Bessel equation:

(A.1)
d2θ

dr2
+

1

r

dθ

dr
− m2 θ = 0 where m2 =

2 h

k L

Note that the coefficient of the first–derivative term, r−1, is not constant, so this equation is rather
more difficult than the special case of constant cross section fins in Eq. (3.13) on pp. 21.

A.1. Application of Frobenius’ Method

Here, we can use the extended power series, a.k.a. Frobenius’ method (Ross, 1965), which casts
the solution in terms of the power series

(A.2) θ = rϕ
∞
∑

i=0

ai ri =
∞
∑

i=0

ai ri+ϕ = rϕ
(

a0 + a1 r + a2 r2 + · · ·
)

,

where a0 -= 0 and ϕ and the sequence of ai are to be determined. This expression can be differen-
tiated term–by–term to obtain first and second derivatives, as

dθ

dr
=

∞
∑

i=0

(i + ϕ) ai ri+ϕ−1 = rϕ−1
(

ϕ a0 + (ϕ+ 1) a1 r + (ϕ+ 2) a2 r2 + · · ·
)

d2θ

dr2
=

∞
∑

i=0

(i + ϕ)(i + ϕ− 1) ai ri+ϕ−2

= rϕ−2
(

ϕ (ϕ− 1) a0 + (ϕ+ 1) ϕ a1 r + (ϕ+ 2) (ϕ+ 1) a2 r2 + · · ·
)

.

Direct substitution into the differential equation gives

rϕ−2
[

ϕ (ϕ− 1) a0 + (ϕ+ 1) ϕ a1 r + (ϕ+ 2) (ϕ+ 1) a2 r2 + · · ·
]

+ rϕ−2
[

ϕ a0 + (ϕ+ 1) a1 r + (ϕ+ 2) a2 r2 + · · ·
]

− m2rϕ
[

a0 + a1 r + a2 r2 + · · ·
]

= 0 ,
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and, gathering like terms in r, we find

rϕ−2
[

ϕ (ϕ− 1) a0 + ϕ a0

]

+ rϕ−1
[

(ϕ+ 1) ϕ a1 + (ϕ+ 1) a1

]

+ rϕ
[

(ϕ+ 1) (ϕ+ 2) a2 + (ϕ+ 2) a2 − m2 a0

]

(A.3)

+ rϕ+1
[

(ϕ+ 2) (ϕ+ 3) a3 + (ϕ+ 3) a3 − m2 a1

]

+ · · · = 0 .

In general r -= 0, so each term within square brackets must vanish in order for the equation to be
satisfied. The term in the lowest power of r, here being rϕ−2, is the so–called indicial equation and
it determines the further nature of the solution. Here, we find

ϕ (ϕ− 1) a0 + ϕ a0 = ϕ2 a0 = 0 .

Since a0 -= 0, it must be the case that ϕ = 0.
This is a special case where there are two linearly independent solutions: one which is identically

Eq. (A.2), where ϕ is now taken as 0, and another having the form θ ln r +
∑

bi ri, where the bn

must also be determined. Let us first develop the solution θ in Eq. (A.2).
We have now processed the first term in square brackets in Eq. (A.3), from which ϕ = 0, but

which likewise does not give any value for a0. All succeeding terms are now evaluated using ϕ = 0.
For instance, substitution shows the second term leads to a1 = 0. The third and fourth terms are

1 · 2 · a2 + 2 · a2 − m2a0 = 0

2 · 3 · a3 + 3 · a3 − m2a1 = 0

and, in fact, it is clear that these and all succeeding terms follow the pattern

(j − 1) j aj + j aj − m2aj−2 = 0 ,

from which a little algebra indicates a recurrence equation for the entire set of coefficients:

aj =

(
m

j

)2

aj−2 .

This expression indicates a3 = a5 = a7 = · · · = 0 because a1 = 0, i.e. only the even–indexed
coefficients are meaningful. Without loss of generality, we can set j = 2 · i, so that the series in
Eq. (A.2) only includes these even–indexed coefficients, i.e.

a2i =
( m

2 i

)2
a2i−2 for i = 1, 2, 3, 4, . . .
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Let us write a few of these out in order to discern an even more basic pattern:

i = 1 : a2 =
( m

2 · 1

)2
a0

i = 2 : a4 =
( m

2 · 2

)2
a2 =

( m

2 · 2

)2 ( m

2 · 1

)2
a0

i = 3 : a6 =
( m

2 · 3

)2
a4 =

( m

2 · 3

)2 ( m

2 · 2

)2 ( m

2 · 1

)2
a0

i = 4 : a8 =
( m

2 · 4

)2
a6 =

( m

2 · 4

)2 ( m

2 · 3

)2 ( m

2 · 2

)2 ( m

2 · 1

)2
a0

so that, in general, we find

a2i =

[
( m

2

)2
]i a0

i! i!
=
( m

2

)2i a0

(i!)2
·

Recalling our change in the index to retain only even terms, Eq. (A.2) becomes

(A.4) θ =
∞
∑

i=0

a2i r2i =
∞
∑

i=0

( m

2

)2i a0

(i!)2
r2i = a0

∞
∑

i=0

( m r

2

)2i 1

(i!)2
= a0 I0(m r) ,

where

(A.5) I0(x) =
∞
∑

i=0

( x

2

)2i 1

(i!)2

is the so–called modified Bessel function of the first kind (Gray et al., 1952), in this case of order
zero (since ϕ = 0 for this case). In other words, Eq. (A.4) gives one of the two linearly independent
solutions up to an as of yet undetermined constant a0.

As mentioned above, there is a second solution, now seen to be of the form

a0 I0(m r) ln r +
∞
∑

b=0

bi ri .

We could go through a similar, though rather more involved process to find this solution to be
b0 K0(m r), where b0 is an undetermined constant, K0 is the modified Bessel function of the second
kind (Gray et al., 1952)

K0(x) = − I0(x)
[

ln
( x

2

)

+ γ
]

+
∞
∑

i=1

( x

2

)2i 1

(i!)2

i
∑

j=1

1

j
·

Here, γ ≈ 0.5772157 is Euler’s constant (Beyer, 1984). Consequently, the general solution for the
annular fin temperature distribution is

(A.6) θ(r) = a0 I0(m r) + b0 K0(m r) ,

where a0 and b0 must still be determined and m is a parameter comprised of the flow, geometric,
and material properties of the fin, as specified in Eq. (A.1).
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A.2. Boundary Conditions

Eq. (A.6) is the general solution for conduction in the common annular fin. Constants a0

and b0 will take on appropriate values depending upon the boundary conditions. Recall that we
conventionally assume that the temperature at the base of the fin is known (§3.4). Consequently,

θ(ri) = T (ri) − T∞ = θb ,

where θb is the known temperature at the base r = ri (c.f. Fig. 3.6). There are various possibilities
for the tip boundary condition, but we will consider the particular case of an adiabatic boundary

dθ

dr

∣
∣
∣
∣
r=ro

= 0 .

The latter requires us to take derivatives of I0 and K0 in Eq. (A.6). While derivatives can be
written in a very general and elegant recursive fashion for Bessel functions of arbitrary order (Gray
et al., 1952), it may be more instructive to derive the necessary expressions here in longhand. We
can expand the definition of I0 in Eq. (A.5) to

I0(x) =
1

0! 0!

( x

2

)0
+

1

1! 1!

( x

2

)2
+

1

2! 2!

( x

2

)4
+

1

3! 3!

( x

2

)6
+

1

4! 4!

( x

2

)8
+ · · ·

and differentiate term–by–term. Denoting dI0/dx as I ′0, we find

I ′0(x) =
2

1! 1!

( x

2

)1
·

1

2
+

4

2! 2!

( x

2

)3
·

1

2
+

6

3! 3!

( x

2

)5
·

1

2
+

8

4! 4!

( x

2

)7
·

1

2
+ · · ·

=
1

1! 1!

( x

2

)1
+

2

2! 2!

( x

2

)3
+

3

3! 3!

( x

2

)5
+

4

4! 4!

( x

2

)7
+ · · ·

=
1

0! 1!

( x

2

)1
+

1

1! 2!

( x

2

)3
+

1

2! 3!

( x

2

)5
+

1

3! 4!

( x

2

)7
+ · · ·

=
x

2

[
1

0! 1!

( x

2

)0
+

1

1! 2!

( x

2

)2
+

1

2! 3!

( x

2

)4
+

1

3! 4!

( x

2

)6
+ · · ·

]

=
x

2

∞
∑

i=0

( x

2

)2i 1

i! (i + 1)!

= I1(x) .

Of course, this is consistent with the general definition of In(x), given by

In(x) =
( x

2

)n ∞
∑

i=0

( x

2

)2i 1

i! (i + n)!
,

for integer values of n (Gray et al., 1952). Similar examination shows K ′
0 = −K1, so that the

derivative is dθ/dr = a0I ′0 + b0K ′
0 = a0I1 − b0K1.

It is now a relatively straightforward matter to use the two boundary conditions to solve for
the unknown constants a0 and b0. At ri and ro, we have, respectively

a0 I0(m ri) + b0 K0(m ri) = θb and a0 I1(m ro) − b0 K1(m ro) = 0 ,
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so that a little algebra shows

a0 =
K1(m ro) θb

I0(m ri) K1(m ro) + I1(m ro) K0(m ri)

b0 =
I1(m ro) θb

I0(m ri) K1(m ro) + I1(m ro) K0(m ri)
·

Finally, we can write the exact solution by substituting these expression into the general solution,
obtaining

(A.7) θ(r) =
I0(m r) K1(m ro) + K0(m r) I1(m ro)

I0(m ri) K1(m ro) + I1(m ro) K0(m ri)
θb .

A.3. Heat Transfer

The heat transfer rate of the fin can be evaluated in the usual way of applying Fourier’s Law
at the base of the fin, c.f. §3.6 (pp. 24), which in this case we write

q = − k

(

Ac
dθ

dr

)∣
∣
∣
∣
r=ri

,

where we are careful to evaluate Ac at the base, as well. (This matters because Ac is not constant in
r, whereas it would not matter for constant cross–section fins.) At the base, we have Ac = 2π ri L,
which is the circumference of the fin at its base times the fin thickness. The derivative involves
the Bessel functions, but these no longer pose any real difficulty since we have already established
their derivative relationships.A.1 We find

dθ

dr
=

I ′0(m r) K1(m ro) m + K ′
0(m r) m I1(m ro)

I0(m ri) K1(m ro) + I1(m ro) K0(m ri)
θb

=
I1(m r) K1(m ro) − K1(m r) I1(m ro)

I0(m ri) K1(m ro) + I1(m ro) K0(m ri)
θb m

dθ

dr

∣
∣
∣
∣
r=ri

=
I1(m ri) K1(m ro) − K1(m ri) I1(m ro)

I0(m ri) K1(m ro) + I1(m ro) K0(m ri)
θb m ,

so that

q = − k
(

2 π ri t
)

θb m
I1(m ri) K1(m ro) − K1(m ri) I1(m ro)

I0(m ri) K1(m ro) + I1(m ro) K0(m ri)

= 2 π ri t k m θb
K1(m ri) I1(m ro) − I1(m ri) K1(m ro)

I0(m ri) K1(m ro) + I1(m ro) K0(m ri)
·

= 2 π ri θb

√
2 t k h

K1(m ri) I1(m ro) − I1(m ri) K1(m ro)

I0(m ri) K1(m ro) + I1(m ro) K0(m ri)
·(A.8)

where the expression for m in Eq. (3.22) on pp. 24 has been substituted into the leading product.

A.1Note however, that we are taking d/dr of, for example, I0(m r). One can readily check the expansion in the
previous section to see that each term will be multiplied by an additional m, according to Chain Rule for the product
m r. Consequently, dI0(m r)/dr = m · I ′

0(m r).



APPENDIX B

Separation of Variables for the 1–D Unsteady Dirichlet Problem

The Dirichlet problem is governed by the one–dimensional transient conduction law, Eq. (4.3)
on pp. 30, repeated here for convenience

∂T

∂t
= α

∂2T

∂x2
,

within the Cartesian domain 0 ≤ x ≤ L for time t ≥ 0. Take the boundary conditions to be
homogeneous of the first kind, i.e. T (0, t) = T (L, t) = 0. Finally, allow for an arbitrary initial
distribution of T , i.e. the initial conditions are given by an unspecified function T (x, 0) = F (x).

B.1. Separation of Variables Method

The method begins with a conjecture that the solution can be written in the form

(B.1) T (x, t) = Ψ(x) Γ(t) .

That is, we assume that the physical problem is such that the contribution related to temporal
response can be separated from the contribution related to spatial variation (Carrier and Pearson,
1976). For example, consider the hypothetical case T = (x2−1)t. This equation clearly represents a
“separable” problem, where Ψ = (x2 −1) and Γ = t. Conversely, the case T =

√
xt +tanh(x2

√
t +

√

x/t ) is not readily separable. In general, separation of variables works optimally when the
governing equation is homogeneous, as in the case here.

Under the conjecture of Eq. (B.1), partial derivatives have certain forms. Using the Chain Rule
of Calculus, we see

(B.2)
∂T

∂t
= Γ(t)

∂Ψ(x)

∂t
+ Ψ(x)

∂Γ(t)

∂t
= Ψ(x) Γ ′(t) ,

where the prime symbol denotes the derivative of a univariate function. Notice that the derivative
of Ψ(x) with respect to t vanishes because Ψ is only a function of x, not of t. Similarly, we can
apply Chain Rule twice to find

(B.3)
∂2T

∂x2
= Ψ ′′(x) Γ(t) .

Proceeding, we now substitute Eqs. (B.2) and (B.3) into the conduction equation to obtain

(B.4)
1

α

Γ ′(t)

Γ(t)
=

Ψ ′′(x)

Ψ(x)
·

We have now cast the problem in a separated form where the left hand side is only a function of
time t and the right hand side is only a function of the spatial coordinate x. However, according to
principle, Eq. (B.4) must be valid for all x and t in the problem domain. It follows that each side
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must be equal to a constant. Otherwise, either of x or t could be held fixed while the other could
be varied such that Eq. (B.4) would be contradicted. Therefore,

1

α

Γ ′(t)

Γ(t)
= C0 and

Ψ ′′(x)

Ψ(x)
= C0 ,

where C0 is a constant. Positive values for C0 lead to exponentially increasing behavior and
imaginary values (involving i =

√
−1 ) lead to periodic behavior (Carrier and Pearson, 1976).

These responses can be verified by substitution. We are instead interested in the case where C0 is
negative. This leads to behavior that decays exponentially in time, a phenomenon compatible with
the type of boundary and initial conditions we have specified. Therefore, we define

C0 = −ζ2 ,

where ζ > 0.
We have now developed two individual ordinary differential equations from the single partial

differential equation

(B.5) Γ ′(t) + αζ2Γ(t) = 0 t ≥ 0

and

(B.6) Ψ ′′(x) + ζ2Ψ(x) = 0 0 ≤ x ≤ L .

These taken separately are each easier to solve than the original partial differential equation.
We must apply the same separation process to the boundary conditions. Using Eq. (B.1), the

two boundary conditions can be written as

Ψ(0) Γ(t) = Ψ(L) Γ(t) = 0 .

Now, Γ(t) cannot vanish for arbitrary values of t, otherwise the whole solution would be trivial.
Therefore we see that Ψ(0) and Ψ(L) must vanish instead. The boundary conditions are therefore

(B.7) Ψ(0) = 0

and

(B.8) Ψ(L) = 0 .

We do not perform a similar reduction on the initial condition. This is handled differently as dis-
cussed below. The problem in (x, t) has now been completely separated into two simpler problems:
a spatial problem in x and a temporal problem in t.

B.2. Solution Procedure

We are now faced with solving the individual problems in x and t. As mentioned above, we
are focusing specifically on homogeneous boundary conditions of the first kind. Cases involving
other combinations of boundary conditions are more complex and often require a more generalized
treatment (Özişik, 1980).

Because its coefficients are constant, Eq. (B.5) is readily solvable using the method of the
auxiliary equation (Ross, 1965), which in this case is ϕ + αζ2 = 0, so that ϕ = −αζ2 is the only
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root.B.1 Consequently, Eq. (B.5) has a solution of the form

(B.9) Γ(t) = Ct e−αζ2t ,

where we leave the constant Ct undetermined for the moment. Eq. (B.6) can be solved in the same
way, the auxiliary equation being ϕ2 + ζ2 = 0, so that ϕ = ±iζ, where i =

√
−1 , as usual. It can

be shownB.2 that the solution can be expressed by the elementary trigonometric functions

(B.10) Ψ(x) = C1 sin(ζx) + C2 cos(ζx) ,

where C1 and C2 are constants of integration. If we apply the boundary condition in Eq. (B.7), we
get

Ψ(0) = C1"""#0
sin 0 + C2 cos 0 = 0 ,

which implies that C2 = 0. Now apply the other condition in Eq. (B.8) to obtain

Ψ(L) = C1 sin(ζL) = 0 .

It is clear that C1 -= 0, otherwise the entire solution would once again be trivial. Therefore, it must
instead be the case that sin(ζL) = 0, so that

ζL = nπ ,

where n = 1, 2, 3, . . . That is, the problem is only satisfied for certain values of ζ, called eigen–
values, i.e. ζ = nπ/L. This is a so–called eigen–value problem.B.3

Note, we will now change the notation to reflect the fact that there are many admissible eigen–
related values, thus ζ → ζn, C1 → Cn, and ζn = nπ/L. Also note that in this case “sin (ζnx)” is
called the eigen–function. Each mode n yields an elementary solution to the problem. A general
solution is therefore obtained by the linear superposition of all modes n = 1 → ∞. This can be
written as

(B.11) T (x, t) =
∞
∑

n=1

Cn sin (ζnx) e−αζ2
nt .

Eq. (B.11) now satisfies both the governing equation and the boundary conditions. Note that the
single constant Ct from Eq. (B.9) has been subsumed into the set of mode coefficients, Cn. The Cn

must now be determined such that the initial conditions are satisfied.

B.1We will find this same solution procedure is needed if solving this problem using different methods. See
footnote 6.9 on pp. 67.

B.2The roots ϕ = ±iζ indicate the solution

Ψ(x) = C1e
iζx + C2e

−iζx = C1

“

cos(ζx) + i sin(ζx)
”

+ C2

“

cos(ζx) − i sin(ζx)
”

.

The latter expression, obtained by Euler’s Formula, is easily shown to be equivalent to Eq. (B.10), where C2 = C1+C2

and C1 = i( C1 − C2 ).
B.3Özişik (1980) discusses eigen–value problems in detail. This problem is part of a broader mathematical

theory of boundary–value problems for ordinary differential equations called Sturm–Liouville Theory (e.g. Ross,
1965, chapter 12).
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B.3. Determining Mode Coefficients

Directly plugging in initial conditions at t = 0 yieldsB.4

(B.12) T (x, 0) = F (x) =
∞
∑

n=1

Cn sin(ζnx) ,

however, this appears to be a dead end at first glance since there are an infinite number of unknown
Cn values and only one equation. In actuality, we see that this problem boils down to one of
expanding an arbitrary function F (x) into a series. In this case, the series will be a Fourier “sin”
series (Boyce and DiPrima, 1977). Let us review how such a series is constructed.

First, we make use of the fact that the eigen–functions are orthogonal, that is, they obeyB.5

∫ L

0
sin(ζnx) sin(ζmx) dx = 0

for m -= n and
∫ L

0
sin(ζnx) sin(ζmx) dx = N(ζn)

for m = n, where N(ζn) is the normalization integral , commonly called the “norm”, and is defined
for this particular case as

N(ζn) =

∫ L

0
sin2(ζnx) dx .

Özişik (1980) and Ross (1965) have extensive discussions of orthogonality.

Next, we operate on Eq. (B.12) with
∫ L
0 sin(ζnx) dx to obtain

(B.13)

∫ L

0
F (x) sin(ζnx) dx =

∫ L

0

∞
∑

m=1

Cm sin(ζmx) sin(ζnx) dx .

B.4Eq. (B.12) is an expansion of F (x) in a sine series and is often called a “half–range” expansion in newer texts
(Kreyszig, 1993).

B.5 The cancellation property implied by orthogonality can be demonstrated directly in this case by evaluating
the general form of the integral. Here, we refer directly to an integral table (e.g. Beyer, 1984). Noting that ζn = nπ/L
and ζm = mπ/L, where n and m are both positive integers, we find
Z L

0

sin(ζnx) sin(ζmx) dx =

„
sin[(ζn − ζm) x]

2(ζn − ζm)
− sin[(ζn + ζm) x]

2(ζn + ζm)

«˛
˛
˛
˛

L

0

=

„
sin[(n − m)π x/L]

2(n − m)π/L
− sin[(n + m)π x/L]

2(n + m)π/L

«˛
˛
˛
˛

L

0

=

0

@"""""""# 0

sin[(n − m)π]
2(n − m)π/L

− """""""# 0

sin[(n + m)π]
2(n + m)π/L

1

A −

 

"""# 0
sin 0

2(n − m)π/L
−

"""# 0
sin 0

2(n + m)π/L

!

= 0 .

The two sine functions evaluated at x = L vanish because n and m are both integers, so that (n−m)π and (n+m)π
are both always some integer multiple of π, for which the sine is identically zero. It is clear by inspection that
these same functions vanish when evaluated at x = 0. Consequently, the entire integral vanishes whenever m %= n.
Footnote C.2 on pp. 142 shows a similar derivation for orthogonality of the cosine function. A general proof of the
orthogonality property is given in §6.6 starting on pp. 78 and is also discussed in various other texts, see e.g. Cotta
(1993, appendix A) and Özişik (1980, note 1 on pp. 587). See also Ross (1965).
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Note, the mode number symbol is arbitrary and we changed n → m in the summation to avoid am-
biguity. We recall that the mode coefficients are constants rather than functions of x, so Eq. (B.13)
can be simplified to

(B.14)

∫ L

0
F (x) sin(ζnx) dx =

∞
∑

m=1

Cm

∫ L

0
sin(ζmx) sin(ζnx) dx .

The summation sign and coefficients have been taken outside of the integral. Now we make the ob-
servation that the right hand side vanishes except in the case where m = n due to the orthogonality
property. This can be better visualized if we write out the terms explicitly. We obtain

∫ L

0
F (x) sin(ζnx) dx =

""""""""""""""#0

C1

∫ L

0
sin(ζ1x) sin(ζnx) dx

+
""""""""""""""#0

C2

∫ L

0
sin(ζ2x) sin(ζnx) dx

+
""""""""""""""#0

C3

∫ L

0
sin(ζ3x) sin(ζnx) dx + · · ·

only term that does not vanish + Cn

∫ L

0
sin(ζnx) sin(ζnx) dx

+

"""""""""""""""""#0

Cn+1

∫ L

0
sin(ζn+1x) sin(ζnx) dx

+

"""""""""""""""""#0

Cn+2

∫ L

0
sin(ζn+2x) sin(ζnx) dx + · · ·

as the explicit representation of the series. Clearly, only mode Cn is non–zero, as implied by
orthogonality. The rest of the modes are trivial and the summation itself vanishes. We can then
simplify Eq. (B.14) to

∫ L

0
F (x) sin(ζnx) dx = Cn

∫ L

0
sin(ζnx) sin(ζnx) dx = Cn N(ζn) ,

from which we find that the mode coefficients are given by

(B.15) Cn =
1

N(ζn)

∫ L

0
F (x) sin(ζnx) dx =

2

L

∫ L

0
F (x) sin(ζnx) dx ,

where N(ζn) = L/2 for this case.B.6

Eq. (B.11) satisfies the governing equation and the boundary conditions while Eq. (B.15) de-
termines coefficients such that the initial condition F (x) is also (simultaneously) satisfied. These

B.6 The norm in this particular case is readily evaluated using standard tables (e.g. Beyer, 1984) as

(B.16) N(ζn) =

Z L

0

sin2
“ n π x

L

”

dx =

»
x
2

− L
4 n π

sin

„
2 n π x

L

«–˛
˛
˛
˛

L

0

=
L
2

·
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two equations give the final solution to the problem specified above, although if F (x) is very com-
plicated, evaluation of Eq. (B.15) may not be straightforward. Physically, the solution means that
we know the temperature distribution T (x, t) for the entire problem domain 0 ≤ x ≤ L and t ≥ 0.
We can therefore compute quantities of engineering interest such as heat flux at any position and
any time.

B.4. Example: The Unit Initial Condition

Let us consider the unit initial condition F (x) = 1 as an actual example, i.e. the temperature
at any x at time t = 0 is unity. We evaluate the mode coefficients using Eq. (B.15) as

Cn =
2

L

∫ L

0
1 sin(ζnx) dx =

2

L

∫ L

0
sin(ζnx) dx

= −
2

L ζn
cos(ζnx)

∣
∣
∣

L

0
= −

2 L

L n π
cos
( n π x

L

)∣
∣
∣

L

0

= −
2

n π

[

cos

(
n π L

L

)

− cos 0

]

=
2

nπ
[1 − cos(n π)]

Cn =
2

nπ
[1 − (−1)n]

The last result is obtained by noting that n varies as 1, 2, 3, . . . , for which the cosine of nπ must
correspondingly alternate between negative and positive 1. In fact, we can construct a table of
how the term in brackets varies with n (Table B.1). Clearly, all even–numbered modes drop out

Table B.1. Values of the Alternating Term: [1 − (−1)n]

n 1 2 3 4 5 6 7 · · ·
value 2 0 2 0 2 0 2 · · ·

of the problem because their resulting mode coefficients are all 0. However, odd–numbered modes
remain. We can simplify Cn further by writing it only for the non–trivial odd modes as

Cn = 2
2

n π
=

4

n π
where n = 1, 3, 5, 7, . . .

Finally, we can substitute Cn into the general solution in Eq. (B.11) to obtain

(B.17) T (x, t) =
∞
∑

n=1,3,5,...

4

n π
sin (ζnx) e−αζ2

nt .

This expression can be used to evaluate temperature at any arbitrary (x, t) by writing a simple
computer loop to add terms until a suitable convergence threshold has been reached.
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B.5. Example: Transient Decay of Steady 1–D Conduction

In elementary one–dimensional steady conduction, the general solution for the temperature
distribution is T (x) = C1 x + C2 (c.f. footnote 3.2 on pp. 18). An interesting extension of
this configuration is to examine its decay transient. For example, consider the specific steady–
state conduction T (x) = x/L, which obviously implies T (0) = 0 and T (L) = 1. Now let the
boundary temperature at L be changed to T (L) = 0, so that T (x) decays to a final state of thermal
equilibrium. We again evaluate the mode coefficients using Eq. (B.15) as

Cn =
2

L

∫ L

0

x

L
sin(ζnx) dx =

2

L2

∫ L

0
x sin(ζnx) dx

=
2

L2

[
L2

n2 π2
sin
( n π x

L

)

−
x L

n π
cos
( n π x

L

)
]∣
∣
∣
∣

L

0

=
2

L2

[(
L2

n2 π2
sin (n π) −

L2

n π
cos (n π)

)

−

(
L2

n2 π2
sin 0 −

0 · L
n π

cos 0

)]

= −
2

n π
cos (n π) = −

2

n π
(−1)n

Cn =
2 (−1)n+1

n π
·

Notice that, unlike the unit initial condition configuration, this problem retains all the eigen–modes,
though they alternate sign. Substituting Cn into the general solution in Eq. (B.11), we then obtain
the final solution for the decay transient as

(B.18) T (x, t) =
∞
∑

n=1

2 (−1)n+1

n π
sin (ζnx) e−αζ2

nt .



APPENDIX C

Separation of Variables for the 1–D Unsteady Robbins Problem

Similar to the procedures shown in appendix B, we apply the separation of variables
technique to solve the Robbins problem, here cast in dimensionless form. Because much of the

process is the same as for the Dirichlet problem, we will only show those parts that differ materially.
Also, for this derivation only, we will temporarily drop the “star” notation (∗) for convenience of
presentation. That is, all quantities here are dimensionless, despite the absence of the “starred”
variables.

Eq. (4.9) on pp. 34 is the one–dimensional transient conduction law in dimensionless form

∂θ

∂t
=

∂2θ

∂x2

where θ is the dimensionless temperature, as defined in Eq. (4.6) on pp. 34. (Note the absence
of the thermal diffusivity from the equation.) We consider the behavior of θ within the non–
dimensionalized Cartesian domain 0 ≤ x ≤ 1 for dimensionless time (Fourier number) t ≥ 0.
According to Eqs. (4.10) and (4.11), the dimensionless initial and (Robbins) boundary conditions
are

θ(x, 0) = 1 and
∂θ(x, t)

∂x

∣
∣
∣
∣
x=0

= 0 and −Bi · θ(1, t) =
∂θ(x, t)

∂x

∣
∣
∣
∣
x=1

.

C.1. Solution Method

The separation of variables method used here follows the basic approach of Eq. (B.1) in appen-
dix B, i.e. θ(x, t) = Ψ(x) Γ(t). The separation process leads to

Γ ′(t)

Γ(t)
=

Ψ ′′(x)

Ψ(x)
= − ζ2 ,

where again ζ is a positive value. The separated, ordinary equations are

Γ ′(t) + ζ2Γ(t) = 0 and Ψ ′′(x) + ζ2Ψ(x) = 0

and their respective general solutions areC.1

Γ(t) = Ct e−ζ2t and Ψ(x) = C1 sin(ζx) + C2 cos(ζx) ,

where Ct, C1, and C2 are all undetermined constants. The reduced boundary conditions for Ψ(x)
are obtained by substituting the presumed form of θ into the physical boundary conditions, from
which we obtain

Ψ ′(0) Γ(t) = 0 and − Bi Ψ (1) Γ(t) = Ψ ′(1) Γ(t) .

C.1See §B.2 on pp. 135 for the derivation of these solutions. Note that the problem in Γ here appears slightly
different because of the dimensionless nature in which the current problem was cast.

141
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As with the Dirichlet problem, we observe that Γ(t) cannot vanish for arbitrary values of t, otherwise
the whole solution would be trivial. Therefore, the boundary conditions imply Ψ ′(0) = 0 and
−Bi = Ψ ′(1)/Ψ (1).

The former means

Ψ ′(0) = ζ C1 cos 0 − ζ C2"""#0
sin 0 = 0 ,

which implies that C1 = 0. (Therefore, C2 -= 0 and the eigen–function is “cosine”.) Using this
observation, the latter requirement can now be written in the form

−Bi =
− C2 ζ sin ζ

C2 cos ζ
,

which simplifies to

(C.1) ζn tan ζn = Bi .

Eq. (C.1) is the expression that governs the eigen–values. The “tangent” is a cyclical function
and there are an infinite number of ζn that will satisfy this equation for a given value of Bi.
However, it cannot be solved by elementary algebraic manipulation, except for a few cases, and will
instead normally require a numerical solution (see below). Unlike in the Dirichlet problem where
we had to explicitly discern the eigen phenomenon, the constant C2 vanishes identically here. The
eigen phenomenon is more obvious. Combining the solution for the separate x and t and using
superposition, the general solution can be expressed as

θ(x, t) =
∞
∑

n=1

Cn cos (ζn x) e−ζ2
nt ,

where we still must determine the mode coefficients, Cn.
The mode coefficients are derived in the exact same fashion as in §B.3, i.e. by exploiting the

orthogonality property of the associated eigen–function, here cos(ζnx).C.2 Specifically, the normal-
ization integral can be evaluated using standard tables (e.g. Beyer, 1984) as

N(ζn) =

∫ 1

0
cos2(ζn x) dx =

[
x

2
+

1

4 ζn
sin(2 ζn x)

]∣
∣
∣
∣

1

0

=
1

2
+

sin(2 ζn)

4 ζn

and the Cn are then

Cn =
1

N(ζn)

∫ 1

0
θ(x, 0) cos(ζn x) dx =

1

N(ζn)

∫ 1

0
cos(ζn x) dx =

1

N(ζn)

sin(ζn x)

ζn

∣
∣
∣
∣

1

0

,

since the initial condition is θ(x, 0) = 1. It can be shown without much trouble that evaluating the
limits in this expression, multiplying by the ratio of 4ζn with itself, and substituting the expression

C.2 The cancellation property implied by orthogonality can be demonstrated directly in this case by evaluating
the general form of the integral. Here, we refer directly to an integral table (e.g. Beyer, 1984). Noting that ζn = nπ/L
and ζm = mπ/L, where n and m are both positive integers, we find

Z L

0

cos(ζnx) cos(ζmx) dx =

„
sin[(ζn − ζm) x]

2(ζn − ζm)
+

sin[(ζn + ζm) x]
2(ζn + ζm)

«˛
˛
˛
˛

L

0

,

which, with the exception of the sign between the two terms in parenthesis, is identical to the orthogonality integral
for the sine function and which therefore vanishes according to the same reasoning given in footnote B.5 on pp. 137.
See §6.6 starting on pp. 78 for a general discussion.
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for the norm yields the mode coefficients, which are obvious in the final form of the solution

(C.2) θ(x, t) =
∞
∑

n=1

4 sin ζn
2 ζn + sin(2 ζn)

cos (ζn x) e−ζ2
nt ,

with the eigen–values specified by Eq. (C.1).

C.2. Determining the Eigen–Values

Unlike the Dirichlet problem in appendix B, most eigen–values here are not algebraic, but must
rather be obtained numerically. The exceptions are

Bi = 0 : tan ζn = 0 ζn = 0,π, 2π, . . . , (n − 1)π and

Bi → ∞ : tan ζn = ∞ ζn =
π

2
,

3 π

2
,

5 π

2
, · · · ,

(2n − 1) π

2
·

The clever numerical method for finding other eigen–values observes that the “tangent” function is
non–negative and increases monotonically from 0 → ∞ only within each sub–domain between the
two above limits

(n − 1) π ≤ ζn ≤
(2n − 1) π

2
for n = 1, 2, 3, . . . , as shown in Fig. C.1. Therefore, we would expect to find exactly one root in
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Figure C.1. Cyclical nature of the “tangent” function.

each of these sub–domains where Eq. (C.1) is satisfied for some particular value of the Biot number.
Once this fact is observed, it is fairly straightforward to apply any standard numerical root–finding
algorithm, e.g. bisection (Hamming, 1962), to find as many eigen–values as might be necessary for
the convergence of Eq. (C.2). Algorithm C.1 can be implemented in any suitable language for this
task. The first 8 eigen–values for a variety of Biot number values are furnished in Table C.1 using
this method.
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Algorithm C.1 Solving for Eigen–values from Eq.(C.1) Using the Bisection Method

input value of Biot number, Bi
set value of the mode number, n
set convergence threshold for the iteration, ε, suitably near 0
set lower bound of the initial bisection iteration as ζL

n = (n − 1) π
set upper bound of the initial bisection iteration as ζH

n = (2n − 1) π/2
while true do
ζn = ζL

n + (ζH
n − ζL

n )/2
f = ζn tan ζn − Bi
if f < 0 then ζL

n = ζn else ζH
n = ζn

if |f | ≤ ε then exit loop
end while
print ζn
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Table C.1. The First 8 Eigen–values for the Unsteady 1–D Robbins Problem

Bi ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8
0 0 π 2 π 3 π 4 π 5 π 6 π 7 π
0.001 0.0316 3.1419 6.2833 9.4249 12.5665 15.7080 18.8496 21.9912
0.002 0.0447 3.1422 6.2835 9.4250 12.5665 15.7081 18.8497 21.9912
0.004 0.0632 3.1429 6.2838 9.4252 12.5667 15.7082 18.8498 21.9913
0.006 0.0774 3.1435 6.2841 9.4254 12.5668 15.7083 18.8499 21.9914
0.008 0.0893 3.1441 6.2845 9.4256 12.5670 15.7085 18.8500 21.9915
0.01 0.0998 3.1448 6.2848 9.4258 12.5672 15.7086 18.8501 21.9916
0.02 0.1410 3.1479 6.2864 9.4269 12.5680 15.7092 18.8506 21.9921
0.04 0.1987 3.1543 6.2895 9.4290 12.5696 15.7105 18.8517 21.9930
0.06 0.2425 3.1606 6.2927 9.4311 12.5711 15.7118 18.8527 21.9939
0.08 0.2791 3.1668 6.2959 9.4333 12.5727 15.7131 18.8538 21.9948
0.1 0.3111 3.1731 6.2991 9.4354 12.5743 15.7143 18.8549 21.9957
0.2 0.4328 3.2039 6.3148 9.4459 12.5823 15.7207 18.8602 22.0002
0.3 0.5218 3.2341 6.3305 9.4565 12.5902 15.7270 18.8655 22.0048
0.4 0.5932 3.2636 6.3461 9.4670 12.5981 15.7334 18.8707 22.0093
0.6 0.7051 3.3204 6.3770 9.4879 12.6139 15.7460 18.8813 22.0184
0.8 0.7910 3.3744 6.4074 9.5087 12.6296 15.7587 18.8919 22.0275
1 0.8603 3.4256 6.4373 9.5293 12.6453 15.7713 18.9024 22.0365
2 1.0769 3.6436 6.5783 9.6296 12.7223 15.8336 18.9547 22.0815
3 1.1925 3.8088 6.7040 9.7240 12.7966 15.8945 19.0061 22.1259
4 1.2646 3.9352 6.8140 9.8119 12.8678 15.9536 19.0565 22.1697
5 1.3138 4.0336 6.9096 9.8928 12.9352 16.0107 19.1055 22.2126
6 1.3496 4.1116 6.9924 9.9667 12.9988 16.0654 19.1531 22.2545
8 1.3978 4.2264 7.1263 10.0949 13.1141 16.1675 19.2435 22.3351
10 1.4289 4.3058 7.2281 10.2003 13.2142 16.2594 19.3270 22.4108
12 1.4505 4.3636 7.3070 10.2869 13.3004 16.3414 19.4034 22.4814
14 1.4664 4.4074 7.3694 10.3586 13.3746 16.4142 19.4729 22.5468
16 1.4786 4.4416 7.4198 10.4184 13.4386 16.4786 19.5358 22.6071
18 1.4883 4.4690 7.4610 10.4688 13.4939 16.5357 19.5926 22.6624
20 1.4961 4.4915 7.4954 10.5117 13.5420 16.5864 19.6439 22.7131
25 1.5105 4.5330 7.5603 10.5947 13.6378 16.6901 19.7517 22.8221
30 1.5202 4.5615 7.6057 10.6543 13.7085 16.7691 19.8361 22.9098
35 1.5272 4.5822 7.6391 10.6989 13.7625 16.8305 19.9033 22.9809
40 1.5325 4.5979 7.6647 10.7334 13.8048 16.8794 19.9576 23.0394
50 1.5400 4.6202 7.7012 10.7832 13.8666 16.9519 20.0392 23.1287
60 1.5451 4.6353 7.7259 10.8172 13.9094 17.0026 20.0971 23.1931
80 1.5514 4.6543 7.7573 10.8606 13.9644 17.0686 20.1733 23.2788
100 1.5552 4.6658 7.7764 10.8871 13.9981 17.1093 20.2208 23.3327
1000 1.5692 4.7077 7.8461 10.9846 14.1230 17.2615 20.4000 23.5384
10000 1.5706 4.7119 7.8532 10.9945 14.1358 17.2770 20.4183 23.5596
∞ π/2 3 π/2 5 π/2 7 π/2 9 π/2 11 π/2 13 π/2 15 π/2



APPENDIX D

The Similarity Technique Applied to the Rayleigh Problem

Like the Dirichlet problem, the Rayleigh problem is governed by the one–dimensional
transient conduction law in the form of Eq. (4.3) on pp. 30

∂T

∂t
= α

∂2T

∂x2

that we consider within the Cartesian domain 0 ≤ x < ∞ for time t ≥ 0, where T = T (x, t). We
take the initial distribution of the temperature to be constant throughout,

T (x, 0) = Ti

and the boundary conditions to be

T (0, t) = T0 and T (x → ∞, t) = Ti .

This problem has a direct analog in fluid mechanics called the Rayleigh Problem and we shall refer
to it by that same name here (c.f. footnote 4.9 on pp. 37).

As it is stated, the Rayleigh problem has no obvious finite length scale and this characteristic
is often a hint that a similarity transform might exist. In this transformation process, the partial
differential equation, which depends upon two independent variables, x and t, is reduced to an
ordinary differential equation, which depends upon only one independent variable: a single, unified
similarity parameter. The routinely non–trivial first step in such a process is the mere identification
of the similarity variable itself. The successful transform law must process both the equation and
the boundary and initial conditions properly. Once the ordinary differential equation system is
obtained, it must still be solved by conventional methods.

D.1. Derivation of the Similarity Parameter

There is no single, general theory for similarity analysis and a number of procedures are avail-
able. Here, we will opt for using the “stretching variables” procedure, a special case of group
theoretic transformations, which govern the similarity parameter based on the concept of invari-
ance (Hansen, 1967). Define

T = ξa T , x = ξb x , t = ξc t ,

where ξ is the parameter for the group. To obtain the equation in the “bar” (coordinate stretched)
system, we apply Chain Rule in much the same way as we use it for non–dimensionalizing an
equation (c.f. Eqs. (4.7) and (4.8) on pp. 34). We find

ξc−a ∂T

∂t
= ξ2b−a α

∂2T

∂x2 ·
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To maintain invariance between the original and the stretched system, the ξ must be able to be
canceled, implying c−a = 2b−a, or c = 2b. We immediately see that a = 0, otherwise the condition
at the surface boundary in the stretched system, ξ−a T = T0, would not be invariant.

Next, we must find a parameter, ϕ, that is invariant under transformations of the independent
variables. We have two independent variables here, x and t, so we choose a power expression of
their product of the form

ϕ = x td ,

noting that there is no need to assume a power of x other than unity because d would be determined
commensurately (Hansen, 1967). The invariance condition just mentioned for ϕ requires

x td = x td =
(

ξb x
) (

ξc t
)d

= ξb+cd x td ,

where b + c d = 0 for invariance to hold. Given c = 2 b from above, a little algebra shows

d = −
b

c
= −

b

2 b
= −

1

2
,

so that the final similarity parameter isD.1

(D.1) ϕ =
x√
t

·

Eq. (D.1) shows the two physical independent variables, x and t, incorporated into one unified
similarity variable, ϕ, and this combination will allow reduction of the partial differential equation
system into an ordinary one.

D.2. Reduction of the Partial Differential Equation System to an Ordinary One

A successful similarity parameter must do two things. First, it must reduce the governing
equation from a PDE to an ODE. Second, it must also consistently transform the boundary and
initial conditions in a manner such that the total of 3 conditions in x and t collapse to 2 conditions
in ϕ.

The Chain Rule can be used to determine what the derivatives are with respect to the new
(transformed) variable ϕ, specifically

∂

∂t
=

d

dϕ

∂ϕ

∂t
= −

x

2 t3/2

d

dϕ

and

∂

∂x
=

∂ϕ

∂x

d

dϕ
which implies

∂2

∂x2
=

(
∂ϕ

∂x

)2 d2

dϕ2
=

(
1

t1/2

)2 d2

dϕ2
=

1

t

d2

dϕ2
·

Substituting these into the governing equation we find

−
x

2 t3/2

dT

dϕ
= α

1

t

d2T

dϕ2
,

D.1 The successful similarity parameter is not necessarily unique to a specific problem and Eq. (D.1) is only
one example of a parameter that works for the Rayleigh problem. Other commonly used parameters are x/

√
4 α t

(Schlichting, 1979; Panton, 1984) and x/
√

α t (Batchelor, 1967), which clearly differ from Eq. (D.1) by only a constant.
Incidentally, the forms specified here are also dimensionless, a property that is not actually necessary for the solution
process. Note that that the relationship between the independent variables, x and t, remains the same for all 3 forms
and this is the salient property.
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which can be simplified using substitution of Eq. (D.1) and a little algebra to

(D.2)
d2T

dϕ2
+

1

2 α
ϕ

dT

dϕ
= 0 .

Note that Eq. (D.2) is now an ordinary differential equation (second–order), having the single
independent variable ϕ.

Being second–order, this equation requires precisely 2 boundary conditions. However, we have
3 conditions in the original problem, one on time and two on space. We must apply the similarity
transform to the original conditions, too, which is simply a matter of substituting the given values
of x and t (as combined in Eq. (D.1)) into the assigned boundary values of T (x, t), as follows:

T (x, 0) = Ti transforms to T (ϕ→ ∞) = Ti since ϕ →
x√
0

T (0, t) = T0 transforms to T (ϕ = 0) = T0 since ϕ =
0√
t

T (x → ∞, t) = Ti transforms to T (ϕ→ ∞) = Ti since ϕ →
∞√
t

·

Here, we note the significant result that the initial condition and one of the boundary conditions
collapse into a single, redundant statement. We now have the necessary two boundary conditions

(D.3) T (ϕ = 0) = T0 and T (ϕ→ ∞) = Ti

and, taken with the ODE above in Eq. (D.2), we have fully transformed the problem of T (x, t) to
one of T (ϕ).

D.3. Solution Procedure and the Gaussian Error Function

The most straightforward method to solve the ODE in Eq. (D.2) is to make the substitution

ξ =
dT

dϕ
,

so that this expression becomes
dξ

dϕ
+

1

2 α
ϕ ξ = 0 .

A moment’s inspection reveals that this differential equation is separable, and can therefore be
solved by direct integration. In particular, further development shows

dξ

ξ
= −

1

2 α
ϕ dϕ ,

which is integrated once (as an indefinite integral) to obtain

ln ξ = −
1

4 α
ϕ2 + C1 ,

where C1 is the as–of–yet undetermined integration constant. According to the substitution above,
ξ still involves an additional differential of the temperature T , for which we are trying to solve.
The second integration is staged by first exponentiating the current expression

(D.4) ξ = e−(ϕ/
√

4 α )2+C1 or
dT

dϕ
= C1 e−(ϕ/

√
4 α )2 ,
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which we immediately see is once again separable. However, the apparently straightforward right–
hand–side is misleading: integrandsD.2 having the form e−η2

dη cannot be expressed in terms of
elementary functions, but rather involve the so–called Gaussian error function “erf” (Andrews,
1985). Before proceeding to integrate Eq. (D.4), let us report, without derivation, a few of the
basic properties of erf.D.3

definition erf(η) =
2√
π

∫ η

0
e−χ2

dχ(D.5)

“erf” is an odd function erf(− η) = − erf(η)(D.6)

zero value erf(0) = 0(D.7)

asymptotic behavior erf(+∞) = 1(D.8)

Returning to the topic of Eq. (D.4), we see that our problem is related, but not yet in the
precise form of the definition of the error function in Eq. (D.5). We can readily make the following
change of variables:

η =
ϕ√
4 α

dη =
1√
4 α

dϕ ,

so that we can formally integrate Eq. (D.4) as

T = C1

√
π

2
·

2√
π

·
∫

e−η2 √
4 α dη = C1

(
2√
π

∫

e−η2
dη

)

= C1 erf(η) + C2 ,

so that going back from η to ϕ

T (ϕ) = C1 erf

(
ϕ√
4 α

)

+ C2 .

Note that, in this particular case, the various involved constants are superfluous because of the

indefinite nature of the integration and we simply absorb them into a new constant C1. The
remainder of the problem is now simply to use the transformed boundary conditions in Eq. (D.3)

to determine the two constants, C1 and C2. We find

T (0) = T0 = C1 erf(0) + C2 → C2 = T0 c.f. Eq. (D.7)

T (∞) = Ti = C1 erf(∞) + T0 → C1 = Ti − T0 c.f. Eq. (D.8) .

Using these results and substituting back the original x and t from the similarity parameter in
Eq. (D.1), we see that the final solution to the Rayleigh problem can be expressed as

T (x, t) − T0

Ti − T0
= erf

(
x√

4 α t

)

·

We note that “erf” is asymptotic in both the positive and negative x directions (Fig. D.1). In
this particular case, the independent variables do not take on negative values, i.e. x ≥ 0 and t ≥ 0,

D.2Incidentally, e−η2

is also the Gaussian or normal distribution from probability theory and is often colloquially
referred to as the “bell curve” (Feller, 1968). This is one of the truly numerous examples of how seemingly disparate
areas of mathematics are fundamentally related to one another. We will encounter the error function again in §L.4
starting on pp. 202 in examining the boundary layer profile.

D.3The error function is discussed in detail in many sources, e.g. Abramowitz and Stegun (1972), Özişik (1980),
and Andrews (1985).
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Figure D.1. The Gaussian error function

so “erf” will vary between 0 and 1. The implications that can be discerned from the solution in
light of Fig. D.1 are that the T remains roughly Ti where x > 2

√
4 α t and has changed to T0 where

x #
√

4 α t .

D.4. Heat Transfer

As with other configurations, the heat transfer can now be derived directly from Fourier’s Law
in Eq. (2.2) on pp. 8

q′′ = −k
dT

dx
,

for which it is clear we must be able to take the derivative in x of the above solution. The form of
this derivative can be deduced from the definition of the error function itself in Eq. (D.5) as

q′′ = −k
d

dx

[

(Ti − T0) erf

(
x√

4 α t

)

+ T0

]

= −k (Ti − T0)
2√
π

e−x2/(4αt) 1√
4 α t

=
k (T0 − Ti)√

π α t
e−x2/(4αt) ,

so that at the boundary we see

q
∣
∣
∣
x=0

=
k (T0 − Ti)√

π α t
,

i.e. the heat transfer at x = 0 responds as t−1/2.



APPENDIX E

Solving the 2–D Steady Dirichlet Problem

The two–dimensional steady problem is governed by the Laplace equation, written here
in rectangular coordinates

∂2T

∂x2
+

∂2T

∂y2
= 0 ,

which we will solve for the case of Dirichlet boundary conditions for both a finite field and a
semi–infinite field, as discussed in §5.1 on pp. 40.

E.1. The Finite Problem

The finite problem is described by the boundary conditions

T (0, y) = T (L, y) = T (x,H) = 0 and T (x, 0) = F (x) ,

repeated here for convenience from Eq. (5.2). The solution procedure for this problem is very
similar to that for the unsteady 1–D Dirichlet problem (c.f. §B.1 on pp. 134). That is, assume a
separation law of the form T (x, t) = Ψ(x) Γ(y), so that

Ψ ′′(x)

Ψ(x)
= −

Γ ′′(y)

Γ(y)
= − ζ2 .

In fact, the problem in Ψ is identical to the one shown in §B.1: the corresponding governing
equation being Eq. (B.6) on pp. 135, and boundary conditions being Eqs. (B.7) and (B.8). There,
we found the solution to be

Ψn = Cn sin(ζnx) ζn =
n π

L
,

where ζn are the eigen–values and Cn are the yet–to–be–determined coefficients. The problem in
Γ is, however, different:

Γ′′
n − ζ2

n Γn = 0 ,

where our notation now reflects the solution for the n–th eigen–value, Γn. The method of the
auxiliary equation (Ross, 1965) gives ϕ2 − ζ2 = (ϕ+ ζ)(ϕ− ζ) = 0, so that the general solution is

(E.1) Γn(y) = An eζn y + Bn e−ζn y .

The homogeneous boundary condition quoted above separates as T (x,H) = Ψ(x)Γ(H) = 0, so that
the solution evaluated at y = H is

Γn(H) = An eζn H + Bn e−ζn H = 0 .

Because the domain is finite in y, neither of the terms vanishes and we must instead solve for one
of the constants in terms of the other, e.g. as Bn = −Ane2 ζn H . Substituting this expression back

151
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into the general solution, we may observe the following clever evaluation:

Γn(y) = An eζn y − An e2 ζn H e−ζn y

= An

(

eζn y − e2 ζn H e−ζn y
)

=
An

e−ζn H

(

eζn y e−ζn H − e2 ζn H e−ζn H e−ζn y
)

=
An

e−ζn H

(

e−ζn (H−y) − eζn (H−y)
)

= −
2 An

e−ζn H

(

eζn (H−y) − e−ζn (H−y)

2

)

Γn(y) = An sinh
[

ζn(H − y)
]

where we have noted the fact that the left term is still a constant, which we relabel as An and the
term in parenthesis simplifies according to the identity in Eq. (3.14) on pp. 21.

Once again, the solution to the main problem is the linear superposition of all modes for Ψ and
Γ, which can be written as

T (x, y) =
∞
∑

n=1

Cn sin(ζnx) sinh
[

ζn(H − y)
]

,

where we have subsumed An into the original constant Cn, writing their product as Cn.
These unknown mode coefficients, Cn, are derived once again in the exact same fashion as

in §B.3, i.e. by exploiting the orthogonality property of the associated eigen–function. While the
eigen–function is exactly the same as in that problem, sin(ζnx), the context is slightly different
because this is a steady 2–D steady problem as opposed to a 1–D unsteady one. The procedure
is the same, although we do not explicitly show the cancellation of terms using the orthogonality
property, as was furnished in detail in §B.3. Starting with evaluation at the remaining (last)
boundary,E.1

T (x, 0) = F (x) =
∞
∑

n=1

[

Cn sinh(ζnH)
]

sin(ζnx) ,

E.1 Though not as obvious as Eq. (B.12) on pp. 137, this expression is also a “half–range” expansion of F (x)
in a sine series (Kreyszig, 1993). The sinh(ζnH) term may initially seem not to belong, but it must be remembered
that for every n, this term has a value. That is, it is not a function of the independent variable, x. In this sense, it
can properly be thought of as part of the coefficient of each term in the expansion, which is why we have grouped
it with Cn in square parenthesis. Eq. (E.2) below shows the final integral form for the Cn and it is clear that the
sinh(ζnH) term is divided out. In other words, the remainder of that term is precisely the conventional form for a
half–range expansion in terms of sine (Kreyszig, 1993). This term does not appear in the solution for the problem
of the semi–infinite domain. Why? A similar phenomenon to the above is found in half–range cosine expansions, see
e.g. footnote F.1.
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we integrate in terms of the eigen–function

∫ L

0
F (x) sin(ζnx) dx =

∫ L

0

∞
∑

m=1

Cm sin(ζmx) sinh(ζmH) sin(ζnx) dx

=
∞
∑

m=1

Cm sinh(ζmH)

∫ L

0
sin(ζmx) sin(ζnx) dx

= Cn sinh(ζnH)

∫ L

0
sin2(ζnx) dx

= Cn sinh(ζnH)
L

2
·

Note again that the simplification in the second–to–last line comes about because the integral is
zero, i.e. vanishes, for every term where m -= n. The only single term for which it survives is
when m = n, meaning the summation vanishes, as well. In the last line, we observe that the
normalization integral is identical to that in Eq. (B.16) on pp. 138, i.e. L/2. Solving for Cn, we see

(E.2) Cn =
2

L sinh(ζnH)

∫ L

0
F (x) sin(ζnx) dx ,

so that the complete solution can be written

(E.3) T (x, y) =
2

L

∞
∑

n=1

(
1

sinh(ζnH)

∫ L

0
F (x) sin(ζnx) dx

)

sin(ζnx) sinh
[

ζn(H − y)
]

,

where the eigen–values are explicit: ζn = nπ/L.

E.2. The Semi–Infinite Problem

The semi–infinite problem is obtained in the physical realm by merely moving the top boundary
“very far away”, whereby the associated boundary condition becomes

T (x, y → ∞) = 0 .

The separation assumption and the problem in Ψ are identical to those in the previous section.
While the equation in Γ and its general solution in Eq. (E.1) are also the same, the boundary
condition is obviously different. Here, we find

Γn(∞) = An e∞ + Bn e−∞ = 0 ,

which immediately implies An = 0. Superposition then further implies a general solution of the
form

T (x, y) =
∞
∑

n=1

Cn sin(ζnx) e−ζny ,

where we have again combined constants, as now seems to be conventional. Again, we evaluate
the constants by exploiting the orthogonality property when the remaining boundary condition
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T (x, 0) = F (x) is imposed:
∫ L

0
F (x) sin(ζnx) dx =

∫ L

0

∞
∑

m=1

Cm sin(ζmx) · e0 · sin(ζnx) dx

=
∞
∑

m=1

Cm · 1 ·
∫ L

0
sin(ζmx) sin(ζnx) dx

= Cn

∫ L

0
sin2(ζnx) dx

= Cn
L

2
,

so that

Cn =
2

L

∫ L

0
F (x) sin(ζnx) dx ,

which is identical to the coefficients for the 1–D unsteady Dirichlet problem (see Eq. (B.15) on
pp. 138). It is fairly straightforward to see why this should be the case. Both solutions have the
same eigen–function and a component having the form e−ϕ (where ϕ is t or y, as appropriate) whose
specification at ϕ = 0 is the non–homogeneous boundary condition of the problem (Eqs. (B.11) and
(B.12) on pp. 136 prove this statement for the unsteady problem). Consequently, that component
is e0 = 1 at this boundary when the mode coefficients are evaluated, leaving only the product of the
identical eigen–function and F (x). Similar to the finite problem, we can write the fully–incorporated
general solution as

(E.4) T (x, y) =
2

L

∞
∑

n=1

( ∫ L

0
F (x) sin(ζnx) dx

)

sin(ζnx) e−ζny ,

where the eigen–values are once again explicit: ζn = nπ/L.

E.3. Example: Convergence of Geometries for a Constant Temperature Boundary

Suppose we take the example of T (x, 0) = F (x) = C, where C is a constant. The boundary
integral, identical in Eqs. (E.3) and (E.4), evaluates as

∫ L

0
F (x) sin(ζnx) dx = C

∫ L

0
sin(ζnx) dx

= −
C

ζn
cos(ζnx)

∣
∣
∣

L

0

= −
C

ζn

[

cos

(
n π L

L

)

− cos 0

]

=
C

ζn
[1 − cos(n π)]

=
C L

n π
[1 − (−1)n] .
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Like the result in §B.4 on pp. 139, the even modes vanish, leaving only the odd modes and an extra
coefficient of 2. The solutions to the finite and semi–infinite cases can then be written respectively
as

T (x, y) =
4 C

π

∞
∑

n=1,3,5,...

1

n sinh(ζnH)
sin(ζnx) sinh

[

ζn(H − y)
]

,

T (x, y) =
4 C

π

∞
∑

n=1,3,5,...

1

n
sin(ζnx) e−ζny ,

where again ζn = nπ/L in both equations.

E.4. Uniqueness Demonstrated via Green’s Theorem

Here, we demonstrate the standard proof that the Dirichlet problem for steady 2–D heat con-
duction, or any other mechanics problem governed by Laplace’s equation, for that matter, has only
one unique solution. We initially framed the proposition in §5.3 on pp. 49 in terms of a rectangular
domain, assuming two existing solutions, T1 and T2, where T1 -= T2. The observations established
there so far are that the auxiliary solution we defined, θ = T1−T2, also satisfies Laplace’s equation,
∇2θ = 0 and θ is zero around the entire boundary. A moment of consideration should demonstrate
that the very way we define θ as the difference of two solutions which both satisfy the boundary
conditions will lead to θ vanishing around the boundary, regardless of its shape. We immediately
observe then that the proposition we are about to demonstrate actually holds for the Dirichlet
problem in general, independent of the geometry of the domain. Let us then assume a domain
of arbitrary shape (Fig. E.1). The proposition can be extended to 3 dimensions using arguments

dn

n

ŝ

ŝ

n̂

y

x

A

S
dx

α

α
dy

dx
dyds

^

Figure E.1. Two–dimensional domain A bounded by a closed boundary curve S with

tangent and outward normal unit vectors, ŝ and n̂, respectively (left panel) and resolution

of tangent and normal differentials in terms of Cartesian differentials (right panel).

similar to what we will show here.
Start with a statement of Green’s theorem in the plane.E.2 If the domain A is smoothly bounded

by closed curve S and F1(x, y) and F2(x, y) are continuous functions having continuous partial

E.2Green’s theorem is fundamentally important in vector calculus and is derived and discussed extensively in
standard texts, e.g. Courant (1937), Hildebrand (1976), and Kreyszig (1993). A short derivation of several additional
forms of Green’s identities is shown in appendix G on pp. 166.
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derivatives with respect to y and x, respectively, then

(E.5)

∫∫

A

(
∂F2

∂x
−

∂F1

∂y

)

dx dy =

∮

S

(

F1
dx

ds
+ F2

dy

ds

)

ds ,

where the right hand side is a contour integral taken in the conventional counter–clockwise direction,
as indicated in Fig. E.1.

The basic approach to proving uniqueness for the Dirichlet problem using this theorem will be
to show that ∇θ = 0, in the domain so that θ must be a constant, then to further show that the
constant must itself be 0 because θ is identically zero around the boundary. This process involves
intelligently picking the functions F1 and F2 in Green’s theorem:

F1 = − θ
∂θ

∂y
and F2 = θ

∂θ

∂x
·

Direct substitution shows
∫∫

A

[
∂

∂x

(

θ
∂θ

∂x

)

−
∂

∂y

(

− θ
∂θ

∂y

)]

dx dy =

∮

S

(

− θ
∂θ

∂y

dx

ds
+ θ

∂θ

∂x

dy

ds

)

ds ,

Expanding the integrand on the left and simplifying the one on the right
∫∫

A

[

θ
∂2θ

∂x2
+

(
∂θ

∂x

)2

+ θ
∂2θ

∂y2
+

(
∂θ

∂y

)2
]

dx dy =

∮

S

θ

(
∂θ

∂x

dy

ds
−

∂θ

∂y

dx

ds

)

ds .

It will be more useful from this point further to convert to purely vector notation. First, let
us observe that, given the convention of counter–clockwise contour integration, the tangent and
outward unit normal vectors are defined as shown in (Fig. E.1). In particular, the outward unit
normal is

n̂ = sinα î − cosα ĵ =
dy

ds
î −

dx

ds
ĵ .

The first assertion follows from a simple trigonometric observation on the triangle adjacent to n̂, in
particular that the vector length is indeed unity,E.3 while the second is derived from the identical
triangle adjacent to ŝ. The latter naturally leads to the incorporation of ds, which is appears in
the theorem, rather than dn, which does not. Noting also that

∇θ =
∂θ

∂x
î +

∂θ

∂y
ĵ ,

we can regroup terms in the left–side integrand and utilize the vector quantities to write this
instance of Green’s theorem as

∫∫

A

(

θ'''(
0

∇2θ + ∇θ ·∇θ
)

dx dy =

∮

S

θ∇θ · n̂ ds ,

where we show the cancellation of the Laplacian term. Noting that ∇θ·n̂ is the directional derivative
in the normal direction, let us finally write

∫∫

A

|∇θ|2 dx dy =

∮

S

θ
∂θ

∂n
ds .

E.3The vector length is |n̂| =
√

n̂ · n̂ =
p

sin2 α + cos2 α = 1.
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The proof of uniqueness now lies in properly interpreting this equation. With respect to the right
hand side, we recall from above that the problem was cast such that θ itself is identically zero
around the boundary, i.e. curve S, so that the contour integral actually vanishes. This implies the
area integral on the left must also vanish, which will be the case if the integrand vanishes, the
latter being the square of the magnitude of the vector ∇θ. The only means by which the vector
∇θ vanishes is if all of its components are zero, i.e.

∂θ

∂x
= 0 and

∂θ

∂y
= 0 .

Integrating these two statements respectively would mean both θ = f1(y) and θ = f2(x). A moment
of reflection will show the only way for both these statements to hold is if f2(x) = f1(y) = C, i.e.
if they are constant. In other words, θ itself must be a constant.

The final deduction comes from the already–observed fact that the value of θ on the boundary
is zero. That is, if θ within the domain is a constant C and θ around the boundary is zero, then
it must be that C = 0. In other words, θ = 0 identically. Finally, because we started with the
proposition that θ = T1 − T2, we finally see that

T1 = T2 ,

meaning that the two different solutions must be one and the same.



APPENDIX F

Solving the 2–D Steady Mixed Laplace Problem

The mixed boundary condition problem in §5.4 on pp. 50 is again governed by the Laplace
equation, which we again repeat for convenience

∂2T

∂x2
+

∂2T

∂y2
= 0 .

Here, two of the boundary conditions are of the Dirichlet type and two are of the Neumann type

T (x,H) = F (x) and T (x, 0) = 0 and
∂T

∂x

∣
∣
∣
∣
x=0

=
∂T

∂x

∣
∣
∣
∣
x=L

= 0 .

Note again that we have basically “inverted” the problem as compared to the one discussed in
§5.1 on pp. 40 by swapping the assignments of T (x,H) and T (x, 0). Even though the boundary
conditions are now mixed, this system is still amenable to the separation of variables method.

F.1. Solution Method

The solution procedure for this problem is very similar to that for the steady 2–D Dirichlet
problem (c.f. §E.1 on pp. 151) in that we assume a separation of variables form of T (x, t) =
Ψ(x) Γ(y), so that

Ψ ′′(x)

Ψ(x)
= −

Γ ′′(y)

Γ(y)
= − ζ2 .

Although the ordinary equations for Ψ and Γ are the same, i.e.

(F.1) Ψ ′′(x) + ζ2Ψ(x) = 0 and Γ ′′ − ζ2Γ = 0 ,

the boundary conditions for each are different

(F.2) Ψ ′(0) = Ψ ′(L) = Γ(0) = 0 and Γ(H) = F (x) .

(See e.g. §B.1 on pp. 134 for an example of separating the boundary conditions.) The general
solution for Ψ is derived in §B.2, specifically it is given by Eq. (B.10) on pp. 136, i.e.

(F.3) Ψ(x) = C1 sin(ζx) + C2 cos(ζx) .

Here, the constants depend upon the first derivative of Ψ, per the Neumann conditions, rather than
on Ψ itself:

Ψ ′(x) = C1 ζ cos(ζx) − C2 ζ sin(ζx) ,

so that

Ψ ′(0) = C1 ζ cos 0 − C2 ζ"""#0
sin 0 = 0 implying C1 = 0 and

Ψ ′(L) = """"""#0
C1 ζ cos L − C2 ζ sin(ζL) = 0 .

158
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The eigen–function here is “cosine” (as opposed to “sine” for the purely Dirichlet problem, e.g.
in §E.1 on pp. 151). In the boundary condition at x = L, we notice another interesting and very
important difference from the purely Dirichlet problem. Namely, in addition to the usual countably
infinite set of eigen–values,

ζn =
n π

L
n ∈ {1, 2, 3, . . . } ,

it appears that ζ = 0 is also an eigen–value, i.e. another way to satisfy the boundary equation
ζ sin(ζL) = 0. In effect, we have a “zero mode” eigen–value ζ0 = 0, which is consistent with the
general expression for ζn if we add 0 to the set of mode numbers. This observation has the following
implications. The usual eigen–modes apply for n ∈ {1, 2, 3, . . . } when substituted into the general
solution Eq. (F.3)

Ψn(x) = Cn cos(ζnx) ,

however, the zero eigen–value actually implies an additional, subtle eigen–problem. When we
substitute ζ = 0 into the governing equation for Ψ, Eq. (F.1), we find another unexpected, but
relevant ordinary differential equation

Ψ0
′′(x) = 0 ,

which has its own independent solution

Ψ0 (x) = C1 x + C2 ,

that is readily derived by integrating twice. Note that the same boundary conditions on Ψ in
Eq. (F.2) still apply here. Interestingly, given Ψ0

′(x) = C1 implied by this general solution, both
boundary conditions imply the same result

Ψ0
′(0) = Ψ0

′(L) = C1 = 0 ,

leaving the zero–mode solution

Ψ0(x) = C0 ,

where we have appropriately relabeled the constant C2 → C0. In other words, the solution to the
zero–mode problem in Ψ is simply a constant.

The ordinary differential equation for Γ appears to be the same as for the Dirichlet problem,
Γ′′

n − ζ2
n Γn = 0 and, therefore, has the same general solution as the one found for that problem,

i.e. Eq. (E.1) on pp. 151

(F.4) Γn(y) = An eζn y + Bn e−ζn y ,

but we must be careful to remember this applies strictly to the positive eigen–values n ≥ 1. Like
the Dirichlet problem, the domain here is finite and we solve for one of the constants in terms of
the other using the boundary condition Γn(0) = 0, as follows

Γn(0) = An e0 + Bn e0 = 0 ,
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so that Bn = − An, implying

Γn(y) = An eζn y − An e−ζn y

= An

(

eζn y − e−ζn y
)

= 2 An

(
eζn y − e−ζn y

2

)

Γn(y) = An sinh(ζny) ,

where we have relabeled the constant as An. Here, we can now clearly see the implications of
“inverting” the boundary conditions as we have done as compared to the purely Dirichlet problem
in §5.1 on pp. 40 by swapping the assignments of T (x,H) and T (x, 0): The mathematical solution
reflects the inversion simply by the specific form of arguments of the “sinh” function: H − y versus
just y, depending upon where we assign the non–homogeneous boundary condition (c.f. the results
in §E.1).

We now must also consider the implications of the “zero–mode” eigen–value, ζ0 = 0, on Γ.
Similar to the problem in Ψ above, this mode remakes the ordinary differential equation in Γ, i.e.
in Eq. (F.1), into the independent equation

Γ0
′′(y) = 0 ,

which again has its own independent solution

Γ0 (y) = C1 y + C2 ,

that is readily derived by integrating twice. Again, employing the boundary condition Γ0(0) = 0,

we immediately find C2 = 0 and the solution is then

Γ0(y) = C1 y .

Let us pause to summarize matters as they currently stand. The problem has been assumed
separable using the form Ψ(x) Γ(y), which has led to a conventional, countably–infinite set of
eigen–solutions

Ψn(x) Γn(y) = Cn cos(ζnx) sinh(ζny) ζn =
n π

L
n ∈ {1, 2, 3, . . . }

(where we have subsumed constants An into constants Cn) and an independent “zero–mode” eigen–
solution

Ψ0(x) Γ0(y) = C0 y ζ0 = 0

(where we have subsumed constant C1 into constant C0). The linear superposition of all of these
solutions is then the general solution for T (x, y), i.e.

(F.5) T (x, y) = C0 y +
∞
∑

n=1

Cn cos(ζnx) sinh(ζny) ζn =
n π

L
·
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F.2. Determining Mode Coefficients

Up until now, we have exploited the orthogonality property directly to evaluate mode coeffi-
cients, e.g. as demonstrated for both sine and cosine expansions in footnotes B.5 on pp. 137 and
C.2 on pp. 142, respectively. While the current solution consists of a family of trigonometric eigen–
functions of the type that we are by now quite used to seeing (here being of the cosine type), the
additional “zero–mode” and its associated extra term C0 y in the general solution in Eq. (F.5) seem
to complicate the process of finding the current mode coefficients. However, it is still conceptually
the same as what we have seen for previous problems. The only procedural difference is that is that
we must now perform two integrations for the respective different types of eigen–functions, rather
than just one.

Evaluating the solution for the non–homogeneous boundary at y = H, we findF.1

(F.6) T (x,H) = F (x) = C0 H +
∞
∑

n=1

[

Cn sinh(ζnH)
]

cos(ζnx) .

Let us first process the more familiar n ≥ 1 mode coefficients. From above, the eigen–function is
cos(ζnx), by which we multiply each term and then follow with integration
∫ L

0
F (x) cos(ζnx) dx =

∫ L

0
C0 H cos(ζnx) dx +

∫ L

0

∞
∑

m=1

Cm sinh(ζmH) cos(ζmx) cos(ζnx) dx

= C0 H

∫ L

0
cos(ζnx) dx +

∞
∑

m=1

Cm sinh(ζmH)

∫ L

0
cos(ζmx) cos(ζnx) dx

= C0 H

∫ L

0
cos(ζnx) dx + Cn sinh(ζnH)

∫ L

0
cos2(ζnx) dx .

Here, we have already exploited the orthogonality property for the eigen–function cos(ζnx), as
described in footnote C.2 on pp. 142, whereby all terms except the n–th one in the summation
vanish. We still must eliminate C0, since we are trying to determine the values of Cn. Recalling
that ζn = nπ/L,

(F.7)

∫ L

0
cos(ζnx) dx =

1

ζn
sin(ζnx)

∣
∣
∣
∣

L

0

=
L

n π

[

"""""#0
sin(nπ) − sin 0

]

= 0 ,

so that the term containing C0 vanishes without any extra effort. The normalization integral is

N(ζn) =

∫ L

0
cos2(ζn x) dx =

[
x

2
+

1

4 ζn
sin(2 ζn x)

] ∣
∣
∣
∣

L

0

=

[

L

2
+ """"""# 0

sin(2 n π)

4 ζn

]

−
[

0

2
+

sin 0

4 ζn

]

=
L

2
·

F.1 This expression is a “half–range” expansion of F (x) in a cosine series (Kreyszig, 1993). Although H in the
first term and the sinh(ζnH) term within the summation may initially seem not to belong, it must be remembered
that these terms have values. That is, they are not a function of the independent variable, x. In this sense, they can
properly be thought of as part of the coefficients of each term in the expansion. See more detailed discussion of this
phenomenon in footnote E.1 for half–range sine expansion.
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Note that in both of the above integral evaluations we have used the fact that sine vanishes when
its argument is any multiple of π. Substituting these observations into the above integral equation
yields

∫ L

0
F (x) cos(ζnx) dx = C0 H · 0 + Cn sinh(ζnH)

L

2
,

which is readily solved as

(F.8) Cn =
2

L sinh(ζnH)

∫ L

0
F (x) cos(ζnx) dx .

Now we examine the “zero–mode”. Recall from above that the solution to this problem is a
constant, which we can write in a useful way as Ψ0(x) = C0 ·1, i.e. a mode coefficient C0 multiplied
by an eigen–function of unity. Once we have made this observation, the procedure is exactly as
above: multiply each term in Eq. (F.1) by the eigen–function, integrate, and exploit orthogonality
to solve for C0. We find

∫ L

0
F (x) · 1 dx =

∫ L

0
C0 H · 1 dx +

∫ L

0

∞
∑

m=1

Cm sinh(ζmH) cos(ζmx) · 1 dx

= C0 H

∫ L

0
dx +

∞
∑

m=1

Cm sinh(ζmH)
""""""""#0∫ L

0
cos(ζmx) dx

= C0 H L +
∞
∑

m=1

Cm sinh(ζmH) · 0 ,

where we have used the observation in Eq. (F.7) above that the integral of cos(ζmx) over the domain
vanishes identically. Consequently, every term in the series also vanishes. We then solve directly
for C0 as

(F.9) C0 =
1

H L

∫ L

0
F (x) dx

In summary, the solution to the mixed Laplace problem posed at the beginning of this section is
Eq. (F.5) with the zero–mode coefficient given by the integral in Eq. (F.9) and the mode coefficients
for n ≥ 1 given by Eq. (F.8). As usual, the actual difficulty of evaluating the mode coefficients for
a specific problem depends on the complexity of F (x).

F.3. Example: Piecewise Boundary Temperature Imposed by Local Heat Sources

In §5.4, we consider an example having a rather more complicated non–homogeneous boundary
condition than what we have treated thus far. It is a domain 0 ≤ x ≤ 0.1 and 0 ≤ y ≤ 0.05
that models two separate devices, each creating heat and thereby imposing elevated temperatures
at the top edge (see Fig. 5.8 on pp. 52). The overall boundary condition is given by a piecewise
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specification: Eq. (5.11) on pp. 53:

F (x) =



















0 : 0 ≤ x < 0.02

50 sin
[

10 π(5 x − 0.1)
]

: 0.02 ≤ x < 0.04

0 : 0.04 ≤ x < 0.05

20 sin
[

50 π(2 x − 0.1)
]

: 0.05 ≤ x < 0.06

0 : 0.06 ≤ x ≤ 0.1 .

Finishing the problem for this specific example merely involves the formality of evaluating the
zero–mode coefficient, C0 in Eq. (F.9), and the regular mode coefficients, Cn in Eq. (F.8). However,
as we just commented, the difficulty of carrying out these operations is related to the complexity
of F (x) and this case is somewhat more involved than the simpler constant–temperature model we
considered in §E.3 for the Dirichlet problem.

Let us start with C0 in Eq. (F.9):

C0 =
1

0.05 · 0.1

( ∫ 0.02

0

"""#0
0 dx +

∫ 0.04

0.02
50 sin

[

10 π(5 x − 0.1)
]

dx +

∫ 0.05

0.04

"""#0
0 dx

+

∫ 0.06

0.05
20 sin

[

50 π(2 x − 0.1)
]

dx +

∫ 1

0.06

"""#0
0 dx

)

= 200

(

50

∫ 0.04

0.02
sin
[

10 π(5 x − 0.1)
]

dx + 20

∫ 0.06

0.05
sin
[

50 π(2 x − 0.1)
]

dx

)

= 200

(

− 50
1

50 π
cos
[

10 π(5 x − 0.1)
] ∣
∣
∣

0.04

0.02
− 20

1

100 π
cos
[

50 π(2 x − 0.1)
] ∣
∣
∣

0.06

0.05

)

= 200

(

−
1

π

[

cos π − cos 0
]

−
1

5 π

[

cos π − cos 0
]
)

= 200

(

−
1

π

[

−1 − 1
]

−
1

5 π

[

−1 − 1
]
)

= 200

(
2

π
+

2

5 π

)

=
480

π
·

The Cn in Eq. (F.8) are somewhat more complicated. We start with a similar piece–wise integration

Cn =
2

0.1 · sinh
(

n π
0.1 · 0.05

)

(
∫ 0.02

0 """"""""""#0
0 · cos

[ nπ x

0.1

]

dx

+

∫ 0.04

0.02
50 sin

[

10 π(5 x − 0.1)
]

cos
[ nπ x

0.1

]

dx +

∫ 0.05

0.04 """"""""""#0
0 · cos

[ nπ x

0.1

]

dx

+

∫ 0.06

0.05
20 sin

[

50 π(2 x − 0.1)
]

cos
[ nπ x

0.1

]

dx +

∫ 1

0.06""""""""""#0
0 · cos

[ nπ x

0.1

]

dx

)

,
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but we will have to be more cautious here because of the form of the integrals. First, let us split
the expression into Cn = Cn,1 + Cn,2, where

Cn,1 =
20

sinh(n π/2)
50

∫ 0.04

0.02
sin
[

10 π(5 x − 0.1)
]

cos(10 n π x) dx

Cn,2 =
20

sinh(n π/2)
20

∫ 0.06

0.05
sin
[

50 π(2 x − 0.1)
]

cos(10 n π x) dx ,

which can be usefully simplified using the angle–difference formula for sineF.2 as

Cn,1 =
1000

sinh(n π/2)

∫ 0.04

0.02

[

sin(50 π x) cos π
︸ ︷︷ ︸

−1

− cos(50 π x)"""#0
sinπ

]

cos(10 n π x) dx

= −
1000

sinh(n π/2)

∫ 0.04

0.02
sin(50 π x) cos(10 n π x) dx

Cn,2 =
400

sinh(n π/2)

∫ 0.06

0.05

[

sin(100 π x) cos(5 π)
︸ ︷︷ ︸

−1

− cos(100 π x)"""""#0
sin(5 π)

]

cos(10 n π x) dx

= −
400

sinh(n π/2)

∫ 0.06

0.05
sin(100 π x) cos(10 n π x) dx .

We are now in a position to see a subtlety that must be handled properly. Each of these expressions
has the form

∫

sin(ϕx) cos(ηx) dx, whose actual integration depends upon whether ϕ and η are
equivalent (Beyer, 1984). Specifically,F.3

∫

sin(ϕx) cos(ηx) dx =













1

2 η
sin2(η x) : η = ϕ

−
cos
[

(ϕ− η)x
]

2(ϕ − η)
−

cos
[

(ϕ+ η)x
]

2(ϕ + η)
: η -= ϕ

The salient variable here is the summation index, n, which for values of n = 5 and n = 10 invoke
the equivalence condition for Cn,1 and Cn,2, respectively. We find, for these two special cases

C5,1 = −
1000

sinh(5 π/2)

∫ 0.04

0.02
sin(50 π x) cos(50 π x) dx

= −
1000

sinh(5 π/2)

1

2 · 50 π
sin2(50 π x)

∣
∣
∣
∣

0.04

0.02

= −
10

sinh(5 π/2) π

(

sin2(2 π) − sin2 π
)

= 0

F.2The formula is sin(ϕ − η) = sin ϕ cos η − cos ϕ sin η, see e.g. Beyer (1984).
F.3In the general case, the condition for the second result is η2 %= ϕ2, which accounts for the case where either

coefficient could be negative (Beyer, 1984), thus precluding either denominator from going to 0. Since this aspect of
the solution is restricted to positive eigen–mode numbers, n ≥ 1, implying η ≥ 10π, that condition obviously cannot
arise, so we simply use η %= ϕ.
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and

C10,2 = −
400

sinh(10 π/2)

∫ 0.06

0.05
sin(100 π x) cos(100 π x) dx

= −
400

sinh(5 π)

1

2 · 100 π
sin2(100 π x)

∣
∣
∣
∣

0.06

0.05

= −
2

sinh(5 π) π

(

sin2(6 π) − sin2(5 π)
)

= 0 .

The general cases are

Cn,1 = −
1000

sinh(n π/2)

∫ 0.04

0.02
sin(50 π x) cos(10 n π x) dx

= −
1000

sinh(n π/2)

[

−
cos[(50 π − 10 n π) x]

2 (50 π − 10 n π)
−

cos[(50 π + 10 n π) x]

2 (50 π + 10 n π)

]∣
∣
∣
∣

0.04

0.02

=
1000

sinh(n π/2)

[
cos[10 π (5 − n) x]

20 π (5 − n)
+

cos[10 π (5 + n) x]

20 π (5 + n)

]∣
∣
∣
∣

0.04

0.02

=
50

π sinh(n π/2)

[
cos[0.4 π (5 − n) ]

5 − n
+

cos[0.4 π (5 + n) ]

5 + n

−
cos[0.2 π (5 − n) ]

5 − n
−

cos[0.2 π (5 + n) ]

5 + n

]

where n -= 5 and

Cn,2 = −
400

sinh(n π/2)

∫ 0.06

0.05
sin(100 π x) cos(10 n π x) dx

= −
400

sinh(n π/2)

[

−
cos[(100 π − 10 n π) x]

2 (100 π − 10 n π)
−

cos[(100 π + 10 n π) x]

2 (100 π + 10 n π)

]∣
∣
∣
∣

0.06

0.05

=
400

sinh(n π/2)

[
cos[10 π (10 − n) x]

20 π (10 − n)
+

cos[10 π (10 + n) x]

20 π (10 + n)

]∣
∣
∣
∣

0.06

0.05

=
20

π sinh(n π/2)

[
cos[0.6 π (10 − n) ]

10 − n
+

cos[0.6 π (10 + n) ]

10 + n

−
cos[0.5 π (10 − n) ]

10 − n
−

cos[0.5 π (10 + n) ]

10 + n

]

where n -= 10. Recall once again that Cn = Cn,1 + Cn,2 for Eq. (F.8).



APPENDIX G

Green’s Integral Theorems

There are useful identities in vector calculus for transforming integrals variously
from volume to area or area to contour representations. For example, we used Green’s theorem

in the plane in §E.4 on pp. 155 in demonstrating that steady 2–D Dirichlet conduction problem had
only 1 solution. Here, we show short derivations of the generalized Green’s theorems, aka Green’s
identities, which are useful in developing the eigen–function integral transform method in §6.5 on
pp. 73 and §6.6 on pp. 78.

Consider the basic Gauss Divergence theorem for a vector V

(G.1)

∫∫∫

∇ · V dv =

∫∫

V · n dA ,

where n is the outward–facing unit normal that orients the bounding surface (Hildebrand, 1976).G.1

Green’s identities can be shown to be direct implications of Eq. (G.1).
Let ϕ1 and ϕ2 be scalar functions that depend only on spatial coordinates, e.g. ϕ1 = ϕ1(x, y, z)

for a rectangular coordinate system, and define V = ϕ1∇ϕ2. ThenG.2

∇ ·V = ∇ ·
(

ϕ1∇ϕ2

)

= ϕ1 ∇2ϕ2 + ∇ϕ2 ·∇ϕ1

and

V · n = ϕ1∇ϕ2 · n = ϕ1
∂ϕ2

∂n
,

where ∂ϕ2/∂n is the directional derivative in the outward–normal direction. Substituting these
expressions into Eq. (G.1) yields Green’s first integral theorem

(G.2)

∫∫∫ (

ϕ1 ∇2ϕ2 + ∇ϕ1 ·∇ϕ2

)

dv =

∫∫

ϕ1
∂ϕ2

∂n
dA .

Given that ϕ1 and ϕ2 are arbitrary, they can be swapped yielding a very similar result
∫∫∫ (

ϕ2 ∇2ϕ1 + ∇ϕ2 ·∇ϕ1

)

dv =

∫∫

ϕ2
∂ϕ1

∂n
dA ,

which can be subtracted from Eq. (G.2) to obtain Green’s second integral theorem

(G.3)

∫∫∫ (

ϕ1 ∇2ϕ2 − ϕ2 ∇2ϕ1

)

dv =

∫∫ (

ϕ1
∂ϕ2

∂n
− ϕ2

∂ϕ1

∂n

)

dA .

G.1We note that the Divergence theorem can be written in 2–D as well (Hildebrand, 1976), which can, in turn,
be shown to lead to Green’s theorem in the plane. We do not furnish its derivation here, but note that that result
was used in §E.4 on pp. 155 in demonstrating that steady 2–D Dirichlet conduction problem had only 1 solution.

G.2The differentiation formula
∇ · ϕ V = ϕ ∇ · V + V ·∇ϕ

is useful here (see e.g. Hildebrand, 1976, equation (74a) pp. 284).
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APPENDIX H

Integral Transform Solution of the Couette Problem

The general Couette problem is posed by Eqs. (8.7) through (8.10) starting on pp. 101
and the domain is represented by Fig. 8.6. Here, we shall solve both the momentum and

energy components using the eigen–function integral transform method, largely as shown by Wendl
and Agarwal (2002). By way of reference, we shall follow somewhat the details shown in §6.1 and
§6.2 beginning on pp. 63 for the unsteady 1–D Dirichlet problem, as that is a similar problem in
the sense that it:

• is 2–D, so only 1 coordinate transform is required, and
• has all homogeneous boundary conditions of the first kind.

We note that a transform pair very much like Eqs. (6.3) and (6.4) on pp. 64 in the z direction
would work in this case, since its boundary conditions are homogeneous of the first kind, both for
u and for T .

H.1. The Momentum Problem

The momentum problem is restated here from Eqs. (8.7) and (8.9) on pp. 101 for convenience
as

∂2u

∂y2
+

∂2u

∂z2
= 0 u

∣
∣
∣
y=0

= u
∣
∣
∣
z=0

= u
∣
∣
∣
z=φ

= 0 and u
∣
∣
∣
y=1

= 1 .

Without the formalities detailed in §6.1 and §6.2, we simply state the transform pair

(H.1) u(ζn, y) =

∫ φ

0
u(y, z) Ψn(ζn, z) dz

(H.2) u(y, z) =
∞
∑

n=1

u(ζn, y)

N(ζn)
Ψn(ζn, z) ,

where Ψn = Ψn(ζn, z) is the solution of the auxiliary eigen–problem

(H.3) Ψ′′
n + ζ2

n Ψn = 0 Ψn

∣
∣
∣
z=0

= Ψn

∣
∣
∣
z=φ

= 0 .

The transform step proceeds as usual
∫ φ

0

∂2u

∂y2
Ψn(ζn, z) dz +

∫ φ

0

∂2u

∂z2
Ψn(ζn, z) dz = 0 .

The order of operations can be swapped in the left term, i.e. switching integration in z with
differentiation in y. For the right term, integration by parts (IBP) is again performed twice, as was
done, for example, in §6.2. We pick similar assignments as described in footnote 6.8 on pp. 66, i.e.

167



H.1. THE MOMENTUM PROBLEM 168

such that the second derivative term is reduced by one order on each round. These developments
yield

∂2

∂y2

∫ φ

0
u Ψn dz

︸ ︷︷ ︸

swap order

+
'''''''(0
(

Ψn
∂u

∂z

)∣
∣
∣
∣

φ

0

−
∫ φ

0

∂u

∂z

dΨn

dz
dz

︸ ︷︷ ︸

first round IBP

= 0

d2u

d2y2
−






'''''''(0
(

u
dΨn

dz

)∣
∣
∣
∣

φ

0

−
∫ φ

0
u

d2Ψn

dz2
dz






︸ ︷︷ ︸

second round IBP

= 0

d2u

d2y2
− ζ2

n

∫ φ

0
u Ψn dz = 0

d2u

d2y2
− ζ2

n u = 0 .(H.4)

Let us review these operations. In the first line, we exploited the auxiliary problem’s homogeneous
boundary conditions for Ψn and in the second we did the same with the physical velocity, which is
also 0 at both boundaries. In the third line we have again applied the auxiliary problem in the form
Ψ′′

n = − ζ2
n Ψn and in the fourth we have again used the transform definition. The last equation,

being essentially u′′ − ζ2
n u = 0, is an ODE because it is not a function of z.

Let us now flesh–out the eigen–function itself. The auxiliary problem is essentially the same as
those for earlier examples, e.g. in §B.2 (pp. 135) and §E.1 (pp. 151), so that we have, by inspection,

Ψn(ζn, z) = sin(ζnz) ζn =
n π

φ
N(ζn) =

φ

2
,

where we also have the normalization integral by virtue of similar inference from Eq. (B.16) in
footnote B.6 on pp. 138. Therefore, the transformed boundary conditions for the problem in y are

u(ζn, 0) =

∫ φ

0
u(0, z) Ψn(ζn, z) dz = 0

u(ζn, 1) =

∫ φ

0
u(1, z) Ψn(ζn, z) dz =

∫ φ

0
1 · sin(ζnz) dz

= −
1

ζn
cos(ζnz)

∣
∣
∣
∣

φ

0

= −
1

ζn

[

cos

(
n π φ

φ

)

− cos

(
n π · 0
φ

)]

=
1 − (−1)n

ζn
·

Rather than rehash the entire solution of this problem, we recall that we have already solved a very
similar one in §F.1 in the form of Eq. (F.4) on pp. 159. In particular, the general solution of u,
coupled with the homogeneous boundary condition u = 0 at y = 0 implies

u(ζn, y) = C sinh(ζny) ,
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from which the constant C is readily solved from the remaining boundary condition, whereby

u(ζn, y) =
1 − (−1)n

ζn sinh ζn
sinh(ζny) .

The transformed solution is simple to invert. Substituting u, N , and Ψn from above into Eq. (H.2)
above, we find

u(y, z) =
∞
∑

n=1

2

φ
·

1 − (−1)n

ζn sinh ζn
sinh(ζny) sin(ζnz)

=
∞
∑

n=1,3,5,...

2

φ
·
φ

n π
·

2

sinh ζn
sinh(ζny) sin(ζnz)

=
∞
∑

n=1,3,5,...

4

n π
·

sinh(n π y/φ)

sinh(n π/φ)
sin(n π z/φ)

=
4

π

∞
∑

n=1

1

2 n − 1

sinh[(2 n − 1) π y/φ]

sinh[(2 n − 1) π/φ]
sin[(2 n − 1) π z/φ] .(H.5)

As with the 1–D unsteady Dirichlet problem in §B.4 on pp. 139 and the steady 2–D problem in
§E.3 on pp. 154, we exploited the fact that the even modes vanish and rewrote the series only for
the odd terms. We then re–purposed index n to write the odd modes using 2n − 1. Eq. (H.5) is
the velocity profile in the flow domain.H.1

H.2. The Energy Problem

The energy (temperature) problem is restated here from Eqs. (8.8) and (8.10) on pp. 101 for
convenience as

∂2T

∂y2
+

∂2T

∂z2
= − Br

[
(
∂u

∂y

)2

+

(
∂u

∂z

)2
]

T
∣
∣
∣
y=0

= T
∣
∣
∣
z=0

= T
∣
∣
∣
z=φ

= T
∣
∣
∣
y=1

= 0 .

The first task is to take the proper derivatives on the right–hand–side from the momentum solution
to get the actual equation that is to be solved. Differentiating term–by–term, we have

∂u

∂y
=

4

π

∞
∑

n=1

∂

∂y

(
sinh[(2 n − 1) π y/φ] sin[(2 n − 1) π z/φ]

(2 n − 1) sinh[(2 n − 1) π/φ]

)

=
4

π

∞
∑

n=1

cosh[(2 n − 1) π y/φ] sin[(2 n − 1) π z/φ]

(2 n − 1) sinh[(2 n − 1) π/φ]
·

(2 n − 1) π

φ

=
4

φ

∞
∑

n=1

cosh[(2 n − 1) π y/φ] sin[(2 n − 1) π z/φ]

sinh[(2 n − 1) π/φ]

H.1The steady Couette flow problem has been solved several times in the literature. The most widely cited
version is perhaps Berker (1963), who gave the general solution for the general problem of a sliding boundary with a
pressure gradient. The latter aspect obviously does not apply to our problem if taken as a model of flow in a bearing.
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and

∂u

∂z
=

4

π

∞
∑

n=1

∂

∂z

(
sinh[(2 n − 1) π y/φ] sin[(2 n − 1) π z/φ]

(2 n − 1) sinh[(2 n − 1) π/φ]

)

=
4

π

∞
∑

n=1

sinh[(2 n − 1) π y/φ] cos[(2 n − 1) π z/φ]

(2 n − 1) sinh[(2 n − 1) π/φ]
·

(2 n − 1) π

φ

=
4

φ

∞
∑

n=1

sinh[(2 n − 1) π y/φ] cos[(2 n − 1) π z/φ]

sinh[(2 n − 1) π/φ]

The squares of these expressions are

(
∂u

∂y

)2

=
16

φ2

∞
∑

n=1

∞
∑

m=1

sin

[
(2m − 1)πz

φ

]

sin

[
(2n − 1)πz

φ

]

cosh

[
(2m − 1)πy

φ

]

cosh

[
(2n − 1)πy

φ

]

sinh

[
(2m − 1)π

φ

]

sinh

[
(2n − 1)π

φ

]

(
∂u

∂z

)2

=
16

φ2

∞
∑

n=1

∞
∑

m=1

cos

[
(2m − 1)πz

φ

]

cos

[
(2n − 1)πz

φ

]

sinh

[
(2m − 1)πy

φ

]

sinh

[
(2n − 1)πy

φ

]

sinh

[
(2m − 1)π

φ

]

sinh

[
(2n − 1)π

φ

]

and they are summed as part of the right–hand–side of the equation. It will pay to take a moment
to simplify this expression as much as possible. Here, we will use the so–called function product
relations (Beyer, 1984),H.2 where, if we let

η =
(2 m − 1) π z

φ
, β =

(2 n − 1) π z

φ
, ξ =

(2 m − 1) π y

φ
, χ =

(2 n − 1) π y

φ
,

then the numerator of the summed squared series becomes

sin η sinβ cosh ξ coshχ + =

(
cos(η − β)

2
−

cos(η + β)

2

)(
cosh(ξ + χ)

2
+

cosh(ξ − χ)

2

)

+

cos η cos β sinh ξ sinhχ

(
cos(η − β)

2
+

cos(η + β)

2

)(
cosh(ξ + χ)

2
−

cosh(ξ − χ)

2

)

=
cos(η − β) cosh(ξ + χ)

2
−

cos(η + β) cosh(ξ − χ)

2

after some algebra. Note that 4 of the 8 product terms have canceled one another. Likewise,
the denominator, a product of 2 sinh functions, can be seen directly in one of the relations in

H.2 The specific relations of use here are:

sin η sin β =
1
2

cos(η − β) − 1
2

cos(η + β) cos η cos β =
1
2

cos(η − β) +
1
2

cos(η + β)

sinh η sinh β =
1
2

cosh(η + β) − 1
2

cosh(η − β) cosh η cosh β =
1
2

cosh(η + β) +
1
2

cosh(η − β)
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footnote H.2. Noticing that a factor of 1/2 cancels globally, we can substitute values for η, β, ξ,
and χ, whereby the squared velocity derivatives can be written, again after a little algebra, as

(
∂u

∂y

)2

+

(
∂u

∂z

)2

=

16

φ2

∞
∑

n=1

∞
∑

m=1

term 1(a)
︷ ︸︸ ︷

cos

[
2πz(m − n)

φ

]

cosh

[
2πy(m + n − 1)

φ

]

−

term 2(a)
︷ ︸︸ ︷

cos

[
2πz(m + n − 1)

φ

]

cosh

[
2πy(m − n)

φ

]

cosh

[
2π(m + n − 1)

φ

]

− cosh

[
2π(m − n)

φ

]

and where we remind ourselves that this term is still multiplied by the negative of the Brinkman
number, Br, to complete the right–hand–side.

We are now prepared to transform the energy equation, consisting of the Laplacian operator
on the left and the product of −Br with the source term above on the right. Importantly, we can
re–use the transform and inverse in Eqs. (H.1) and (H.2) on pp. 167 directly, with T substituted
for u of course, because the auxiliary problem is the same

(H.6) T (ζj , y) =

∫ φ

0
T (y, z) Ψj(ζj, z) dz

(H.7) T (y, z) =
∞
∑

j=1

T (ζj, y)

N(ζj)
Ψj(ζj , z) ,

where Ψj = Ψj(ζj, z) is the solution of the auxiliary eigen–problem

(H.8) Ψ′′
j + ζ2

j Ψj = 0 Ψj

∣
∣
∣
z=0

= Ψj

∣
∣
∣
z=φ

= 0

written again directly from above as

Ψj(ζj , z) = sin(ζjz) ζj =
j π

φ
N(ζj) =

φ

2
·

Note that we have adopted a new index j because we are already using the customary n (and m,
as well) above in legacy roles from the momentum problem.

Note also since the boundary conditions in the z direction for T are identical to those for u,
i.e. homogeneous conditions of the first kind, that the integral transform for the Laplacian on the
left will identically follow the developments that led to Eq. (H.4) on pp. 168. We can state then,

by inspection, that the left side of the equation transforms to T
′′ − ζ2

j T . The real challenge in
this problem is the source term on the right. Our transform is in z and we note that there are
only 2 components on the right, labeled “term 1(a)” and “term 2(a)” above, that are functions
of z. Because we can apply the transform term–by–term in the double series, we will focus on
these terms singly, applying Eq. (H.6) to each one. We will then reconstruct the entire transformed
equation to proceed further.



H.2. THE ENERGY PROBLEM 172

For term 1(a), we findH.3

∫ φ

0
cos

[
2π(m − n)z

φ

]

sin

[
jπz

φ

]

dz = −







cos

(
jπ − 2π(m − n)

φ
z

)

2

(
jπ − 2π(m − n)

φ

) +

cos

(
jπ + 2π(m − n)

φ
z

)

2

(
jπ + 2π(m − n)

φ

)







∣
∣
∣
∣
∣
∣
∣
∣

φ

0

= −
φ

2π

[

cos
[

jπ − 2π(m − n)
]

− cos 0

j − 2(m − n)
+

cos
[

jπ + 2π(m − n)
]

− cos 0

j + 2(m − n)

]

.

Let us pause once again to simplify. Clearly, cos 0 = 1, but there is also a more subtle simplification
in the other cosine terms. Since m and n are always integers, the quantity 2π(m − n) is nothing
more than various multiples of a full circle rotation. This term does not change the value of cosine,
since it is cyclical in 2π. In other words, cos

[

jπ ± 2π(m − n)
]

= cos(jπ) = (−1)j . Absorbing the
negative sign, we continue the derivation as
∫ φ

0
cos

[
2π(m − n)z

φ

]

sin

[
jπz

φ

]

dz =
φ

2 π

[
1 − (−1)j

j − 2(m − n)
+

1 − (−1)j

j + 2(m − n)

]

=
φ
[

1 − (−1)j
]

2 π

(

j +"""""
2(m − n) + j −"""""

2(m − n)
[

j − 2(m − n)
]

·
[

j + 2(m − n)
]

)

=
φ
[

1 − (−1)j
]

j

(j2 − a2
mn) π

,

where we are now using the shorthand amn = 2(m − n). Note that 1 − (−1)j means that the
even terms in j vanish for this integral. We note then that the condition of unequal squares for the
integral in footnote H.3 is identically satisfied. That condition basically requires 4(m−n)2 -= j2, the
former and latter being the relevant parts of the arguments of the cosine and sine, respectively, in
the integral above. The left side is always even, while the right, being a square of an odd number, is
itself always odd.H.4 We can show by precisely the same operations and deductions that the second

H.3 Both terms involve the integral of the product of a cosine and a sine function, for which the general expression
is (Beyer, 1984)

Z

sin(mx) cos(nx) dx = −
»

cos[(m − n) x]
2 (m − n)

+
cos[(m + n) x]

2 (m + n)

–

,

where m2 %= n2. We are not concerned about the case where the squares are equal. As we shall see, this contingency
is not part of the physical solution.

H.4 These two assertions about even and odd products can be proved by elementary deductions. An even number
is any number divisible by 2. Since m and n are both integers, (m − n)2 is also an integer, and the form of the left
term can be written as 2 · 2 · (m − n)2, which is clearly divisible by 2, and therefore even. The above definition of
an even number implies that we can represent any odd number as j = 2a + 1, where a is an even or odd integer. Its
square is j2 = (2a + 1)2 = 4a2 + 4a + 1 = 4a(a + 1) + 1. Since 4a(a + 1) is even by way of being divisible by 2, the
addition of 1 makes this result odd.
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term eventually resolves to

∫ φ

0
cos

[
2π(m + n − 1)z

φ

]

sin

[
jπz

φ

]

dz =
φ
[

1 − (−1)j
]

j

(j2 − b2
mn) π

,

where the shorthand is bmn = 2(m + n− 1). Given that even modes will vanish for this integral as
well, it seems they will disappear for the general solution as a whole.

We can now reconstitute the entire governing energy equation in the transformed space by
substituting the derived expressions for “term 1(a)” and “term 2(a)”. We find

T
′′ − ζ2

j T = −
16 Br

φ2

∞
∑

n=1

∞
∑

m=1

φ
[

1 − (−1)j
]

j

(j2 − a2
mn) π

cosh

[
π bmn y

φ

]

−
φ
[

1 − (−1)j
]

j

(j2 − b2
mn) π

cosh

[
π amn y

φ

]

cosh

[
π bmn

φ

]

− cosh

[
π amn

φ

]

= −
16 j Br

[

1 − (−1)j
]

π φ

∞
∑

n=1

∞
∑

m=1

1

j2 − a2
mn

term 1(b)
︷ ︸︸ ︷

cosh

[
π bmn y

φ

]

−
1

j2 − b2
mn

term 2(b)
︷ ︸︸ ︷

cosh

[
π amn y

φ

]

cosh

[
π bmn

φ

]

− cosh

[
π amn

φ

](H.9)

This is an ODE in y only, albeit a non–homogeneous one having a rather complicated, non–
constant source term. We also require the boundary conditions, and since the physical conditions
are homogeneous of the first kind, they can be seen, hopefully by inspection of Eq. (H.6) on pp. 171,
to be 0 in the transform domain, as well:

(H.10) T
∣
∣
∣
y=0

= T
∣
∣
∣
y=1

= 0 .

We might now recall that we have already been faced with non–homogeneous ODEs in the
example problems we examined to help develop the integral transform method in chapter 6. Those
were first–order involving time and we solved them handily using the method of the integrating
factor (c.f. footnote 6.15 on pp. 71). Unfortunately, that method does not apply directly to second–
order equations (Nelson et al., 1960). Instead, the best approach here will be the slightly more
sophisticated method of partial fractions (Sokolnikoff and Sokolnikoff, 1941).

The general solution to this problem is the sum of an appropriate homogeneous solution, TH ,
and a particular solution, TP , i.e. T = TH + TP . The homogeneous problem is obviously

T
′′
H − ζ2

j TH = 0

and we have addressed precisely this equation a number of times already (c.f. Eq. (E.1) on pp. 151
or Eq. (F.4) on pp. 159). Its solution is

TH = C1 eζj y + C2 e−ζj y ,
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although it will be more useful to cast it asH.5

(H.11) TH = C1 cosh(ζj y) + C2 sinh(ζj y) .

For the particular problem, let the source term in Eq. (H.9) be represented by f(y). Then, if
we let D = d/dy, we can write Eq. (H.9)

D2TP − ζ2
j TP = f(y)

(D2 − ζ2
j ) TP =

(D − ζj) (D + ζj) TP = f(j) ,

which can be solved for TP as

TP =
f(y)

(D − ζj) (D + ζj)
=

(
1

D − ζj
−

1

D + ζj

)
f(y)

2 ζj
·

Though the notation may at first be a little unfamiliar, this equation indicates a certain integration
on the right–hand side.H.6 The solution has the form

(H.12) TP =
1

2 ζj

[

eζjy
∫

e−ζjy f(y) dy − e−ζjy
∫

eζjy f(y) dy

]

and it is clear from examining Eq. (H.9) that f(y) contains precisely 2 terms in y, labeled “term 1(b)”
and “term 2(b)”, that must be integrated in each of these 2 integrals. Moreover, each of these re-
sulting 4 integrals has the form of a product of an exponential and a hyperbolic cosine. Here, it will
be more convenient to convert the latter over to exponential form (c.f. identities in footnote 3.6 on
pp. 21). Let us develop the basic form in detail, where we use the shorthand ηmn to mean either

H.5We can see that the exponential form is readily transformed to the hyperbolic form using the identities in
footnote 3.6 on pp. 21

C1 cosh(ϕ) + C2 sinh(ϕ) = C1
eϕ + e−ϕ

2
+ C2

eϕ − e−ϕ

2

=
C1 + C2

2
eϕ +

C1 − C2

2
e−ϕ ,

so that C1 = (C1 + C2)/2 and C2 = (C1 − C2)/2 in this particular case.
H.6 Consider, for example, the elementary problem y′ = g(x) that determines y = y(x). It is obviously separable,

such that y =
R

g(x) dx, but it can also be written in the style Dy = g(x), whereby y = g(x)/D, which implies
(Sokolnikoff and Sokolnikoff, 1941)

g(x)
D

=

Z

g(x) dx .

Although we do not derive the general theory here, the method of partial fractions dictates that an equation that
can be written in the general form using the D operator, as

y =

„
C1

D − η1
+

C2

D − η2
+

C3

D − η3
+ · · ·

«

g(x)

has the solution

y = C1 eη1x
Z

e−η1x g(x) dx + C2 eη2x
Z

e−η2x g(x) dx + C3 eη3x
Z

e−η3x g(x) dx + · · ·
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amnπ/φ or bmnπ/φ and remind ourselves that ζj = jπ/φ. We find

eζjy
∫

e−ζjy cosh(ηmny) dy =

∫

e−ζjy eηmny + e−ηmny

2
dy

=
1

2
eζjy

[ ∫

e−ζjy eηmny dy +

∫

e−ζjy e−ηmny dy

]

=
1

2
eζjy

[ ∫

e−(ζj−ηmn)y dy +

∫

e−(ζj+ηmn)y dy

]

= −
1

2
eζjy

[
1

ζj − ηmn
e−(ζj−ηmn)y +

1

ζj + ηmn
e−(ζj+ηmn)y

]

.

The integrals are indefinite here, but we took the constant of integration to be zero. We already
have 2 integration constants in the homogeneous solution in Eq. (H.11) on pp. 174 and these will
be used to account for conditions at the two boundaries. This result can be simplified further as

eζjy
∫

e−ζjy cosh(ηmny) dy = −
1

2

[
1

ζj − ηmn
eηmny +

1

ζj + ηmn
e−ηmny

]

and by similar operations we find

e−ζjy
∫

eζjy cosh(ηmny) dy =
1

2

[
1

ζj + ηmn
eηmny +

1

ζj − ηmn
e−ηmny

]

,

so that

eζjy
∫

e−ζjy cosh(ηmny) dy − = −
1

2

[(
1

ζj − ηmn
+

1

ζj + ηmn

)

eηmny

e−ζjy
∫

eζjy cosh(ηmny) dy +

(
1

ζj − ηmn
+

1

ζj + ηmn

)

e−ηmny

]

= −
1

2

[

2 ζj
ζ2
j − η2

mn
eηmny +

2 ζj
ζ2
j − η2

mn
e−ηmny

]

= −
2 ζj

ζ2
j − η2

mn

eηmny + e−ηmny

2

= −
2 ζj

ζ2
j − η2

mn
cosh

(

ηmny
)

,(H.13)

the last step obtained by again applying the hyperbolic cosine identity in footnote 3.6 on pp. 21 to
simplify. This result is the “general form” for the integrations via Eq. (H.12) on pp. 174 of both
“term 1(b)” and “term 2(b)” in Eq. (H.9) on pp. 173.

Note also that the factor 2 ζj in the numerator in Eq. (H.13) cancels with the same factor in
the denominator of Eq. (H.12). Let us restore the terms for which we have been using shorthand

ηmn =











amn π

φ
=

2 (m − n) π

φ
: “term 2(b)”

bmn π

φ
=

2 (m + n − 1) π

φ
: “term 1(b)”,
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so that

1

ζ2
j − η2

mn
=













φ2

π2

1

j2 − a2
mn

: “term 2(b)”

φ2

π2

1

j2 − b2
mn

: “term 1(b)”

We are now ready to expand Eq. (H.12) back into its infinite series form by recasting f(y)
within the context of the integral results, i.e. “partial fraction” solution of the “general form” given
by Eq. (H.13). These are substituted for both both “term 1(b)” and “term 2(b)” in Eq. (H.9),
because those are the only components that were integrated in that equation in y. We find

TP = −
16 j Br

[

1 − (−1)j
]

π φ

∞
∑

n=1

∞
∑

m=1














1

j2 − a2
mn

term 1(b)
︷ ︸︸ ︷
(

−
φ2

π2
·

1

j2 − b2
mn

· cosh
[
π bmn y

φ

])

cosh

[
π bmn

φ

]

− cosh

[
π amn

φ

]

+

1

j2 − b2
mn

term 2(b)
︷ ︸︸ ︷
(
φ2

π2
·

1

j2 − a2
mn

· cosh
[
π amn y

φ

])

cosh

[
π bmn

φ

]

− cosh

[
π amn

φ

]














=
16 j Br

[

1 − (−1)j
]

φ

π3

∞
∑

n=1

∞
∑

m=1

(

cosh

[
π bmn y

φ

]

− cosh

[
π amn y

φ

])

(j2 − a2
mn) (j2 − b2

mn)

(

cosh

[
π bmn

φ

]

− cosh

[
π amn

φ

])

Now that we have both TH and TP , we can reconstruct the full solution in transform space by
taking T = TH +TP , the summands of which are Eq. (H.11) on pp. 174 and the above, respectively.
We find

T = C1 cosh

[
j π y

φ

]

+ C2 sinh

[
j π y

φ

]

+

16 j Br
[

1 − (−1)j
]

φ

π3

∞
∑

n=1

∞
∑

m=1

(

cosh

[
π bmn y

φ

]

− cosh

[
π amn y

φ

])

(j2 − a2
mn) (j2 − b2

mn)

(

cosh

[
π bmn

φ

]

− cosh

[
π amn

φ

]) ·(H.14)

The integration constants, C1 and C2, are found using the transformed boundary conditions in
Eq. (H.10) on pp. 173. At y = 0, we note that every term in the double infinite series in Eq. (H.14)
vanishes because each numerator is effectively

[

cosh(0) − cosh(0)
]

, which leaves the boundary
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equation

0 = C1 · 1 + C2 · 0 ,

from which which we immediately conclude that C1 = 0. At y = 1, we rather note that the
difference of cosh terms in the numerator is the same as that in the denominator, so that the
boundary equation there is

0 = C2 sinh

[
j π

φ

]

+
16 j Br

[

1 − (−1)j
]

φ

π3

∞
∑

n=1

∞
∑

m=1

1

(j2 − a2
mn) (j2 − b2

mn)
,

where we have already accounted for the fact that C1 = 0 by omitting that term. Clearly

C2 = −
16 j Br

[

1 − (−1)j
]

φ

π3 sinh(j π/φ)

∞
∑

n=1

∞
∑

m=1

1

(j2 − a2
mn) (j2 − b2

mn)
,

so that the transformed solution is

T = −
16 j Br

[

1 − (−1)j
]

φ

π3
·
sinh

[
j π y

φ

]

sinh

[
j π

φ

]

∞
∑

n=1

∞
∑

m=1

1

(j2 − a2
mn) (j2 − b2

mn)
+

16 j Br
[

1 − (−1)j
]

φ

π3

∞
∑

n=1

∞
∑

m=1

(

cosh

[
π bmn y

φ

]

− cosh

[
π amn y

φ

])

(j2 − a2
mn) (j2 − b2

mn)

(

cosh

[
π bmn

φ

]

− cosh

[
π amn

φ

]) ·

Distributing the sinh term over the double series, along with a little bit of algebra shows the neater
result to be

T =
16 j Br

[

1 − (−1)j
]

φ

π3

∞
∑

n=1

∞
∑

m=1

1

(j2 − a2
mn) (j2 − b2

mn)
×







(

cosh

[
π bmn y

φ

]

− cosh

[
π amn y

φ

])

(

cosh

[
π bmn

φ

]

− cosh

[
π amn

φ

]) −
sinh

[
j π y

φ

]

sinh

[
j π

φ

]







·

The substantive part of the problem is now finished and it only remains to apply the inverse
transform in Eq. (H.7) on pp. 171, along with substitution of the eigen–function and normalization
result shown there, to recover the physical solution. We can write this directly, and still somewhat
näıvely as

T (y, z) =
2

φ

∞
∑

j=1

sin

[
j π z

φ

]
16 j Br

[

1 − (−1)j
]

φ

π3

∞
∑

n=1

∞
∑

m=1

1

(j2 − a2
mn) (j2 − b2

mn)
×







(

cosh

[
π bmn y

φ

]

− cosh

[
π amn y

φ

])

(

cosh

[
π bmn

φ

]

− cosh

[
π amn

φ

]) −
sinh

[
j π y

φ

]

sinh

[
j π

φ

]







·
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We now note several points in preparation for writing this expression in the most useful form for
presentation, if not exactly the most efficient way for actual numerical evaluation.H.7 First, there are
various and obvious algebraic simplifications, including factoring and cancellation of some terms,
like φ. Second, it is clear that once again the even modes in j vanish because of the

[

1 − (−1)j
]

term.H.8 Noting the extra factor of 2 that comes about from the odd terms in j, we can write

T (y, z) =
64 Br

π3

∞
∑

j=1,3,5,...

j sin

[
j π z

φ

] ∞
∑

n=1

∞
∑

m=1

1

(j2 − a2
mn) (j2 − b2

mn)
×







(

cosh

[
π bmn y

φ

]

− cosh

[
π amn y

φ

])

(

cosh

[
π bmn

φ

]

− cosh

[
π amn

φ

]) −
sinh

[
j π y

φ

]

sinh

[
j π

φ

]







and, finally, restoring consecutive numbering in the j series by setting cj = 2j − 1, we have

T (y, z) =
64 Br

π3

∞
∑

j=1

cj sin

[
cj π z

φ

] ∞
∑

n=1

∞
∑

m=1

1

(c2
j − a2

mn) (c2
j − b2

mn)
×







(

cosh

[
π bmn y

φ

]

− cosh

[
π amn y

φ

])

(

cosh

[
π bmn

φ

]

− cosh

[
π amn

φ

]) −
sinh

[
cj π y

φ

]

sinh

[
cj π

φ

]







(H.15)

as the final solution for the temperature distribution, where we repeat the definitions of the coeffi-
cients

amn = 2(m − n)

bmn = 2(m + n − 1)

cj = 2j − 1 .

This is the exact solution for the energy problem.

H.3. Evaluating the Triple–Infinite Series Temperature Profile

The velocity profile for u(y, z) in Eq. (H.5) on pp. 169 is, by now, a routine expression to
evaluate numerically. That is, it is a single infinite series having the usual pitfalls of hyperbolic and
cyclical terms with their respective numerical problems related to floating–point arithmetic and
pre–mature convergence first discussed in §5.2 on pp. 43.

Conversely, the temperature profile, T (y, z), in Eq. (H.15) raises some new issues. Most obvi-
ously, it is a triple infinite series, raising the important question of just how many terms in each
sub–series should be evaluated. That is, this expression seems to be basically different for numer-
ical purposes from the single infinite series, for example Eq. (H.5), where we simply continue the

H.7That is, we will leave the sinh term inside of the double summation, even though it is a function neither of
m or n, but only of j. While this term could have remained outside (factored), the form we use here is more visually
pleasing, for example, one can see immediately that conditions are satisfied on all 4 boundaries.

H.8We first saw this phenomenon in §B.4 on pp. 139 for the 1–D Dirichlet conduction problem.
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summing procedure until some convergence criterion is met. Here, the danger is that we proceed
too far down the path of one of the sub–series, exhausting most of our computational effort on
accumulating terms that do not actually contribute importantly to the final result. Näıvely, we
might pick, for example 1000 terms for both the interior series in m and n, but there is no easy
way to determine whether all of those one million sub–terms for each term in j are important.
In looking at the equation, one of the non–trivial complications seems to be that terms involving
all of j, m, and n are inseparably mixed within the most interior part of the summation. There
is no way, for example, to sum terms isolated in, say m in the most interior part until some local
convergence is reached, then multiply by the current term in n and accumulate that to the sum,
etc.

We have to be more clever here. Let us observe that all the hyperbolic functions within the
“large” square brackets are configured collectively as differences. That is, they will tend to cancel
one another, of course doing so identically at boundaries, but do not appear otherwise to necessarily
become monotonically smaller as m and n become large. However, the interior coefficient

(H.16)

∣
∣
∣
∣
∣

1

(c2
j − a2

mn) (c2
j − b2

mn)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
[

(2j − 1)2 − 4(m − n)2
] [

(2j − 1)2 − 4(m + n − 1)2
]

∣
∣
∣
∣
∣

does become smaller. This component directly affects the degree to which a given term contributes
to the overall solution. The key observation is how this coefficient becomes smaller as a function
of the order in which we perform the summation.H.9

Let us first examine the näıve approach mentioned above, which is to perform the summation
exactly as Eq. (H.15) is written. For a given j, say j = 1, take n = 1 and start summing terms
for m = 1, 2, 3, . . . , in which case “early terms” will contribute significantly because m and n
are both small in the denominator. Later terms will be progressively smaller because m will be
large, even though n remains small. Eventually we halt this procedure, go back to set n = 2,
then start summing m = 1, 2, 3, . . . over again, so that the same behavior is realized. Early terms
contribute much more than later terms. This process continues for n = 3, 4, . . . , so that if we were
to graphically represent the relative contribution of the terms in the order that we are summing
them, this procedure would resemble something what is shown in Fig. H.1. Clearly, much of our
computational effort is spent on calculating terms that contribute little to the overall solution.
Although the exact solution is represented elegantly by Eq. (H.15), the numerical approach it
implies is very inefficient.

We would rather develop an ordering of terms that gives a summation representation more like
what is shown in Fig. H.2. Here, the important terms are all accumulated much earlier in the
double–series and we can then truncate in such a way that valuable computational effort is not
wasted on insignificant terms. The key observation here is then that we design the summation to
proceed along counter–diagonals of the pair of indices, much like what is shown on pp. 74 from our
discussion of the general integral transform method. In essence, we re–order the terms so that we

H.9In discussing numerical implementation, we ordinarily would be conscious of checking for “divide by zero”
exceptions in an expression like Eq. (H.16). However, recalling footnote H.4 on pp. 172, we note that (2j − 1)2

will always be odd, while 4(m − n)2 and 4(m + n − 1)2 will both always be even. Therefore, the differences in
the denominator of Eq. (H.16) will never be zero because odds and evens are mutually exclusive. This clever
mathematical observation obviously saves the enormously repetitive testing we would have otherwise done as routine
“good programming practice” to handle floating–point exceptions.
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Figure H.1. Rough representation of the relative contribution of terms as quantified by

the interior coefficient in Eq. (H.16) if summing in “näıve order”.

summation order of terms
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Figure H.2. Rough representation of the relative contribution of terms as quantified

by the interior coefficient in Eq. (H.16) if summing in “clever order”. Large terms are

“front–loaded” in the series.

sum in increasing order of m + n, for example arrange the (m,n) as

(1, 1)
︸ ︷︷ ︸

2

(2, 1) (1, 2)
︸ ︷︷ ︸

3

(3, 1) (2, 2) (1, 3)
︸ ︷︷ ︸

4

(4, 1) (3, 2) (2, 3) (1, 4)
︸ ︷︷ ︸

5

(5, 1) (4, 2) (3, 3) (2, 4) (1, 5)
︸ ︷︷ ︸

6

. . .

where the sums are labeled below each group of terms.H.10 This idea is shown in algorithm H.1,
which can be implemented in any suitable language. Note that we presume that f(j,m, n, y,φ)
in the algorithm would be implemented with proper numerical precautions against floating–point
anomalies for the hyperbolic functions, as discussed in §5.2 on pp. 43, as would the sine function.

H.10Note that we do not exactly follow the ordering shown in the matrix on pp. 74, which alternates directions
through the counter–diagonals of the matrix. Rather, here we are always proceeding from “south–west” to “north–
east”, which is slightly easier than alternation to implement computationally (see algorithm H.1). This subtlety is not
particularly important to the actual algorithm, though. Its crux is that, by proceeding along diagonals, the interior
coefficient values in Eq. (H.16) will roughly be ordered from large to small.
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Algorithm H.1 Evaluation of T (y, z) in Eq. (H.15), Emphasizing the Ordering of the Terms

input values of φ, Br, y, and z
define f(j,m, n, y,φ) as the complete term within the inner double summation
set (j, T ) = (1, 0)
set convergence threshold for the iteration, ε, suitably near 0
while true do

set (S, s) = (2, 0)
while true do

for n = 1, 2, 3, . . . S − 1 do
m = S − n
s = s + f(j,m, n, y,φ)
go to CONTINUE if s converged within ε

end for
S = S + 1

end while
CONTINUE
set Tj equal to the product of cj , the sine term, and s
T = T + Tj

last if T converged within ε
j = j + 1

end while
T = 64 · T · Br/π3

print T



APPENDIX I

Convection Equations in Cylindrical Coordinates

In §7.1 we derived the conservation laws for mass, energy, and momentum and quoted
their forms in general vector representation, respectively, in Eqs. (7.3) on pp. 82, (7.5) on pp. 84,

and (7.15) on pp. 88. Here, we report these equations in the cylindrical coordinate system (Fig. I.1)
without derivation, but rather with a reference to texts such as Panton (1984) or Bejan (1984) for

θ

x

r

Figure I.1. Cylindrical coordinate system in (x, r, θ).

further details. Let the velocity components for the (x, r, θ) directions be (u, v, w), respectively.
Then, conservation of mass is

(I.1)
∂u

∂x
+

1

r

∂

∂r

(

r v
)

+
1

r

∂w

∂θ
= 0 ,

conservation of momentum in the respective (x, r, θ) directions is

(I.2)
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
+

w

r

∂u

∂θ
= −

1

ρ

∂P

∂x
+ ν

[
∂2u

∂x2
+

1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2

∂2u

∂θ2

]

(I.3)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r
+

w

r

∂v

∂θ
−

w2

r
=

−
1

ρ

∂P

∂r
+ ν

[
∂2v

∂x2
+

∂

∂r

(
1

r

∂

∂r
(r v)

)

+
1

r2

∂2v

∂θ2
−

2

r2

∂w

∂θ

]

(I.4)
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂r
+

w

r

∂w

∂θ
+

v w

r
=

−
1

ρ r

∂P

∂θ
+ ν

[
∂2w

∂x2
+

∂

∂r

(
1

r

∂

∂r
(r w)

)

+
1

r2

∂2w

∂θ2
+

2

r2

∂v

∂θ

]

,
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where ρ and ν are again the density and kinematic viscosity, respectively. The energy equation for
temperature, T , is

ρ cp

[
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂r
+

w

r

∂T

∂θ

]

= q̇ + k

[
∂2T

∂x2
+

1

r

∂

∂r

(

r
∂T

∂r

)

+
1

r2

∂2T

∂θ2

]

+ 2 µ

[
(
∂u

∂x

)2

+

(
∂v

∂r

)2

+(I.5)

(
1

r

∂w

∂θ
+

v

r

)2
]

+

+ µ

[
(
∂w

∂r
−

w

r
+

1

r

∂v

∂θ

)2

+

(
1

r

∂u

∂θ
+

∂w

∂x

)2

+

(
∂v

∂x
+

∂u

∂r

)2
]

,

where k, cp, and µ are the thermal conductivity, heat capacity, and dynamic viscosity, respectively.
This equation also specifies an additional generic volumetric heat generation rate q̇.



APPENDIX J

Fully Developed Laminar Convection in Pipes

This appendix furnishes some of the calculation details of the steady, fully–developed,
laminar convection in a circular pipe for both the constant heat flux and constant temperature

boundary configurations discussed in §8.5 and §8.6, respectively.

J.1. Integral Solution for the Case of Constant Heat Flux Boundary

This section describes the solution procedure for Eq. (8.21) on pp. 110, which is repeated here
for convenience

d

dr

(

r
dT ∗

dr

)

= ϕ r

[

1 −
( r

R

)2
]

where ϕ =
4 q′′R

k R (Tm − TR)
is constant.

This equation can be integrated twice directly to get

T ∗ =
ϕ r2

4
−

ϕ r4

16 R2
+ C1 ln(r) + C2 ,

where C1 and C2 are integration constants. Boundary conditions for this problem are a little subtle
in the sense that we have already “used” the obvious heat flux specification, q′′R, in casting the
problem itself. However, we have already invoked a boundary temperature, TR, and can use that
at the pipe wall at r = R, i.e.

T ∗
∣
∣
∣
r=R

=
T − TR

Tm − TR

∣
∣
∣
∣
r=R

=
TR − TR

Tm − TR
= 0 ,

as alluded to in footnote 8.22 on pp. 107. The second boundary condition at r = 0 is similar in a
sense to that for the velocity problem discussed in footnote 8.19 on pp. 106, being deducible from

• the temperature is well–behaved, so that the natural log term must remain finite at r = 0
• because of symmetry of the overall problem, the temperature profile must also be sym-

metric about r = 0

either of which yields the same result that C1 = 0. Applying the remaining condition, we find

C2 = −
3

16
ϕR2 ,

which enables us to write T ∗ as

T ∗ =
ϕ r2

4
−

ϕ r4

16 R2
−

3

16
ϕR2 = − ϕR2

[

−
1

4

( r

R

)2
+

1

16

( r

R

)4
+

3

16

]

.
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We now observe that we can actually eliminate ϕ entirely by a clever use of the definition of
the mean temperature, Eq. (8.15) on pp. 107, as follows

Tm =
2

u R2

∫ R

0
u T r dr

=
2

u R2

∫ R

0
2 u

[

1 −
( r

R

)2
](

− ϕR2

[
1

16

( r

R

)4
−

1

4

( r

R

)2
+

3

16

]

(Tm − TR) + TR

)

r dr

=
4

R2

∫ R

0

[

1 −
( r

R

)2
]
(

− ϕR2
)
[

1

16

( r

R

)4
−

1

4

( r

R

)2
+

3

16

]

(Tm − TR) r dr

+
4

R2

∫ R

0

[

1 −
( r

R

)2
]

TR r dr

= − 4 ϕ (Tm − TR)

∫ R

0

[

1 −
( r

R

)2
] [

1

16

( r

R

)4
−

1

4

( r

R

)2
+

3

16

]

r dr

+
4 TR

R2

∫ R

0

[

1 −
( r

R

)2
]

r dr

= − 4 ϕ (Tm − TR)

∫ R

0

[

−
r7

16 R6
+

5 r5

16 R4
−

7 r3

16 R2
+

3 r

16

]

dr

+
4 TR

R2

∫ R

0

[

r −
r3

R2

]

dr

= − 4 ϕ (Tm − TR)

[

−
r8

128 R6
+

5 r6

96 R4
−

7 r4

64 R2
+

3 r2

32

]∣
∣
∣
∣

R

0

+
4 TR

R2

[
r2

2
−

r4

4 R2

]∣
∣
∣
∣

R

0

= − 4 ϕ (Tm − TR) R2

[

−
1

128
+

5

96
−

7

64
+

3

32

]

+
4 TR R2

R2

[
1

2
−

1

4

]

= − 4 ϕ (Tm − TR) R2

[

−
3

384
+

20

384
−

42

384
+

36

384

]

+ 4 TR

[
1

4

]

= −
11

96
ϕ (Tm − TR) R2 + TR .

A little more algebra shows that the quantity Tm − TR can actually be eliminated, leaving

ϕR2 = −
96

11
,

so that

T ∗ =
96

11

[

−
1

4

( r

R

)2
+

1

16

( r

R

)4
+

3

16

]

.

J.2. Axial Conduction for the Case of Constant Temperature Boundary

In §8.6 on pp. 112, we claim that axial conduction, though routinely neglected in established
analyses, does not actually vanish. This claim can be demonstrated by a simple energy balance,
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analogous to what is shown in Fig. 8.11 on pp. 109, except where the constant flux boundary
condition at r = R is replaced by a constant temperature boundary condition. The heat entering
the differential element from the periphery is then given by Newton’s Law based on TR − Tm,
whereby the energy balance is

h dA (TR − Tm) + ṁ cp Tm = ṁ cp

(

Tm +
dTm

dx
dx

)

.

Given that dA = P dx, where P is again the perimeter, a little algebra shows that, instead of a
constant value for dTm/dx, we find the differential equation

ṁ cp
dTm

dx
= h P (TR − Tm) .

The equation is separable and can be solved by direct integration, as

dTm

TR − Tm
=

h P

ṁ cp
dx

∫ Tm(x)

Tm(0)

dT ′
m

TR − T ′
m

=

∫ x

0

h P

ṁ cp
dx′

− ln(TR − T ′
m)
∣
∣
∣

Tm(x)

Tm(0)
=

h P

ṁ cp
x′
∣
∣
∣
∣

x

0

− ln
[

TR − Tm(x)
]

+ ln
[

TR − Tm(0)
]

=
h P

ṁ cp
(x − 0)

ln

[
Tm(x) − TR

Tm(0) − TR

]

= −
h P

ṁ cp
x

Tm(x) − TR

Tm(0) − TR
= e

− h P
ṁ cp

x

Tm(x) =
[

Tm(0) − TR
]

e
− h P

ṁ cp
x

+ TR(J.1)

dTm

dx
=

[

TR − Tm(0)
]

h P

ṁ cp
e
− h P

ṁ cp
x

.(J.2)

Given Eq. (8.25) on pp. 112 and the condition that T ∗ is independent of x, the second derivative
is then

(J.3)
∂2T

∂x2
= T ∗ d2Tm

dx2
=
[

Tm(0) − TR
]
(

h P

ṁ cp

)2

e
− h P

ṁ cp
x

.



APPENDIX K

Kármán–Pohlhausen Method for Prandtl’s Boundary Layer Flow

The boundary layer equations, Eqs. (9.1) through (9.3), can be solved by a variety of
approaches. Here, we develop the details of the classical Kármán–Pohlhausen approximation

discussed in §9.2 on pp. 118. This approximation takes the form of an integral equation, which
itself furnishes the boundary layer growth law for any “trial” velocity one might use to model the
boundary layer. The method is straightforward in that it uses nothing more than basic calculus
techniques. We cast the problem according to Fig. 9.1 on pp. 115. In particular, (x, y) are the
streamwise and normal coordinates, respectively, and δ is the assigned, but unknown boundary
layer thickness.K.1

K.1. Development of the Kármán–Pohlhausen Integral Momentum Equation

We start by integrating the conservation of mass statement, Eq. (9.1) on pp. 118, across the
boundary layer:

∫ δ

0

∂u

∂x
dy +

∫ δ

0

∂v

∂y
dy = 0 .

Note that the integrand in the second term is simply dv by Chain Rule. Moreover, v = 0 at y = 0
because of the no–slip boundary condition. These observations yield

(K.1) v
∣
∣
∣
y=δ

= −
∫ δ

0

∂u

∂x
dy ,

which we set aside to be used momentarily. Now, integrate the conservation of momentum state-
ment, Eq. (9.2) on pp. 118, likewise over the boundary layer thickness

∫ δ

0
u
∂u

∂x
dy +

∫ δ

0
v
∂u

∂y
dy = ν

∫ δ

0

∂2u

∂y2
dy ,

which gives, after integrating the second term on the left hand side by partsK.2 and recognizing the
right hand side can be integrated directly,

(K.2)

∫ δ

0
u
∂u

∂x
dy +

[

u v
]
∣
∣
∣

δ

0
−
∫ δ

0
u
∂v

∂y
dy = ν

∂u

∂y

∣
∣
∣
∣

δ

0

.

K.1This is synonymous with what we will refer to as the “boundary layer growth law”, δ = δ(x).
K.2We can consider ∂u/∂y · dy in the second term as simply du by Chain Rule, which means we are evaluating

R

v du. Applying the method of integration by parts, we see
R

v du = u v −
R

u dv. However, ∂v/∂y · dy = dv, again
by Chain Rule. That is

Z δ

0

v
∂u
∂y

dy =

Z δ

0

v du =
ˆ

u v
˜
˛
˛
˛

δ

0
−
Z δ

0

u dv =
ˆ

u v
˜
˛
˛
˛

δ

0
−
Z δ

0

u
∂v
∂y

dy .

This development gives the second and third terms on the left hand side of Eq. (K.2).

187
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Note that the first term has not changed at all. To further develop Eq. (K.2), we make the following
observations. The second term can be evaluated outright using Eq. (K.1) for v and observing that
u = 0 at y = 0 and u = u∞ at y = δ. In the third term, we utilize the original continuity statement,
Eq. (9.1) on pp. 118, to swap ∂v/∂y = − ∂u/∂x. The fourth term is evaluated using the fact that
∂u/∂y is zero at the edge of the boundary layer, y = δ. These modifications give

∫ δ

0
u
∂u

∂x
dy − u∞

∫ δ

0

∂u

∂x
dy +

∫ δ

0
u
∂u

∂x
dy = − ν

∂u

∂y

∣
∣
∣
∣
y=0

,

which is readily simplified to

u∞

∫ δ

0

∂u

∂x
dy −

∫ δ

0
2 u

∂u

∂x
dy = ν

∂u

∂y

∣
∣
∣
∣
y=0

.

Being a constant, u∞ can be taken directly under the integral sign and u can be “integrated” in,K.3

which yields
∫ δ

0

∂

∂x

(

u∞ · u − u · u
)

dy = ν
∂u

∂y

∣
∣
∣
∣
y=0

.

Now, the right hand side is basically a term that is evaluated, specifically, it is the shear stress at
the plate surface divided by density. On the left, we assume the order of differentiation can be
swapped. Moreover, we notice that the integral in y is evaluated over the given limits, meaning
the result is not a function of y. This result is also the argument of the differential operator in x.
Precisely because it is then at most a function of x, we change ∂/∂x to d/dx, which yields

(K.3)
d

dx

∫ δ

0

(

u∞ − u
)

u dy = ν
∂u

∂y

∣
∣
∣
∣
y=0

.

Eq. (K.3) is the Kármán–Pohlhausen integral momentum equation.

K.2. Sketch of Companion Integral Energy Equation Derivation

A similar integral relationship can be derived for the conservation of energy statement, Eq. (9.3)
on pp. 118. This process relies on an equation very similar to Eq. (K.1) above for v at the boundary
layer edge, except here the integration is taken across the thermal boundary layer of thickness δt.
It then proceeds by integrating the conservation of energy statement over δt and following very
similar procedures to those above

∫ δt

0
u
∂T

∂x
dy +

∫ δt

0
v
∂T

∂y
dy = α

∫ δt

0

∂2T

∂y2
dy

∫ δt

0
u
∂T

∂x
dy +

[

v T
]
∣
∣
∣

δt

0
−
∫ δt

0
T
∂v

∂y
dy = α

∂T

∂y

∣
∣
∣
∣

δt

0

∫ δt

0
u
∂T

∂x
dy − T∞

∫ δt

0

∂u

∂x
dy +

∫ δt

0
T
∂u

∂x
dy = − α

∂T

∂y

∣
∣
∣
∣
y=0

·

K.3That is we essentially follow the rule of differentiation, except in reverse, to find

2 u
∂u
∂x

=
∂
`

u2
´

∂x
·
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Noticing that the first and the third terms on the left–hand side can be combined because of their
relationship

u
∂T

∂x
+ T

∂u

∂x
=

∂ (u T )

∂x
the derivation can be completed with a few more steps similar to those used above for the momentum
equation to give

(K.4)
d

dx

∫ δt

0

(

T∞ − T
)

u dy = α
∂T

∂y

∣
∣
∣
∣
y=0

.

Eq. (K.4) is the companion Kármán–Pohlhausen integral equation for energy.

K.3. Example Boundary Layer Profiles: Third–Order Polynomials

Eqs. (K.3) and (K.4) enforce relationships between the streamwise development of the u and
T profiles with their respective gradients at the plate surface, y = 0. One can now assume various
“trial profiles” to model the boundary layer, ultimately using the Kármán–Pohlhausen integrals to
derive the associated growth laws δ and δt as closures. In particular, there is a symmetry in the
streamwise direction that can be exploited to write the general forms asK.4

u(x, y) = u
(

δ(x), y
)

= u

(
y

δ(x)

)

and T (x, y) = T
(

δt(x), y
)

= T

(
y

δt(x)

)

·

Let us illustrate this process with an example that describes u and T as third–order polynomials.K.5

For instance, take u as

u

u∞
= a1 + a2

( y

δ

)

+ a3

( y

δ

)2
+ a4

( y

δ

)3
,

where we can invoke the following boundary conditions to evaluate a1 . . . a4

• Recall that u is prescribed explicitly at the wall and the edge of the boundary layer, i.e.
Eqs. (9.4) and (9.5) on pp. 118

u
∣
∣
∣
y=0

= 0 and u
∣
∣
∣
y=δ

= u∞

• Matching between the boundary layer and the freestream is asymptotic, i.e. “smooth”,
implying the gradient of velocity vanishes at the edge of the boundary layer

∂u

∂y

∣
∣
∣
∣
y=δ

= 0 .

• Take the conservation of momentum statement, Eq. (9.2) on pp. 118, and evaluate it at
the plate surface, y = 0, under the restriction of no–slip. Plugging in u = v = 0 at y = 0,
we find

∂2u

∂y2

∣
∣
∣
∣
y=0

= 0 .

K.4We exploit this aspect once again in the “similarity technique” for this problem, discussed in detail in appen-
dix L starting on pp. 197.

K.5Here is where the idea of various degrees of accuracy enters into the problem. Specifically, lower–order
polynomials will, in general, yield less accurate results as compared to higher–order polynomials. The order is limited
by how many boundary conditions we can identify because these must be used to evaluate the polynomial coefficients.
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We now have 4 conditions to evaluate the 4 unknowns. Carrying this out, we find a1 = a3 = 0,
a2 = 1.5, and a4 = −0.5, so that

(K.5) u∗ =
u

u∞
=

3

2

( y

δ

)

−
1

2

( y

δ

)3
·

We now know the form of u/u∞, but since we do not know how δ varies, we still do not know
the explicit solution for the profile u. Here is where we will now apply the Kármán–Pohlhausen
integral condition, Eq. (K.3), to derive the boundary layer growth law as a closure to the system.
Specifically, solve Eq. (K.5) for u as

u =
3 u∞

2 δ
y −

u∞

2 δ3
y3

and substitute this expression into Eq. (K.3), whereby

d

dx

∫ δ

0

(

u∞ −
3 u∞

2 δ
y +

u∞

2 δ3
y3

)(
3 u∞

2 δ
y −

u∞

2 δ3
y3

)

dy = ν

(
3 u∞

2 δ
−

3 u∞

2 δ3
y2

)∣
∣
∣
∣
y=0

u2
∞

d

dx

∫ δ

0

(
3 y

2 δ
−

9 y2

4 δ2
−

y3

2 δ3
+

3 y4

2 δ4
−

y6

4 δ6

)

dy =
3 ν u∞

2 δ

u2
∞

d

dx

(
3 y2

4 δ
−

3 y3

4 δ2
−

y4

8 δ3
+

3 y5

10 δ4
−

y7

28 δ6

)∣
∣
∣
∣

δ

0

=

u2
∞

d

dx
δ

(
3

4
−

3

4
−

1

8
+

3

10
−

1

28

)

=

39 u2
∞

280

d δ

dx
=

3 ν u∞

2 δ
·

Notice that we have been careful to retain δ under d/dx because δ = δ(x). This is now a differential
equation that describes the growth of δ as a function of x. It is separable

δ dδ =
140 ν

13 u∞
dx ,

and therefore easily solved by integrating in the streamwise direction as
∫

δ dδ =

∫
140 ν

13 u∞
dx from which we find

δ2

2
=

140 ν

13 u∞
x + C0 ,

where C0 is a constant of integration. If we take the boundary condition as the boundary layer
thickness being zero at the leading edge of the plate, according to Fig. 9.1 on pp. 115, that is
δ(0) = 0, we find C0 = 0 so that

(K.6) δ =

√

280

13

ν x

u∞
≈ 4.641

√
ν

u∞ x
x =

4.641 x√
Rex

,

where Rex is the Reynolds number based on x. This is an explicit description of how the boundary
layer grows along the plate in x and “closes” the system. That is, Eqs. (K.5) and (K.6) taken
together specify the boundary layer flow over the plate for the 3–rd order polynomial approximation.
Many other approximations are possible.
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For the energy problem, we will assume a boundary condition of a constant temperature at
the plate surface, TS . Define a dimensionless temperature and take its profile as a third–order
polynomialK.6

(K.7)
T − TS

T∞ − TS
= b1 + b2

(
y

δt

)

+ b3

(
y

δt

)2

+ b4

(
y

δt

)3

,

where we can invoke very similar boundary conditions as those for the momentum problem to
evaluate b1 . . . b4

• For a constant temperature plate with a specified freestream temperature, i.e. at the edge
of the thermal boundary layer, we have

T
∣
∣
∣
y=0

= TS and T
∣
∣
∣
y=δt

= T∞

• Matching between the boundary layer and the freestream is once again asymptotic, i.e.
“smooth”, implying a vanishing gradient

∂T

∂y

∣
∣
∣
∣
y=δt

= 0 .

• Take the conservation of energy statement, Eq. (9.3) on pp. 118, and evaluate it at the
plate surface, y = 0, under the restriction of no–slip. Plugging in u = v = 0 at y = 0, we
find

∂2T

∂y2

∣
∣
∣
∣
y=0

= 0 .

We now have 4 conditions to evaluate the 4 unknowns. Carrying this out, we find b1 = b3 = 0,
b2 = 1.5, and b4 = −0.5. These are identical to the corresponding values for a1 . . . a4 for the
momentum problem, which is little surprise since the boundary conditions are identical. The
temperature profile is then

(K.8) T ∗ =
T − TS

T∞ − TS
=

3

2

(
y

δt

)

−
1

2

(
y

δt

)3

·

Here we will now apply the Kármán–Pohlhausen integral condition for the energy statement,
Eq. (K.4), to derive the thermal boundary layer growth law as a closure to the system. Specifically,
solve Eq. (K.8) for T as

T =

(
3

2 δt
y −

1

2 δ3t
y3

)

(T∞ − TS) + TS

and substitute both this expression and the velocity profile into Eq. (K.4) on pp. 189, whereby

d

dx

∫ δt

0

(

T∞ −
[(

3

2 δt
y −

1

2 δ3t
y3

)

(T∞ − TS) + TS

] )(
3 u∞

2 δ
y −

u∞

2 δ3
y3

)

dy

= α

(
3

2 δt
−

3

2 δ3t
y2

)

(T∞ − TS)

∣
∣
∣
∣
y=0

.

This is not an entirely trivial equation to solve, but let us notice immediately that T∞ − TS factors
on both the left and the right sides and can therefore be canceled.

K.6This form of dimensionless temperature is similar to that defined for the pipe convection problem in Eq. (8.16)
on pp. 107. It will be used again when applying the iterative integral method, i.e. in Eq. (L.14) on pp. 206.
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We will also factor u∞/2 on the left hand side, after which the remaining operations simplify
the equation as

u∞

2

d

dx

∫ δt

0

(

1 −
3

2 δt
y +

1

2 δ3t
y3

)(
3

δ
y −

1

δ3
y3

)

dy =
3 α

2 δt

d

dx

∫ δt

0

(
3 y

δ
−

y3

δ3
−

9 y2

2 δt δ
+

3 y4

2 δt δ3
+

3 y4

2 δ3t δ
−

y6

2 δ3t δ
3

)

dy =
3 α

u∞ δt

d

dx

(
3 y2

2 δ
−

y4

4 δ3
−

3 y3

2 δt δ
+

3 y5

10 δt δ3
+

3 y5

10 δ3t δ
−

y7

14 δ3t δ
3

)∣
∣
∣
∣

δt

0

=

d

dx

(
3 δ2t
2 δ

−
δ4t

4 δ3
−

3 δ3t
2 δt δ

+
3 δ5t

10 δt δ3
+

3 δ5t
10 δ3t δ

−
δ7t

14 δ3t δ
3

)

=

d

dx

(
3 δ2t
2 δ

−
δ4t

4 δ3
−

3 δ2t
2 δ

+
3 δ4t
10 δ3

+
3 δ2t
10 δ

−
δ4t

14 δ3

)

=

d

dx

(
3 δ2t
10 δ

−
3 δ4t

140 δ3

)

=
3 α

u∞ δt
·

It seems as if this will become a little unwieldy to deal with δt/δ, so let us define

ξ = ξ(x) =
δt(x)

δ(x)
,

so that, with some factoring, the equation can be written in a slightly more maneuverable form

(K.9)
d

dx

[

δ

(

ξ2 −
ξ4

14

)]

=
10 α

u∞ δ ξ
·

At this point it becomes convenient for the purposes of completing the problem to invoke the
restriction δt < δ, i.e. the thermal boundary layer is smaller than the momentum boundary layer.
This means ξ < 1, implying that the solution will now be valid only for fluids having Pr > 1.
Under this condition ξ4/14 # ξ2, meaning the former can be neglected. We can write the simplified
equation, omitting the ξ4/14 and then differentiate, finding

δ ξ
d

dx

(

δ ξ2
)

=
10 α

u∞

2 δ2 ξ2
dξ

dx
︸ ︷︷ ︸

recast

+ δ ξ3
dδ

dx
=

10 α

u∞
,

from which it still seems we will still have some awkwardness in developing the solution. Let us
use the observation

1

3

d

dx

(

ξ3
)

= ξ2
dξ

dx
in order to recast the marked term above, so that the equation is now

2

3
δ2

d

dx

(

ξ3
)

+ δ ξ3
dδ

dx
=

10 α

u∞
·
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Now recall that we already determined δ above in Eq. (K.6) on pp. 190, from which we can explicitly
write both terms containing δ in the above equation as

δ2 =
280 ν

13 u∞
x and 2 δ

dδ

dx
=

280 ν

13 u∞
→ δ

dδ

dx
=

140 ν

13 u∞

so that substitution yields

2

3
·

280 ν

13 u∞
· x ·

d

dx

(

ξ3
)

+ ξ3 ·
140 ν

13 u∞
=

10 α

u∞

x
d

dx

(

ξ3
)

+
3

4
ξ3 =

39

56

α

ν
·

This appears to be a strange equation to solve, but if we use the substitution y = ξ3 as a device
for simplification and write the constant term on the right hand side as C0 then this equation can
be written

x
dy

dx
+

3

4
y = C0 or

dy

dx
+

3

4 x
y =

C0

x
,

the latter being “standard form”. Let us solve this using the method of variation of parameters
(Martin and Reissner, 1956). First, we solve the homogeneous form of the problem. This is
separable, whereby

dyh

dx
= −

3

4 x
yh

dyh

yh
= −

3 dx

4 x

ln(yh) = −
3

4
ln(x) +

eln(yh) = e−
3
4 ln(x) + C1 =

(

eln(x)
)−3/4

· eC1

yh = C2 x−3/4 .

Now we assume the solution to the complete problem by replacing the integration constant C2 with
an as–of–yet unknown function of x, call it f(x), i.e. y = f(x) · x−3/4. We take its first derivative,
so as to be able to substitute both y and y′ into the differential equation, finding

f ′ · x−3/4 − """"""3

4
f · x−7/4 + """""""3

4 x
f · x−3/4 =

C0

x

f ′ = C0 x−1/4

f(x) =
4

3
C0 x3/4 + C3 ,

so that the complete solution is re–constituted as

y = f · x−3/4 =

(
4

3
C0 x3/4 + C3

)

x−3/4 =
4 C0

3
+ C3 x−3/4 ,

where we remind ourselves that C3 is the integration constant, while C0 is shorthand for the group
of constants defined above. If we now replace ξ3 for y and the re–insert the full expression for C0,
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we can write the result as

ξ3 =
4 · 39
3 · 56

α

ν
+ C3 x−3/4

(
δt
δ

)3

=
13

14 Pr
+ C3 x−3/4 ,(K.10)

with an integration constant C3 that remains to be determined. Ordinarily, we would do this
exactly as we did for the momentum boundary layer thickness, i.e. from a condition at the leading
edge. However, the situation here is somewhat more subtle.

At first glance, it appears from Eq. (K.10) that we should simply set C3 = 0, so as to avoid the
implied singularity at the leading edge.K.7 However, it is not hard to show that there is actually no
such singularity at x = 0 using a simple limiting argument. We observe from Eq. (K.6) that the
momentum thickness is δ = ϕ1

√
x , where ϕ1 is a constant. Also, as we approach the leading edge

“from the right”, i.e. x → 0+, the second term in Eq. (K.10) is much larger than the first, so that
ξ3 = (δt/δ)3 → C3 x−3/4. Substituting, we find

δt ∼
(

C3 x−3/4
)1/3

· ϕ1 x1/2 = C1/3
3 ϕ1 x−1/4 x1/2 = C1/3

3 ϕ1 x1/4 implying δt
∣
∣
∣
x=0

= 0 .

In other words, the boundary condition at the leading edge is satisfied, regardless of the value
assigned to C3, so the constant of integration in Eq. (K.10) is actually indeterminate with respect
strictly to the leading edge boundary condition.K.8 This is not just a consequence of our earlier
discarding of the higher–order term ξ4 in Eq. (K.9) on pp. 192 in order to expedite the solution.
For example, we find the same contingency if using only linear approximations for u and T , and

K.7Unfortunately, the few texts that actually give substantive details this far into the solution process allow rigor
to lapse at this point. For example Özişik (1985, pp. 368) argues a boundary condition of ξ = 0 at a finite standoff
distance x = x0, from which it is readily shown that

„
δt

δ

«3

=
13

14 Pr

»

1 −
“ x0

x

”3/4
–

,

from whence it is then argued that if we take x0 = 0 then (δt/δ)3 = 13 Pr−1/14. Of course, this subtly obscures the
fact that if x = x0 and x0 = 0, then x = 0 and this result is still indeterminate!

K.8 The observation can also be proved formally, i.e. not just asymptotically, but as an equivalence, using
L’Hospital’s Rule. Again, write δ = ϕ1

√
x from Eq. (K.6), where ϕ1 is a constant, and let ϕ2 = 13 Pr−1/14 in

Eq. (K.10). Then Eq. (K.10) can be written in the convenient way

δt =
ϕ1 x1/2

(ϕ2 + C3 x−3/4)−1/3
,

which is still indeterminate at x = 0. To apply the Rule, take d/dx of both the numerator and the denominator,
after which some algebra shows

δt

˛
˛
˛
x=0

=

ϕ1 x−1/2

2

−
“

ϕ2 + C3 x−3/4
”−4/3

3
· − 3 C3 x−7/4

4

= · · · =
2 ϕ1

“

ϕ2 x + C3 x1/4
”4/3

C3 x1/12
,

which is still indeterminate. Taking d/dx of both the numerator and the denominator once again, we find

δt

˛
˛
˛
x=0

=
2 ϕ1

4
3

“

ϕ2 x + C3 x1/4
”1/3“

ϕ2 + 1
4 C3 x−3/4

”

1
12 C3 x−11/12

=
96
3

ϕ1

“

ϕ2 x + C3 x1/4
”1/3

„
x11/12 ϕ2

C3
+

x1/6

4

«

,

which obviously vanishes at x = 0.
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for which no such simplification need be invoked. It is very significant because we see that we now
have to infer C3 in some other way besides the strict mathematical boundary condition.

Recall from Eq. (K.9) on pp. 192 that our simplification basically limits us to Pr > 1, implying
δt < δ. In other words, for Pr > 1 momentum diffuses faster than heat, so δ must be larger
than δt. Eq. (K.10) suggests that if C3 > 0, the thermal boundary layer will be thicker than the
momentum boundary layer, which violates our Prandtl number assumption. For example, Fig. K.1
shows 3 values of C3 plotted when Pr = 5. Even the seemingly very small case of C3 = 0.01 shows

0 2×10-6 4×10-6 6×10-6 8×10-6 1×10-5
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0
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0.1

Figure K.1. Momentum boundary layer thickness for δ = 0.001
√

x and thermal bound-

ary layer thickness plotted from Eq. (K.10) for Pr = 5 and values of C3 ∈ {0, 0.01, 0.1}.
Curves for all 3 values of C3 satisfy the leading edge boundary condition of δt = 0 at x = 0.

significant violation of the requirement that the thermal layer be thinner than the momentum layer.
We can confirm this behavior by revisiting the asymptotic argument made above, which implies
that when we are arbitrarily close to the leading edge, Eq. (K.10) becomes

δt
δ

∣
∣
∣
∣
x→0

→
(

C3 x−3/4
)1/3

= C1/3
3 x−1/4 ,

from which δt will clearly (and erroneously) be larger than δ, unless C3 = 0. In the end we see that
Eq. (K.10) is ultimately resolved as

δt
δ

=

(
13

14 Pr

)1/3

≈ 0.976 Pr−1/3 ,

which had to be inferred from observing the relative size of δt vs. δ very near the leading edge. It
could not be calculated from the boundary condition at the leading edge, which is indeterminate.
Substituting the explicit result for δ in Eq. (K.6) on pp. 190 into this equation, we find the growth
law for the thermal boundary layer to be

(K.11) δt = δ

(
13

14 Pr

)1/3

=

√

280

13

x√
Rex

(
13

14 Pr

)1/3

≈
4.528 x

Re1/2
x Pr1/3

·
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As with the momentum solution, the temperature profile in Eq. (K.8) on pp. 191, coupled with the
thermal boundary layer growth law here in Eq. (K.11) specify the complete solution.

Ultimately, we want to state the practical answer to this problem in the form of the Nusselt
number, which we can calculate following the principles in §7.4 on pp. 92. Equating conduction
and convection at the no–slip wall, we can use the temperature solution in Eq. (K.8) to specify
∂T/∂y, finding

h(TS − T∞) = − k
3

2 δt
(T∞ − TS)

h

k
=

3

2 δt
=

3 Re1/2
x Pr1/3

2 · 4.528 x

Nux =
h x

k
≈ 0.3313 Re1/2

x Pr1/3 .(K.12)



APPENDIX L

Similarity Technique Applied to Prandtl’s Boundary Layer Flow

As we mentioned in appendix K, the boundary layer equations, Eqs. (9.1) through (9.3)
on pp. 118, can be solved by a variety of approaches. Here, we develop the classical similarity

procedure that reduces the conservation of mass and momentum PDEs to a single ODE of a derived
function. This transformation is possible because there is no obvious finite length scale, since we
take the plate to be semi–infinite. We followed this procedure for the Rayleigh problem, detailed
in appendix D starting on pp. 146, and will follow a similar order of operations here.

L.1. Derivation of the Similarity Parameter

As with the Rayleigh problem in §D.1 on pp. 146, we opt for the “stretching variables” method
to determine the similarity parameter (Hansen, 1967). Define stretched–variable versions of the
physical variables as

u = ξa u , v = ξb v , x = ξc x , y = ξd y ,

where ξ is the parameter for the group and variables a through d are unknown. To obtain equations
in the “bar” (coordinate stretched) system, we apply Chain Rule in much the same way as we use
it for non–dimensionalizing an equation (c.f. Eqs. (4.7) and (4.8) on pp. 34). For conservation of
mass, Eq. (9.1) on pp. 118, repeated here for convenience as

∂u

∂x
+

∂v

∂y
= 0 ,

we find

ξc−a ∂u

∂x
+ ξd−b ∂v

∂y
= 0 .

To maintain invariance between the original and the stretched system, the ξ must be able to be
canceled, implying c−a = d−b, which cannot be simplified further, at the moment. For conservation
of momentum, Eq. (9.2) on pp. 118, again repeated for convenience as

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
,

similar operations yield

ξc−2a u
∂u

∂x
+ ξd−a−b v

∂u

∂y
= ξ2d−a ν

∂2u

∂y2 ,

so that by similar argument we have c − 2a = d − a − b = 2d − a.
We immediately see that a = 0, otherwise the upstream boundary condition in the stretched

system, ξ−a u = u∞, would not be invariant. Substituting for the relations obtained from mass and
momentum, respectively, we find c = d− b and c = d− b = 2d.L.1 Next, we must find a parameter,

L.1Note that the equation from conservation of mass is now superfluous because c = d − b is repeated.

197
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ϕ, that is invariant under transformations of the independent variables. We have two independent
variables here, x and y, so we choose a power expression of their product of the form

ϕ = xe y ,

noting that there is no need to assume a power of y other than unity because e would be determined
commensurately (Hansen, 1967). The invariance condition just mentioned for ϕ requires

xe y = xe y =
(

ξc x
)e (

ξd y
)

= ξce+d xe y ,

where c e + d = 0 for invariance to hold. Given c = 2 d from above, a little algebra shows

e = −
d

c
= −

d

2 d
= −

1

2
,

so that a valid similarity parameter is

ϕ =
y√
x

·

Recall from footnote D.1 on pp. 147 that the successful similarity parameter is not necessarily
unique to a specific problem. The form ϕ = y/

√
x is the salient similarity relationship, but it

will be more convenient in the resulting ODE if we multiply this expression by the constant value
√

u∞/ν , so that the final similarity parameter isL.2

(L.1) ϕ = y

√

u∞

ν x
·

This combination will allow reduction of the PDE system into a very tidy ODE.
Let us preemptively work out the partial derivatives that will be needed in the solution proce-

dure. As usual, these are determined by simple application of Chain Rule, specifically

∂

∂x
=

∂ϕ

∂x

d

dϕ
= −

1

2
x−3/2 y

√

u∞

ν

d

dϕ
= −

ϕ

2 x

d

dϕ

∂

∂y
=

∂ϕ

∂y

d

dϕ
=

√

u∞

ν x

d

dϕ

∂2

∂y2
=

∂

∂y

(√

u∞

ν x

d

dϕ

)

= · · · =
u∞

ν x

d2

dϕ2
·

L.2. Reduction of the Momentum PDE System to an ODE

The previous problem for which we used the similarity approach, Rayleigh conduction in ap-
pendix D starting on pp. 146, was relatively easy to transform. The boundary layer problem is
slightly more complicated because we are dealing with conservation of both mass and momentum.
Recall the clever mathematical device of the stream function, ψ, defined relative to the velocity
distribution as

(L.2) u =
∂ψ

∂y
and v = −

∂ψ

∂x
,

which we can use to eliminate conservation of mass outright, since ψ automatically satisfies that law.
The first real step is then to deduce the relationship of ψ to the univariate function f = f(ϕ), for
which we want to fashion our ODE. The former has physical units of length squared per unit time,

L.2Recall from footnote D.1 on pp. 147 that a successful similarity parameter is not necessarily unique.
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while the latter is unitless. That is, if we take ψ(x, y) ∝ f(ϕ), we must determine the appropriate
multiplier such that physical dimensions are consistent. Given the stream function definition, we
observe

u =
∂ψ

∂y
:

∂ψ

∂y
→
√

u∞

ν x

df

dϕ
=

√

u∞

ν x
f ′ ,

but the square root term has physical units of length−1. We can remedy this artifact by simply
multiplying by

√
u∞ ν x , so that

(L.3)
∂ψ

∂y
= u =

√

u∞

ν x

√
u∞ ν x f ′ = u∞ f ′ and consequently ψ =

√
u∞ ν x f .

Using this definition of ψ and the partial derivatives above, let us flesh–out various derivatives of
ψ that will be needed in the subsequent form of the boundary layer momentum equation

∂2ψ

∂y2
=

∂

∂y

(

u∞ f ′
)

=

√

u∞

ν x
u∞

df ′

dϕ
=

√

u∞

ν x
u∞ f ′′

∂3ψ

∂y3
=

∂

∂y

(
∂2ψ

∂y2

)

=

√

u∞

ν x

√

u∞

ν x
u∞

df ′′

dϕ
=

u2
∞
ν x

f ′′′

∂ψ

∂x
=

1

2

√
u∞ ν x−1/2 f +

√
u∞ ν x f ′

(

−
ϕ

2 x

)

=
1

2

√

u∞ ν

x

(

f − ϕ f ′
)

(L.4)

∂

∂x

(
∂ψ

∂y

)

= −
ϕ

2 x

d

dϕ

(

u∞ f ′
)

= −
ϕ u∞

2 x
f ′′ ·

It is now a straightforward task, starting with the momentum equation, to write it in terms of the
stream function, ψ, then to substitute the above quantities with the goal of ultimately writing it
in terms of f . We find

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2

∂ψ

∂y
·
∂

∂x

(
∂ψ

∂y

)

−
∂ψ

∂x
·
∂2ψ

∂y2
= ν

∂3ψ

∂y3

(

u∞ f ′
)

︸ ︷︷ ︸

u

(

−
ϕ u∞

2 x
f ′′
)

︸ ︷︷ ︸

∂u/∂x

−
1

2

√

u∞ ν

x

(

f − ϕ f ′
)

︸ ︷︷ ︸

−v

√

u∞

ν x
u∞ f ′′

︸ ︷︷ ︸

∂u/∂y

= ν
u2
∞
ν x

f ′′′

−
ϕ u2

∞
2 x

f ′ f ′′ −
u2
∞

2 x

(

f − ϕ f ′
)

f ′′ =
u2
∞
x

f ′′′

−
f f ′′

2
= f ′′′

f ′′′ +
f f ′′

2
= 0 ,(L.5)
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which is now an ODE in f(ϕ) only. The boundary conditions in Eqs. (9.4) and (9.5) on pp. 118
must also be transformed to the similarity domain. Noting that y = 0 implies ϕ = 0 from the
definition in Eq. (L.1), the no–slip condition for u is readily found as

(L.6) u
∣
∣
∣
y=0

= 0 implies f ′(0) = 0

and the no–slip condition in v is also found, with slightly more effort, to be

(L.7) v
∣
∣
∣
y=0

= −
∂ψ

∂x

∣
∣
∣
∣
y=0

= 0 implies −
1

2

√

u∞ ν

x

(

f − 0 · f ′
)

= 0 → f(0) = 0 .

The freestream boundary condition is a little bit more subtle. Recall that Eq. (9.5) specifies
“freestream” at the edge of the boundary layer, however we do not know δ. In fact, we have
made no mention of any finite length scale, including δ, nor even any notion of an explicit division
between the boundary layer and the freestream. That is, we have no basis for making any sort
of statement about what happens at the defined length of δ. Instead, we can only observe that
freestream conditions are attained “very far away from the plate’s surface”, whereby y → ∞ implies
ϕ→ ∞, again from the definition in Eq. (L.1), so that

(L.8) u
∣
∣
∣
y→∞

= u∞ implies f ′(∞) = 1

from Eq. (L.3). The PDE system has now been successfully recast as a 3–rd order ODE, Eq. (L.5),
having 3 boundary conditions given by Eqs. (L.6) through (L.8). Once f is solved, we readily
recover u from its first derivative, per Eq. (L.3).

L.3. Piercy–Preston Iterative Integration Procedure for Velocity

Quick inspection immediately reveals that the similarity procedure only converted the PDE
system to an ODE, but did not linearize the problem. Eq. (L.5) remains non–linear, suggesting
the need for an ad hoc solution procedure.L.3 Here, we will apply a clever iterative technique
that renders progressively improved specifications for f (Piercy and Preston, 1936; Watson and
Preston, 1951). In principle, we could obtain the solution exactly. In practice, each step becomes
increasingly difficult, however the procedure converges very quickly. We will only perform sufficient
iterations to demonstrate the basic method.

The Piercy–Preston concept is to develop an increasingly accurate set of solutions f1, f2, . . .
toward the exact solution f(ϕ) and this procedure is framed by splitting Eq. (L.5) as

f ′′′
i +

fi−1 · f ′′
i

2
= 0 ,

where level i − 1 represents the inferior solution from the previous iteration and level i represents
the superior solution from the current iteration. In other words, in solving for level i, the “solution”
for level i − 1 is already known, meaning we can integrate this equation directly. For convenience,
let us introduce the following notation

yi,1 =
dfi

dϕ
= f ′

i and yi,2 =
dyi,1

dϕ
,

L.3We already examined an approximate procedure in the form of the Kármán–Pohlhausen method in appendix K
on pp. 187.
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so that the split equation can be written as

d

dϕ

[
d

dϕ

(
dfi

dϕ

)]

= −
1

2
fi−1(ϕ)

d

dϕ

(
dfi

dϕ

)

d

dϕ

(
dyi,1

dϕ

)

= −
1

2
fi−1(ϕ)

dyi,1

dϕ

dyi,2

dϕ
= −

1

2
fi−1(ϕ) yi,2 .

This equation is clearly separable, whereby it can be integrated directly as

∫ yi,2(ϕ)

yi,2(0)

dyi,2

yi,2
= −

1

2

∫ ϕ

0
fi−1(ϕ) dϕ

ln (yi,2)
∣
∣
∣

yi,2(ϕ)

yi,2(0)
= ln

[

yi,2(ϕ)
]

− ln
[

yi,2(0)
]

︸ ︷︷ ︸

set to Ci,2

=

ln
[

yi,2(ϕ)
]

= −
1

2

∫ ϕ

0
fi−1(ϕ) dϕ + Ci,2

yi,2(ϕ) = exp

(

−
1

2

∫ ϕ

0
fi−1(ϕ) dϕ + Ci,2

)

= exp

(

−
1

2

∫ ϕ

0
fi−1(ϕ) dϕ

)

· exp
(

Ci,2
)

dyi,1

dϕ
= C ′

i,2 exp

(

−
1

2

∫ ϕ

0
fi−1(ϕ) dϕ

)

,

where we have observed that Ci,2 = ln
[

yi,2(0)
]

is a yet–to–be–determined constant, given that the
function is evaluated at ϕ = 0. Notice that in the last step we have also replaced yi,2 with the
equivalent derivative term that is a function of the predecessor yi,1. This equation is once again
separable and therefore again directly integrable

∫ yi,1(ϕ)

yi,1(0)
dyi,1 =

∫ ϕ

0
C ′

i,2 exp

(

−
1

2

∫ ϕ

0
fi−1(ϕ) dϕ

)

dϕ

yi,1(ϕ) = C ′
i,2

∫ ϕ

0
exp

(

−
1

2

∫ ϕ

0
fi−1(ϕ) dϕ

)

dϕ + yi,1(0)

f ′
i(ϕ) = C ′

i,2

∫ ϕ

0
exp

(

−
1

2

∫ ϕ

0
fi−1(ϕ) dϕ

)

dϕ + '''(0
f ′

i(0) .

In the second line, we moved the constant Ci,2 outside the integral and in the third line we replaced
yi,1 with its definition of f ′

i . We must now evaluate Ci,2 and f ′
i(0) from the boundary conditions of

the problem. Eq. (L.6) states identically that f ′(0) = 0, which implies likewise that f ′
i(0) = 0, as

shown in the equation above. Eq. (L.8) specifies f ′(∞) = 1, from which similar interpretation for
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the i–th solution we find

1 = C ′
i,2

∫ ∞

0
exp

(

−
1

2

∫ ϕ

0
fi−1(ϕ) dϕ

)

dϕ ,

so that finally

(L.9) f ′
i(ϕ) =

∫ ϕ
0 exp

(

−
1

2

∫ ϕ
0 fi−1(ϕ) dϕ

)

dϕ

∫∞
0 exp

(

−
1

2

∫ ϕ
0 fi−1(ϕ) dϕ

)

dϕ

·

This equation allows computation of a new f ′
i given a previous function fi−1, but does not yet lead

to an improved version of fi. For that, we have to integrate Eq. (L.9) one final time. Observing
that f ′

i = dfi/dϕ, this expression is again separable and directly integrable. Reminding ourselves
that the denominator in Eq. (L.9) is a constant and omitting formalities that are by now familiar,
we find

fi(ϕ) − '''(0
fi(0) =

∫ ϕ
0

[
∫ ϕ
0 exp

(

−
1

2

∫ ϕ
0 fi−1(ϕ) dϕ

)

dϕ

]

dϕ

∫∞
0 exp

(

−
1

2

∫ ϕ
0 fi−1(ϕ) dϕ

)

dϕ

,

where we have now invoked the third and last boundary condition from Eq. (L.7), that being
f(0) = 0. Consequently, we find

(L.10) fi(ϕ) =

∫ ϕ
0

[
∫ ϕ
0 exp

(

−
1

2

∫ ϕ
0 fi−1(ϕ) dϕ

)

dϕ

]

dϕ

∫∞
0 exp

(

−
1

2

∫ ϕ
0 fi−1(ϕ) dϕ

)

dϕ

·

Eqs. (L.9) and (L.10) are the Piercy–Preston integral equations that can now be used for iterating
a solution toward f(ϕ). In particular, the latter furnishes updated fi from previous fi−1.

L.4. Piercy–Preston Example: Uniform Flow Initial Profile

Conceptually speaking, the Piercy–Preston solution method now seems to be no more compli-
cated than choosing an initial profile, f1, then obtaining increasingly better functions by repeatedly
using Eq. (L.10). As is usually the case with iterative methods, convergence will be promoted to
the degree that the initial “guess” for f1 is as good as possible. In their original paper, Piercy and
Preston (1936) simply used the freestream profile itself

f1 = ϕ implying f ′
1 = 1 implying from Eq. (L.3) u = u∞ .

In a later paper, Watson and Preston (1951) showed that taking f ′
1 as an undetermined constant

instead of 1 is a better choice. It is this example we will illustrate. We show only a single iteration,
as f ′

2 will be quite close to the exact profile and because succeeding iterations will be a little too
involved, even for our considerable tolerance for minute details.

Defining κ as an undetermined constant, take f1 = κ ϕ, so that f ′
1 = κ. This implies that our

initial guess is u = κ u∞, and, for the moment, we will defer discussion of how this constant is to
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be determined. Note that the inner–most integral in Eqs. (L.9) and (L.10), i.e. the one within the
parenthesis, is the same in the numerator and denominator, that expression for i = 2 now being

∫ ϕ

0
f1 dϕ =

∫ ϕ

0
κ ϕ dϕ = κ

∫ ϕ

0
ϕ dϕ =

κ ϕ2

2

for our choice of f1. We note here that, because we intend to go no further than i = 2 on this
particular occasion, we will not actually be using Eq. (L.10). Instead, we evaluate Eq. (L.9), taking
that as the solution for the velocity profile. The form of the integrals is the same for its numerator
and denominator, though the upper limits are different. If we determine the numerator integral,
the denominator is then simply a matter of an extra evaluation. The numerator of Eq. (L.9) using
the κϕ2/2 kernel we just derived is then

∫ ϕ

0
exp

(

−
1

2

∫ ϕ

0
f1(ϕ) dϕ

)

dϕ =

∫ ϕ

0
exp

(

−
1

2
·
κ ϕ2

2

)

dϕ

=

∫ ϕ

0
e−κ ϕ2/4 dϕ

=

∫ ϕ

0
e−(

√
κ ϕ/2)2 dϕ .

We encountered a similar integral in the course of solving the Rayleigh conduction problem in
§D.3 on pp. 148. There, we mentioned that this expression is not integrable in terms of elementary
functions, but rather is a form of the so–called error function (Andrews, 1985).L.4 Like the Rayleigh
problem, our integral here will benefit from a quick change of variables to render it in the precise
form to be integrated

η =

√
κ ϕ

2
dη =

√
κ

2
dϕ ,

however, we are doing a definite integral here, rather than an indefinite one, as we did for the
Rayleigh problem. That means changing the old limits (0,ϕ) to new limits (0, η). We rewrite the
equation and execute the integration as

∫ ϕ

0
exp

(

−
1

2

∫ ϕ

0
f1(ϕ) dϕ

)

dϕ =

∫ η

0
e−η2 2√

κ
dη

=
2√
κ

√
π

2

(

2√
π

∫ √
κ ϕ/2

0
e−η2

dη

)

︸ ︷︷ ︸

erf(η)

=

√

π

κ
erf(η)

∣
∣
∣
∣

√
κ ϕ/2

0

=

√

π

κ
erf

( √
κ ϕ

2

)

,

where we made a few additional modifications in the second line so as to be able to identify the
error function, as it is defined in Eq. (D.5) on pp. 149, and where we have invoked the fact that

L.4Some useful properties of the error function are summarized in Eqs. (D.5) through (D.8) on pp. 149.
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erf(0) = 0 from Eq. (D.7) in our evaluation. As mentioned above, we also need the evaluation of
this quantity itself at ϕ→ ∞, which is the denominator of Eq. (L.9) on pp. 202. Invoking the fact
that erf(+∞) = 1 from Eq. (D.8) on pp. 149, we have

∫ ∞

0
exp

(

−
1

2

∫ ϕ

0
f1(ϕ) dϕ

)

dϕ =

√

π

κ
erf
(

∞
)

=

√

π

κ
,

so that Eq. (L.9) finally takes the form

(L.11) f ′
2(ϕ) = erf

( √
κ ϕ

2

)

·

As we mentioned above, Piercy and Preston (1936) simply took κ = 1 in their original paper,
meaning the original solution is then immediately seen to be

(L.12)
u

u∞
≈ f ′

2(ϕ) = erf
( ϕ

2

)

= erf

(
y

2

√

u∞

ν x

)

,

where we have reconstituted the similarity parameter from its definition in Eq. (L.1) on pp. 198.
However, if allowing for κ as a degree–of–freedom, some sort of additional constraint must be
invoked to determine its value. In their later work, Watson and Preston (1951) cleverly re–purposed
the Kármán–Pohlhausen integral condition in Eq. (K.3) on pp. 188 as a closure for this task. Before
using this equation, we must recall that its original derivation was based on the assumption of a
well–defined border, denoted by the length δ, between the boundary layer and the outer inviscid
region. The similarity approach recognizes no such construction, nor any other finite length scale
for that matter. It only allows for quantities defined at the plate surface, y = 0, and the freestream,
y → ∞. Consequently, in order to use the Kármán–Pohlhausen equation, one simply makes the
observation that, for all practical purposes, the boundary layer edge δ is actually at ∞, whereby
we just switch the limit.

Another relevant consideration relates to mathematical practicality. The Kármán–Pohlhausen
equation itself is integrated in y, but the argument of the error function in Eq. (L.11) is

√
κ ϕ/2.

Operations will obviously be significantly more straightforward if we could integrate directly in
terms of the latter, so we will also make a change of variables during the course of the derivation,
as well, specifically, let

η =

√
κ ϕ

2
= y

√
κ

2

√

u∞

ν x
dη =

1

2

√

κ u∞

ν x
dy η = ∞ at y = ∞ .

Given our now–accepted approximate solution u = u∞f ′
2, where f ′

2 is given by Eq. (L.11), we then
find

d

dx

∫ y=∞

y=0

(

u∞ − u
)

u dy = ν
∂u

∂y

∣
∣
∣
∣
y=0

d

dx

∫ η=∞

η=0

[

u∞ − u∞ erf(η)
]

u∞ erf(η)

[

2

√
ν x

κ u∞
dη

]

= ν
∂

∂y

[

u∞ erf

(
y

2

√

κ u∞

ν x

)]∣
∣
∣
∣
y=0

2 u2
∞

√
ν

κ u∞
·

d

dx

(√
x

∫ ∞

0

[

1 − erf(η)
]

erf(η) dη
︸ ︷︷ ︸

Eq. (M.8) on pp. 217

)

= ν u∞
∂

∂y
erf

(
y

2

√

κ u∞

ν x

)∣
∣
∣
∣
y=0

·



L.5. COMPANION GENERAL SOLUTION FOR THE ENERGY EQUATION 205

Note that the labeled integral has an identity in the form of Eq. (M.8) on pp. 217, being equal to
(√

2 − 1
)

/
√
π . Further development indicates

2

√

u∞

κ ν

d

dx

(

√
x

√
2 − 1√
π

)

=
2√
π

exp

[

−
(

y

2

√

κ u∞

ν x

)2
]

1

2

√

κ u∞

ν x

∣
∣
∣
∣
∣
y=0

2

√

u∞

κ ν

√
2 − 1√
π

d

dx

(√
x
)

=
1√
π

√

κ u∞

ν x
e−02

︸︷︷︸

1

2

√

1

κ

(√
2 − 1

) 1

2

√

1

x
=

√

κ

x

1√
κ

(√
2 − 1

)

=
√
κ

√
2 − 1 = κ ,

so that the general form of the Watson and Preston (1951) solution in Eq. (L.11) takes the exact
form

(L.13)
u

u∞
≈ f ′

2(ϕ) = erf

( √√
2 − 1 ϕ

2

)

= erf

( √√
2 − 1 y

2

√

u∞

ν x

)

where we have again reconstituted the similarity parameter from its definition in Eq. (L.1) on
pp. 198 as we likewise did in Eq. (L.12).

Note that the vertical velocity component, v, is not yet resolved in the treatment we have given
here. Recall that v is defined in the context of the stream function, Eq. (L.2) on pp. 198, which
takes the particular form given by Eq. (L.4) on pp. 199. In other words, resolving v still requires
that must obtain f2 from f ′

2, i.e. by applying the second Piercy–Preston integral in Eq. (L.10) on
pp. 202. We will defer this step to the next section because it is a by–product of the determination
of f for solving the energy equation.

L.5. Companion General Solution for the Energy Equation

In the “constant property” form of the boundary layer equations, Eqs. (9.1) through (9.3) on
pp. 118, the flow problem, which consists of the conservation of mass and momentum equations,
can be solved separately from the energy equation. This has now been completed. It only remains
for the energy equation, Eq. (9.3), to be resolved. Importantly, this equation is linear because u
and v are now known. There are 2 steps in framing the solution. First, we recognize that T (x, y)
can be written in terms of the similarity variable itself,L.5 i.e. as T (ϕ). This development is often

L.5We have actually already used this observation, stated at the beginning of §K.3 on pp. 189, when we observed
that T (x, y) could be recast in form that depended upon only a single variable that somehow combined x and y. In
that instance, we wrote T (y/δ), where δ = δ(x) was the yet–to–be–determined boundary layer growth law. Here,
T = T (ϕ), where ϕ is the already–known similarity parameter in Eq. (L.1) on pp. 198. We also used this same type
of observation in the Rayleigh problem, specifically in §D.2 on pp. 147, although we did not actually call this issue
out.
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presented in a dimensionless form (e.g. Bejan, 1984) and we will follow suit here, i.e. reverting
briefly to the “starred” notation (∗) to define the usual formL.6

(L.14) T ∗ =
T − TS

T∞ − TS
,

but where we will drop the “star” notation and subsequently take T itself as the dimensionless
temperature. The second step is to substitute the various similarity–related quantities into the
energy equation, including the forms for u and v in Eqs. (L.3) and (L.4), respectively, on pp. 199
and the partial derivatives defined from Chain–ruling the similarity parameter on pp. 198. We find

T still dimensional u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
,

(

u∞ f ′ )

︸ ︷︷ ︸

u

(

−
ϕ (T∞ − TS)

2 x

dT

dϕ

)

︸ ︷︷ ︸

∂T/∂x

+ T now dimensionless

(

−
1

2

√

u∞ ν

x

(

f − ϕ f ′
)
)

︸ ︷︷ ︸

v

(

(T∞ − TS)

√

u∞

ν x

dT

dϕ

)

︸ ︷︷ ︸

∂T/∂y

= α

(
u∞ (T∞ − TS)

ν x

d2T

dϕ2

)

︸ ︷︷ ︸

∂2T/∂y2

−
ϕ

2
f ′ dT

dϕ
−

1

2

(

f − ϕ f ′
) dT

dϕ
=

α

ν

d2T

dϕ2

−
f

2

dT

dϕ
=

1

Pr

d2T

dϕ2

d2T

dϕ2
+

f · Pr

2

dT

dϕ
= 0 ,

where again we presume to know f from the momentum problem.
This equation is very similar to the Piercy–Preston split version of the momentum ODE dis-

cussed in §L.3 and it can be solved in precisely the same fashion. In particular, let

y1 =
dT

dϕ
,

whereby we are able to write the above statement in a more appropriate form as

dy1

dϕ
= −

Pr

2
f(ϕ) y1 .

Once again, we see an equation that is clearly separable, whereby it can be integrated directly.
This process follows the Piercy–Preston method in §L.3 essentially verbatim. We find

L.6This was the dimensionless form used for the Kármán–Pohlhausen method, as well, c.f. Eq. (K.7) on pp. 191.
Here again, T∞ and TS are both prescribed constants.
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∫ y1(ϕ)

y1(0)

dy1

y1
= −

Pr

2

∫ ϕ

0
f(ϕ) dϕ

ln (y1)
∣
∣
∣

y1(ϕ)

y1(0)
= ln

[

y1(ϕ)
]

− ln
[

y1(0)
]

︸ ︷︷ ︸

set to C1

=

ln
[

y1(ϕ)
]

= −
Pr

2

∫ ϕ

0
f(ϕ) dϕ + C1

y1(ϕ) = exp

(

−
Pr

2

∫ ϕ

0
f(ϕ) dϕ + C1

)

= exp

(

−
Pr

2

∫ ϕ

0
f(ϕ) dϕ

)

· exp
(

C1
)

dT

dϕ
= C ′

1 exp

(

−
Pr

2

∫ ϕ

0
f(ϕ) dϕ

)

,

where we have observed that C1 = ln
[

y1(0)
]

is a yet–to–be–determined constant, given that the
function is evaluated at ϕ = 0 and where we have also replaced y1 with its equivalent derivative
term. This equation is once again separable and therefore again directly integrable

∫ T (ϕ)

T (0)
dT =

∫ ϕ

0
C ′

1 exp

(

−
Pr

2

∫ ϕ

0
f(ϕ) dϕ

)

dϕ

T (ϕ) = C ′
1

∫ ϕ

0
exp

(

−
Pr

2

∫ ϕ

0
f(ϕ) dϕ

)

dϕ + '''(0
T (0) .

Note that we moved the constant C ′
1 outside the integral. We must now evaluate both C ′

1 and T (0)
from the boundary conditions of the problem. Given our dimensionless definition of temperature
in in Eq. (L.14) and the similarity parameter in Eq. (L.1) on pp. 198, the boundary conditions of
TS at y = 0 and T∞ at y → ∞ translate to

T (0) = 0 and T (∞) = 1 .

The former is already reflected above and C ′
1 is determined from the latter, for which a little

deduction then implies the solution

(L.15) T (ϕ) =

∫ ϕ
0 exp

(

−
Pr

2

∫ ϕ
0 f(ϕ) dϕ

)

dϕ

∫∞
0 exp

(

−
Pr

2

∫ ϕ
0 f(ϕ) dϕ

)

dϕ

·

Eq. (L.15) describes the determination of T once a solution for the momentum problem in the form
of f is in–hand.

Of course, the Nusselt number is also a direct consequence of this equation, although it takes
a little bit more development to find it. In light of the fact that no–slip holds at the plate surface,
conduction and convection are equal at y → 0+, c.f. Eq. (7.22) on pp. 92, so that this holds as well
for ϕ → 0+ in light of our similarity parameter definition in Eq. (L.1) on pp. 198. Here, it is a



L.6. COMPLETION OF PIERCY–PRESTON EXAMPLE FOR HEAT TRANSFER 208

little awkward that we have dropped the “starred” notation (∗), so we will be careful to note that
we can rewrite the dimensional partial derivative, ∂T/∂y, in terms of the dimensionless derivative,
itself given in terms of the similarity parameter, dT/dϕ, defined from Chain–ruling the similarity
parameter on pp. 198. Conversion between dimensionless and dimensional temperature is defined
in Eq. (L.14) on pp. 206.

Taking all these factors into consideration, our statement of conduction–convection equivalence
at the plate surface takes the form

T still dimensional −k
∂T

∂y

∣
∣
∣
∣
y=0

= h
(

TS − T∞
)

T now dimensionless − k
(

T∞ − TS
)
√

u∞

ν x

dT

dϕ

∣
∣
∣
∣
ϕ=0

= h
(

TS − T∞
)

multiply each side by x

√

u∞

ν x
x

dT

dϕ

∣
∣
∣
∣
ϕ=0

=
h

k
x

√

Rex
dT

dϕ

∣
∣
∣
∣
ϕ=0

= Nux ,(L.16)

where we have used the fact that Rex = u∞x/ν. It therefore seems that obtaining the Nusselt
number for any solution method based on the similarity approach reduces to the task of using
Eq. (L.15) to evaluate

(L.17)
dT

dϕ

∣
∣
∣
∣
ϕ=0

=

exp

(

−
Pr

2

∫ 0
0 f(ϕ) dϕ

)

∫∞
0 exp

(

−
Pr

2

∫ ϕ
0 f(ϕ) dϕ

)

dϕ

=

[ ∫ ∞

0
exp

(

−
Pr

2

∫ ϕ

0
f(ϕ) dϕ

)

dϕ

]−1

from knowledge of f and then substituting this result into Eq. (L.16). Note that we presume at
this point to have at least f ′, having already solved for u. If having solved for v as well, we would
be slightly further in having f itself. This observation implies there are still at least 2 levels of
integration needed to arrive at the Nusselt number.

L.6. Completion of Piercy–Preston Example for Heat Transfer

Let us return to the Piercy–Preston method we have been examining for the flat plate problem.
We have developed 2 versions of the momentum profile using the iterative integration method in
the forms of Eqs. (L.12) on pp. 204 and (L.13) on pp. 205.L.7 We shall now push toward the Nusselt
number for the corresponding convection problem. Let us proceed using a general expressionL.8

f ′ = erf(C ϕ) ,

L.7These solutions are plotted in Fig. 9.2 on pp. 122 in comparison to the Kármán–Pohlhausen 3–rd order
polynomial and Blasius profiles.

L.8We remind that this expression is still only an approximation obtained from just a single Piercy–Preston
iteration.
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where C is the solution–appropriate constant for Eqs. (L.12) and (L.13). Integral Eq. (M.3) on
pp. 214 indicates that function f itself is then

∫ ϕ

0
df =

∫ ϕ

0
f ′ dϕ =

∫ ϕ

0
erf(C ϕ) dϕ =

(

ϕ erf(C ϕ) +
1√
π C

e−(C ϕ)2
)∣
∣
∣
∣

ϕ

0

=

(

ϕ erf(C ϕ) +
1√
π C

e−(C ϕ)2
)

−
(

0 · erf(0 · C) +
1√
π C

e−(0·C)2
)

f(ϕ) = ϕ erf(C ϕ) +
1√
π C

e−(C ϕ)2 −
1√
π C

·

We are now poised to execute the inner integration in Eq. (L.17), i.e.
∫ ϕ

0
f(ϕ) dϕ =

∫ ϕ

0

(

ϕ erf(C ϕ) +
1√
π C

e−(C ϕ)2 −
1√
π C

)

dϕ

=

[
ϕ2

2
erf(C ϕ) +

ϕ

2
√
π C

e−(C ϕ)2 −
1

4 C2
erf(C ϕ)

]

1√
π C

√
π

2 C
erf(C ϕ) −

ϕ√
π C

=
ϕ2

2
erf(C ϕ) +

ϕ

2
√
π C

e−(C ϕ)2 +
1

4 C2
erf(C ϕ) −

ϕ√
π C

·

where the integral of ϕ erf(C ϕ) comes directly from Eq. (M.5) on pp. 215, the integral of the
exponential is an error function, c.f. Eq. (M.1) on pp. 213, and the third term is trivial. This, in
turn, is substituted back into Eq. (L.17) to obtainL.9

(L.18)

dT

dϕ

∣
∣
∣
∣
ϕ=0

=

(
∫ ∞

0
exp

[

−
Pr

2

(

ϕ2 erf(C ϕ)

2
+

ϕ e−(C ϕ)2

2
√
π C

+
erf(C ϕ)

4 C2
−

ϕ√
π C

)]

dϕ

)−1

,

which is the final operation to be performed for quantifying Nux, according to Eq. (L.16).
As we advised previously, the mathematical difficulty tends to accelerate with successive in-

tegrations and Eq. (L.18) does not appear to be readily integrable. That is, the integrand is an
exponentiation involving various special functions. One might try to fit a curve to the exponential
argument (the term within square brackets) in the hopes of recasting into a simpler form that could
then be integrated. However, it is usual more pragmatic to simply resort to numerical integration
in cases such as these. There are two important factors here. First, floating–point arithmetic

L.9The specific forms for the two different momentum solutions in Eqs. (L.12) and (L.13), where C is, respectively,
1/2 and

√
κ /2, are

dT
dϕ

˛
˛
˛
˛
ϕ=0

=

 
Z ∞

0

exp

"

− Pr
2

 

ϕ2 erf(ϕ/2)

2
+

ϕ e−(ϕ/2)2

√
π

+ erf(ϕ/2) − 2 ϕ√
π

!#

dϕ

!−1

dT
dϕ

˛
˛
˛
˛
ϕ=0

=

 
Z ∞

0

exp

"

− Pr
2

 

ϕ2 erf(
√

κ ϕ/2)
2

+
ϕ e−(

√
κ ϕ/2)2

√
π κ

+
erf(

√
κ ϕ/2)
κ

− 2 ϕ√
π κ

!#

dϕ

!−1
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obviously cannot represent the upper limit, ∞, so we must determine a suitable, finite substitute
that does compromise accuracy. Second, we must decide which of the many standard numerical
methods to use for this operation.

The first issue is generally straightforward and it is so too in this case. It is routine to simply plot
the integrand over a wide range of the variable whose limits are in question and then to find where
an acceptable truncation of the domain for that variable can be made. Fig. L.1 shows such a plot
for the integrand of Eq. (L.18), specifically for the Watson and Preston (1951) momentum model.
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Figure L.1. The integrand of Eq. (L.18) for the Watson and Preston (1951) model

at representative values of the Prandtl number as functions of the similarity variable, ϕ.

Evidently, there is little contribution for ϕ > 10.

For the range of moderate Pr we are interested in, it seems that there is negligible contribution for
ϕ > 10. One can therefore replace the limit of ∞ in the actual integral of Eq. (L.18) with a finite
value, say 10 or 15, in the numerical model of Eq. (L.18).

The second matter is selecting a numerical algorithm. Numerical integration is a somewhat vast
topic and there is a significant literature (e.g. Hamming, 1962; Conte, 1965; Forsythe et al., 1977).
However, it appears from Fig. L.1, that, despite its mathematical complications, the function in
Eq. (L.18) is “simple” in the sense that it does not have any unusual properties that would pose
difficulty for numerical treatment.L.10 We will therefore use an algorithm known as Simpson’s
Rule, which provides a good trade–off of accuracy versus ease of implementation. The principle
of Simpson’s Rule is that it patches together quadratic approximations of the integrand over the
discretized variable of integration, finding that
∫ b

a
f(ϕ) dϕ ≈

∆ϕ

3

[

f
(

0 · ∆ϕ
)

+ 4 f
(

1 · ∆ϕ
)

+ 2 f
(

2 · ∆ϕ
)

+ 4 f
(

3 · ∆ϕ
)

+ 2 f
(

4 · ∆ϕ
)

+ · · · + 2 f
(

(m − 2) · ∆ϕ
)

+ 4 f
(

(m − 1) · ∆ϕ
)

+ f
(

m · ∆ϕ
)
]

L.10That is, it seems to be a smooth, monotonically decreasing function. Because Pr is a simple multiplicative
coefficient in Eq. (L.18), the basic nature of this curve is independent of the actual value of Pr.
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where m is the number of discrete segments that model the integration domain, having m + 1
point–values of the function, and ∆ϕ = (b − a)/m is the consequent segment size. Derivation of
the algorithm is shown in numerous reference texts, including those referenced above. Also, while
accuracy properties of this and other algorithms can be studied formally, we will take the more
usual pragmatic approach of choosing m based simply on empirical observations of convergence.
The method is not difficult to code, as shown in algorithm L.1, which can be implemented in any
suitable language.

Algorithm L.1 Simpson’s Rule for Numerical Integration of Eq. (L.18)

input values of m, ∆ϕ, Pr, and C
define function f(Pr,ϕ, C) as integrand of Eq. (L.18)
initialize the integral F = 0
for n = 0, 1, 2, 3, . . . m do

if n = 0 or n = m then
F = F + f(Pr,ϕ, C)

else
if n is odd then

F = F + 4 · f(Pr,ϕ, C)
else

F = F + 2 · f(Pr,ϕ, C)
end if

end if
end for
F = F · ∆ϕ/3
print 1/F

Note that the choices of m and ∆ϕ also imply the truncated upper–limit, m ·∆ϕ, that replaces
the true limit of ∞. Based on Fig. L.1, a value of 15 is more than sufficient. For the particular
function in Eq. (L.18) choices of 0.05 and 0.02 for ∆ϕ gave very comparable results.

Fig. L.2 then plots the integration specified by Eq. (L.18) for both the Piercy and Preston
(1936) and Watson and Preston (1951) momentum models in the range of moderate Prandtl number
0.5 ≤ Pr ≤ 20. These results are compared to the traditional “Blasius curve” (Bejan, 1984)

(L.19)
dT

dϕ

∣
∣
∣
∣
ϕ=0

= 0.332 Pr1/3 .

As with the actual momentum solution plotted in Fig. 9.2 on pp. 122, the accuracy of the Watson
and Preston (1951) model exceeds that of the Piercy and Preston (1936) result and is quite close
to the theoretical Blasius curve. Again, it is rather remarkable to obtain such good results merely
using the single–iteration momentum solutions.

Because the Nusselt number is proportional to these curves, as specified by Eq. (L.16) on pp. 208,
and because these curves evidently cannot easily be expressed in terms of elementary functions,
it is a common practice to quote results as correlations. Indeed, the Blasius curve in Eq. (L.19)
is itself just such a correlation. The presumptive model is that the results should correlate in the
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Figure L.2. Eq. (L.18) for both the Piercy and Preston (1936) and Watson and Preston

(1951) models plotted as functions of the Prandtl number. The conventional “Blasius curve”

(Bejan, 1984) is shown for comparison.

form of
dT

dϕ

∣
∣
∣
∣
ϕ=0

= a Prb ,

where a and b are yet–to–be–determined constants. Here, it is much more convenient to transform
this model into a form for which the numerical technique of linear regression can be used to
determine the constants.L.11 Taking the log, we find

(L.20) ln

(

dT

dϕ

∣
∣
∣
∣
ϕ=0

)

= ln
(

a
)

+ b ln
(

Pr
)

,

which is in the form of a line equation, i.e. one that looks like “y = n x + c”, where b is the “slope”
and ln

(

a
)

is the “y–intercept”. Thus, it is the logs of the data points that are actually regressed,
whereby b is determined directly, while a is the exponentiation of the “y–intercept”. From the
results in Fig. L.2, we find

dT

dϕ

∣
∣
∣
∣
ϕ=0

= 0.383 Pr0.348 Piercy and Preston (1936)(L.21)

dT

dϕ

∣
∣
∣
∣
ϕ=0

= 0.339 Pr0.342 Watson and Preston (1951) .(L.22)

The correlation coefficients for both models are extremely high, > 0.9998 and > 0.9999, respectively,
indicating that the basic presumptive model is very good.

L.11Like numerical integration, regression techniques have a large literature base. We do not discuss the technique
here at all, see e.g. Hamming (1962); Conte (1965); Forsythe et al. (1977). Neither do we give an algorithm for it
because, aside from the transform in Eq. (L.20), there are no special circumstances for applying regression to this
problem and most modern programming languages have native functionality or optional libraries that implement
regression directly.



APPENDIX M

Some Useful Non–Standard Integrals

Many different integrals are required in the course of developing the theories of conduc-
tion and convection heat transfer. A large subset of these involve elementary functions and

are consequently to be found in standard handbooks (e.g. Gradshteyn and Ryzhik, 1980; Beyer,
1984), c.f. those in footnotes B.5 on pp. 137 and B.6 on pp. 138. Others are apparently not suffi-
ciently common to appear in such sources, but are nevertheless important in problems related to
heat transfer. Though these cases usually involve so–called “special function” (Andrews, 1985), in-
tegrals can usually be derived using the standard techniques, especially integration by parts (IBP),
if sufficient care is taken. Recall, IBP is defined as

∫

ξ1 dξ2 =
(

ξ1 ξ2
)
∣
∣
∣ −

∫

ξ2 dξ1

Evaluation of the results over given limits is also sometimes non–trivial and we examine cases as
they are relevant to the problems discussed herein.

M.1. Integrals of the Error Function

The Piercy–Preston example developed in §L.4 starting on pp. 202 uses several different integrals
involving the error function, erf. Here, we develop anti–derivatives and definite integrals, as cases
in the text may require. We note that some properties of erf are listed in Eqs. (D.5) through (D.8)
on pp. 149.

M.1.1. Pre–Cursor of the Error Function. The exponential function that integrates to
the error function is found widely in the literature. We only include it here for completeness. If C
is a constant, then the change–of–variables method shows

∫ ϕ

0
e−(C η)2 dη =

∫ C ϕ

0
e−χ2 1

C
dχ =

1

C

√
π

2

(
2√
π

∫ C ϕ

0
e−χ2

dχ

)

=

√
π

2 C
erf(χ)

∣
∣
∣
∣

C ϕ

0

=

√
π

2 C
erf(C ϕ) .(M.1)

M.1.2. Error Function. The integral of erf itself can be derived using IBP by defining

ξ1 = erf(η) dξ2 = dη

dξ1 =
2√
π

e−η2
dη ξ2 = η ,

213
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from which we find
∫

erf(η) dη = η erf(η) −
∫

2√
π

η e−η2
dη

= η erf(η) +
1√
π

e−η2
(M.2)

If there is an accompanying constant, C, in the argument then

ξ1 = erf(C η) dξ2 = dη

dξ1 =
2√
π

e−(C η)2 C dη ξ2 = η ,

from which we find
∫

erf(C η) dη = η erf(C η) −
∫

2√
π

η e−(C η)2 C dη

= η erf(C η) +
1√
π C

e−(C η)2(M.3)

M.1.3. Function: erf 2(C η). The integral of the square of erf requires 2 rounds of IBP. For
the first round, take

ξ1 = erf 2(η) dξ2 = dη

dξ1 = 2 erf(η)
2√
π

e−η2
dη ξ2 = η ,

where dξ1 can be thought of in the context of executing the derivative of some function f2 to get
2 · f · df/dξ. From this, we find

∫

erf 2(η) dη = η erf 2(η) −
∫

η · 2 erf(η) ·
2√
π

e−η2
dη

= η erf 2(η) −
4√
π

∫

η e−η2
erf(η) dη ,

which now requires an additional step of IBP for the second term. Now take

ξ1 = erf(η) dξ2 = η e−η2
dη

dξ1 =
2√
π

e−η2
dη ξ2 = −

1

2
e−η2

,

so that we can proceed as
∫

erf 2(η) dη = η erf 2(η) −
4√
π

[

−
1

2
e−η2

erf(η) +

∫
1

2
e−η2

·
2√
π

e−η2
dη

]

= η erf 2(η) +
2√
π

e−η2
erf(η) −

4

π

∫

e−2 η2
dη .
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The last integral is another form of the error function, which we can resolve by a quick change of
variables ξ =

√
2 η and dξ =

√
2 dη, so that

∫

e−(
√

2 η)2 dη =

∫

e−ξ2
·

1√
2

dξ =
1√
2

√
π

2

(
2√
π

∫

e−ξ2
dξ

)

=

√
π

2
√

2
erf(ξ) ,

which can be substituted back into the desired expression to find

∫

erf 2(η) dη = η erf 2(η) +
2√
π

e−η2
erf(η) −

4

π
·

√
π

2
√

2
erf
(√

2 η
)

= η erf 2(η) +
2√
π

e−η2
erf(η) −

2√
2 π

erf
(√

2 η
)

.(M.4)

M.1.4. Function: η erf(C η). If C is a constant, then the integral of η erf(C η) is derived,
as follows. Define

ξ1 = erf(C η) dξ2 = η dη

dξ1 =
2√
π

e−(C η)2 C dη ξ2 =
η2

2
,

from which a first pass of IBP yields

∫ ϕ

0
η erf(C η) dη =

(
η2

2
erf(C η)

)∣
∣
∣
∣

ϕ

0

−
C√
π

∫ ϕ

0
η2 e−(C η)2 dη ,

but this form still requires another round of IBP. We set

ξ1 = η dξ2 = η e−(C η)2 dη

dξ1 = dη ξ2 = −
1

2 C2
e−(C η)2 ,

from which

∫ ϕ

0
η erf(C η) dη =

ϕ2

2
erf(C ϕ) −

C√
π

[
(

−
η

2 C2
e−(C η)2

)∣
∣
∣

ϕ

0
+

∫ ϕ

0

1

2 C2
e−(C η)2 dη

]

=
ϕ2

2
erf(C ϕ) +

ϕ

2
√
π C

e−(C ϕ)2 −
C√
π

1

2 C2

∫ ϕ

0
e−(C η)2 dη

=
ϕ2

2
erf(C ϕ) +

ϕ

2
√
π C

e−(C ϕ)2 −
1

2
√
π C

√
π

2 C
erf(C ϕ)

=
ϕ2

2
erf(C ϕ) +

ϕ

2
√
π C

e−(C ϕ)2 −
1

4 C2
erf(C ϕ) ,(M.5)

where we used Eq. (M.1) directly for the last integral.
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M.1.5. Function:
[

1 − erf(η)
]

erf(η). The integral
∫ [

1 − erf(η)
]

erf(η) dη is readily con-
structed by using Eqs. (M.2) and (M.4) directly, i.e.

∫
[

erf(η) − erf 2(η)
]

dη = η erf(η) +
1√
π

e−η2

−
[

η erf 2(η) +
2√
π

e−η2
erf(η) −

2√
2 π

erf
(√

2 η
)
]

= η erf(η)
[

1 − erf(η)
]

+
1√
π

e−η2
[

1 − 2 erf(η)
]

+
2√
2 π

erf
(√

2 η
)

(M.6)

M.2. Evaluations for Indeterminate Cases

The Piercy–Preston example developed in §L.4 starting on pp. 202 depends upon evaluating
Eq. (M.6) over limits of (0,∞). This seems to be straightforward for the second and third terms,
while the first is clearly indeterminate. Specifically, since erf(+∞) = 1, according to Eq. (D.8)
on pp. 149, the product η

[

1 − erf(η)
]

gives the appearance of ∞ · 0. The plot in Fig. D.1 on
pp. 150 suggests that

[

1− erf(η)
]

→ 0 much faster than η grows, but let us demonstrate rigorously
that this term does indeed vanish using L’Hospital’s Rule. To form a ratio, let us take η into the
denominator. Then, following the procedure of differentiating both numerator and denominator,
we find

lim
η→∞

η
[

1 − erf(η)
]

=

d

dη

[

1 − erf(η)
]

d

dη

[

η−1
] =

0 −
2√
π

e−η2

− η−2
=

2√
π

η2

eη2 ,

which, although again very suggestive, is not yet conclusive. Omitting the leading constant, one
more round of L’Hospital’s Rule shows

lim
η→∞

η
[

1 − erf(η)
]

=

d

dη

(

η2
)

d

dη

(

eη2
) =

2 η

2 η eη2 = e−η2
,

which clearly vanishes as η → ∞, consequently

(M.7) lim
η→∞

η
[

1 − erf(η)
]

= 0 .
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We can now evaluate Eq. (M.6) over limits of (0,∞) as
∫ ∞

0

[

erf(η) − erf 2(η)
]

dη =

(

∞ · erf(∞)
[

1 − erf(∞)
]

︸ ︷︷ ︸

0 by Eq. (M.7)

+
1√
π

e−∞2

︸ ︷︷ ︸

0

[

1 − 2 · erf(∞)
]

+

2√
2 π

erf
(√

2 ·∞
)
)

−
(

0 · erf(0)
[

1 − erf(0)
]

︸ ︷︷ ︸

0

+

1√
π

e−02

︸︷︷︸

1

[

1 − 2 · erf(0)
︸ ︷︷ ︸

0

]

+
2√
2 π

erf
(√

2 · 0
)

︸ ︷︷ ︸

0

)

=
2√
2 π

−
1√
π

=

√
2 − 1√
π

·(M.8)
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S. Flügge, editor, Handbuch der Physik , volume VIII/2 (Springer–Verlag, Berlin, 1963).

Beyer, W. H., CRC Standard Mathematical Tables (CRC Press, Boca Raton FL, 1984), 27th
edition.

Blasius, H. (1908). Grenzschichten in Flüssigkeiten mit kleiner Reibung (translated as “Boundary
layers in fluids with little friction” National Advisory Committee for Aeronautics Technical
Memorandum #1256, 1950). Zeitscrift für angewandte Mathematik und Physik , 56, 1–37.

Boyce, W. E. and DiPrima, R. C., Elementary Differential Equations and Boundary Value
Problems (John Wiley & Sons, New York NY, 1977), 3rd edition.

Burmeister, L. C., Convective Heat Transfer (John Wiley & Sons, New York NY, 1983).

221



Bibliography 222

Carrier, G. F. and Pearson, C. E., Partial Differential Equations: Theory and Technique
(Academic Press, New York NY, 1976).

Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids (Clarendon Press, Oxford,
1959), 2nd edition.

Combellack, W. J., Introduction to Elementary Functions (John Wiley & Sons, New York NY,
1962).

Conte, S. D., Elementary Numerical Analysis (McGraw–Hill, New York NY, 1965).

Cotta, R. M., Integral Transforms in Computational Heat and Fluid Flow (CRC Press, Boca
Raton, 1993).

Courant, R., Differential and Integral Calculus, Volume II (Interscience, New York NY, 1937).

Courant, R. and John, F., Introduction to Calculus and Analysis (John Wiley & Sons, New
York NY, 1965).

Currie, I. G., Fundamentals Mechanics of Fluids (McGraw–Hill, New York NY, 1993).

Dettman, J. W., Mathematical Methods in Physics and Engineering (McGraw–Hill, New York
NY, 1962).

Dickson, D. (2000). Mathematicians chase the seven million dollar proofs. Nature, 405, 383.

Doetsch, G. (1936). Integration von Differentialgleichungen vermittels der endlichen Fourier–
Transformation. Mathematische Annalen, 112, 52–68.

Eckert, E. R. G. (1981). Pioneering contributions to our knowledge of convective heat transfer.
Journal of Heat Transfer , 103, 409–414.

Eckert, M., The Dawn of Fluid Dynamics (Wiley–VCH, Weinheim, Federal Republic of Germany,
2006).

Eves, H., Elementary Matrix Theory (Allyn and Bacon, Boston, 1966).

Falkner, V. M. and Skan, S. W. (1931). Some approximate solution of the boundary–layer
equations. Philosophical Magazine (Series VII), 12, 865–896.

Feller, W., An Introduction to Probability Theory and Its Applications, volume 1 (John Wiley
& Sons, New York NY, 1968), 3rd edition.

Fontolliet, P. G., Telecommunication Systems (Artech House, Dedham MA, 1986).

Forsythe, G. E., Malcolm, M. A., and Moler, C. B., Computer Methods for Mathematical
Computations (Prentice Hall, Englewood Cliffs NJ, 1977).



Bibliography 223

Fry, T. C., Industrial mathematics. In W. L. Schaaf, editor, Mathematics: Our Great Heritage
(Harper and Brothers, New York NY, 1948).

Goldstein, S. (1969). Fluid mechanics in the first half of this century. Annual Review of Fluid
Mechanics, 1, 1–28.

Gradshteyn, I. S. and Ryzhik, I. M., Tables of Integrals, Series, and Products (Academic
Press, New York NY, 1980), 4th edition.

Gray, A., Mathews, G. B., and MacRobert, T. M., A Treatise on Bessel Functions and
their Applications to Physics (Macmillan, London, 1952).

Hahn, H., Infinity. In J. R. Newman, editor, The World of Mathematics (Simon & Schuster, New
York NY, 1956).

Hamming, R. W., Numerical Methods for Scientists and Engineers (McGraw–Hill, New York NY,
1962).

Hansen, A. G., Generalized similarity analysis of partial differential equations. In W. F. Ames,
editor, Nonlinear Partial Differential Equations (Academic Press, New York NY, 1967).

Hellwig, G., Partial Differential Equations (Blaisdell Publishing, New York NY, 1964).

Hildebrand, F. B., Advanced Calculus for Applications (Prentice Hall, Englewood Cliffs NJ,
1976), 2nd edition.

Holman, J. P., Heat Transfer (McGraw–Hill, New York NY, 2010), 10th edition.

Howarth, L. (1938). On the solution of the laminar boundary layer equations. Proceedings of the
Royal Society of London Series A, 164, 547–579.

Incropera, F. P. and Dewitt, D. P., Fundamentals of Heat and Mass Transfer (John Wiley
& Sons, New York NY, 2002), 5th edition.

Joseph, D. D. (1964). Variable viscosity effects on the flow and stability of flow in channels and
pipes. Physics of Fluids, 7, 1761–1771.

Joseph, D. D. (1965). Stability of frictionally–heated flow. Physics of Fluids, 8, 2195–2200.

Kays, W. M. and Crawford, M. E., Convective Heat and Mass Transfer (McGraw–Hill, New
York NY, 1980), 2nd edition.

Kreyszig, E., Advanced Engineering Mathematics (John Wiley & Sons, New York NY, 1993), 7th
edition.

Mach, E., The economy of science. In J. R. Newman, editor, The World of Mathematics (Simon
& Schuster, New York NY, 1956).



Bibliography 224

Martin, W. T. and Reissner, E., Elementary Differential Equations (Addison–Wesley Publish-
ing Co., Cambridge MA, 1956).

McAdams, W. H., Heat Transmission (McGraw–Hill, New York NY, 1942), 2nd edition.

Mikhailov, M. D. (1968). Generalized finite integral transform. Inzhenerno–Fizicheskii Zhurnal
(Journal of Engineering Physics), 14, 436–438.

Mills, A. F., Heat Transfer (Prentice Hall, Upper Saddle River NJ, 1999), 2nd edition.

Moon, P. and Spencer, D. E., Field Theory Handbook (Springer–Verlag, Berlin, 1961).

Munson, B. R., Young, D. F., and Okiishi, T. H., Fundamentals of Fluid Mechanics (John
Wiley & Sons, New York NY, 2006), 5th edition.

Narasimhan, T. N. (1999). Fourier’s heat conduction equation: History, influence, and connec-
tions. Reviews of Geophysics, 37, 151–172.

Nayfeh, A. H., Perturbation Methods (Wiley–VCH, Weinheim, Federal Republic of Germany,
2004).

Nelson, A. L., Folley, K. W., and Coral, M., Differential Equations (D. C. Heath & Co.,
Boston MA, 1960).
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heat generation, ix, 11, 68
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Laplacian operator, 76
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Simpson’s Rule for numerical integration, 210–211
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Poisson equation, 101
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stream function, 198

Sturm–Liouville theory, 136
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temperature, 1
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gradient, 9

thermal
conductivity, ix, 8, 9, 54, 84, 183
diffusivity, ix, 9, 30, 32, 65, 91

time constant, 29
transitive property of equality, 50
trigonometric functions

angle-difference formula, 49, 164
hyperbolic, see also hyperbolic trig functions

turbulent flow, 90, 95

velocity, 3
viscosity, ix, 84
viscous stress tensor, 84
volumetric heat capacity, 9


