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Introduction 
 Syntax – the form of the expressions, statements, and program units 
 Semantics - the meaning of the expressions, statements, and program units. 

Ex: 
 while (<Boolean_expr>)<statement> 

 The semantics of this statement form is that when the current value of the Boolean 
expression is true, the embedded statement is executed. 

 The form of a statement should strongly suggest what the statement is meant to 
accomplish. 

 

The General Problem of Describing Syntax 
 A sentence or “statement” is a string of characters over some alphabet.  The syntax rules of 

a language specify which strings of characters from the language’s alphabet are in the 
language. 

 A language is a set of sentences. 
 A lexeme is the lowest level syntactic unit of a language.  It includes identifiers, literals, 

operators, and special word. (e.g. *, sum, begin)  A program is strings of lexemes.  
 A token is a category of lexemes (e.g., identifier.)  An identifier is a token that have 

lexemes, or instances, such as sum and total. 
 Ex: 

index = 2 * count + 17; 
 
Lexemes  Tokens 
index  identifier 
=   equal_sign 
2 int_literal 
*   mult_op 
count  identifier 
+   plus_op 
17 int_literal 
;   semicolon 

 



Language Recognizers and Generators 
 In general, language can be formally defined in two distinct ways: by recognition and by 

generation. 
 Language Recognizers:  

o A recognition device reads input strings of the language and decides whether the 
input strings belong to the language. 

o It only determines whether given programs are in the language. 
o Example: syntax analyzer part of a compiler. The syntax analyzer, also known as 

parsers, determines whether the given programs are syntactically correct.  
 Language Generators: 

o  A device that generates sentences of a language 
o One can determine if the syntax of a particular sentence is correct by comparing it to 

the structure of the generator 
 

 



Formal Methods of Describing Syntax 
 The formal language generation mechanisms are usually called grammars 
 Grammars are commonly used to describe the syntax of programming languages. 

Backus-Naur Form and Context-Free Grammars 
 It is a syntax description formalism that became the most widely used method for 

programming language syntax. 
 

Context-free Grammars 
– Developed by Noam Chomsky in the mid-1950s who described four classes of generative 

devices or grammars that define four classes of languages. 
– Context-free and regular grammars are useful for describing the syntax of programming 

languages. 
– Tokens of programming languages can be described by regular grammars. 
– Whole programming languages can be described by context-free grammars. 

 
Backus-Naur Form (1959) 
– Invented by John Backus to describe ALGOL 58 syntax. 
– BNF (Backus-Naur Form) is equivalent to context-free grammars used for describing 

syntax. 
 
Fundamentals 
– A metalanguage is a language used to describe another language “Ex: BNF.” 
– In BNF, abstractions are used to represent classes of syntactic structures--they act like  

syntactic variables (also called nonterminal symbols) 
 
<assign> →  <var> = <expression> 

 
– This is a rule; it describes the structure of an assignment statement 
– A rule has a left-hand side (LHS) “The abstraction being defined” and a right-hand side 

(RHS) “consists of some mixture of tokens, lexemes and references to other 
abstractions”, and consists of terminal and nonterminal symbols. 

– Example: 
 

total = sub1 + sub2 
 

– A grammar is a finite nonempty set of rules and the abstractions are called nonterminal 
symbols, or simply nonterminals. 

– The lexemes and tokens of the rules are called terminal symbols or terminals. 
– A BNF description, or grammar, is simply a collection of rules. 
– An abstraction (or nonterminal symbol) can have more than one RHS 
 

<stmt> → <single_stmt>  
| begin <stmt_list> end 
 



– Multiple definitions can be written as a single rule, with the different definitions 
separated by the symbol |, meaning logical OR. 

 
Describing Lists 
 
• Syntactic lists are described using recursion. 
 
    <ident_list> → ident 
                     | ident, <ident_list> 
 
• A rule is recursive if its LHS appears in its RHS. 
 
Grammars and derivations 
 
• The sentences of the language are generated through a sequence of applications of the 

rules, beginning with a special nonterminal of the grammar called the start symbol. 
• A derivation is a repeated application of rules, starting with the start symbol and ending 

with a sentence (all terminal symbols) 
• An example grammar: 
 
    <program> → <stmts> 

<stmts> → <stmt> | <stmt> ; <stmts> 
<stmt> → <var> = <expr> 
<var> → a | b | c | d 
<expr> → <term> + <term> | <term> - <term> 
<term> → <var> | const 
 

• An example derivation for a simple statement a = b + const 
 

<program>  => <stmts> => <stmt>  
                      => <var> = <expr>  

=> a = <expr>  
                      => a = <term> + <term> 
                      => a = <var> + <term>  
                      => a = b + <term> 
                      => a = b + const 
 

• Every string of symbols in the derivation, including <program>, is a sentential form. 
• A sentence is a sentential form that has only terminal symbols. 
• A leftmost derivation is one in which the leftmost nonterminal in each sentential form is 

the one that is expanded.  The derivation continues until the sentential form contains no 
nonterminals. 

• A derivation may be neither leftmost nor rightmost. 
 



Parse Trees 
 
• Hierarchical structures of the language are called parse trees. 
• A parse tree for the simple statement A = B + const 

 

 
Ambiguity 
• A grammar is ambiguous if it generates a sentential form that has two or more distinct 

parse trees. 
• Ex: Two distinct parse trees for the same sentence, const – const / const 

 
<expr> → <expr> <op> <expr>  |  const 
<op> → /  |  - 
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• Ex: Two distinct parse trees for the same sentence, A = B + A * C 
 

<assign>  <id> = <expr> 
<id>        A | B | C 
<expr>     <expr> + <expr> 
     | <expr> * <expr> 
     | (<expr>) 
         | <id> 
 

 

 
 
Operator Precedence 
• The fact that an operator in an arithmetic expression is generated lower in the parse tree 

can be used to indicate that it has higher precedence over an operator produced higher 
up in the tree. 

• In the left parsed tree above, one can conclude that the * operator has precedence over the 
+ operator.  How about the tree on the right hand side? 



• An unambiguous Grammar for Expressions 
 

<assign>  <id> = <expr> 
<id>        A | B | C 
<expr>     <expr> + <term> 
     | <term> 
<term>    <term> * <factor> 
     | <factor> 
<factor>  (<expr>) 

         | <id> 
 

• Leftmost derivation of the sentence A = B + C * A 
<assing>  => <id> => <expr>  
          => A = <expr>  

=> A = <expr> + <term>  
                      => A = <term> + <term> 
                      => A = <factor> + <term>  
                      => A = <id> + <term>  
                      => A = B + <term> 
                      => A = B + <term> * <factor> 
                      => A = B + <factor> * <factor> 
                      => A = B + <id> * <factor> 
                      => A = B + C * <factor> 
                      => A = B + C * <id> 
                      => A = B + C * A 

 
A parse tree for the simple statement, A = B + C * A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



• Rightmost derivation of the sentence A = B + C * A 
<assing>  => <id> => <expr>  

=> <id> = <expr> + <term>  
=> <id> = <expr> + <term> * <factor> 
=> <id> = <expr> + <term> * <id> 
=> <id> = <expr> + <term> * A 
=> <id> = <expr> + <factor> * A 
=> <id> = <expr> + <id> * A 
=> <id> = <expr> + C * A 
=> <id> = <term> + C * A 
=> <id> = <factor> + C * A 
=> <id> = <id> + C * A 
=> <id> = B + C * A 
=> A = B + C * A 

• Both of these derivations, however, are represented by the same parse tree. 
 

 



Associativity of Operators 
 

• Do parse trees for expressions with two or more adjacent occurrences of operators with 
equal precedence have those occurrences in proper hierarchical order? 

• An example of an assignment using the previous grammar is: 
 
A = B + C + A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Figure above shows the left + operator lower than the right + operator.  This is the correct 
order if + operator meant to be left associative, which is typical. 

• When a grammar rule has LHS also appearing at beginning of its RHS, the rule is said to 
be left recursive. The left recursion specifies left associativity. 

• In most languages that provide it, the exponentiation operator is right associative. To 
indicate right associativity, right recursion can be used. A grammar rule is right 
recursive if the LHS appears at the right end of the RHS. Rules such as 

 
<factor>    <exp> ** <factor> 
     | <exp> 
<exp>    (<exp> ) 
     | id 

 



Extended BNF 
 
 Because of minor inconveniences in BNF, it has been extended in several ways.  EBNF 

extensions do not enhance the descriptive powers of BNF; they only increase its readability 
and writability. 

 Optional parts are placed in brackets ([ ]) 
 
     <proc_call> -> ident [ ( <expr_list>)] 
 
 Put alternative parts of RHSs in parentheses and separate them with vertical bars (|, OR 

operator)  
 
     <term> -> <term> (+ | -) const 
 
 Put repetitions (0 or more) in braces ({ }) 

 
     <ident> -> letter {letter | digit} 
 
BNF: 

 <expr>  →  <expr> + <term> 
|  <expr> - <term> 
|  <term> 

<term>  →  <term> * <factor> 
|  <term> / <factor> 
|  <factor> 

<factor>  →  <exp> ** <factor> 
|  <exp> 

<exp>  →  (<expr>) 
|  id 
 

 
EBNF: 

<expr>  →  <term> {(+ | -) <term>} 
<term>  →  <factor> {(* | /) <factor>} 
<factor>  →  <exp> {** <factor>} 
<exp>  →  (<expr>) 

|  id 
 



Describing the Meanings of Programs: Dynamic Semantics 
 

Axiomatic Semantics 
 
 Axiomatic Semantics was defined in conjunction with the development of a method to prove 

the correctness of programs. 
 Such correction proofs, when they can be constructed, show that a program performs the 

computation described by its specification. 
 In a proof, each statement of a program is both preceded and followed by a logical 

expression that specified constraints on program variables. 
 Approach: Define axioms or inference rules for each statement type in the language (to allow 

transformations of expressions to other expressions.) 
 The expressions are called assertions. 

 
Assertions 
 
 Axiomatic semantics is based on mathematical logic.  The logical expressions are called 

predicates, or assertions. 
 An assertion before a statement (a precondition) states the relationships and constraints 

among variables that are true at that point in execution. 
 An assertion following a statement is a postcondition. 
 A weakest precondition is the least restrictive precondition that will guarantee the 

validity of the associated postcondition. 
 
Pre-post form:  {P} statement {Q} 
 
An example:  a = b + 1  {a > 1} 
 

One possible precondition: {b > 10} 
Weakest precondition:        {b > 0} 
 

 If the weakest precondition can be computed from the given postcondition for each 
statement of a language, then correctness proofs can be constructed from programs in that 
language. 

 Program proof process: The postcondition for the whole program is the desired result.  
Work back through the program to the first statement.  If the precondition on the first 
statement is the same as the program spec, the program is correct. 

 An Axiom is a logical statement that is assumed to be true. 
 An Inference Rule is a method of inferring the truth of one assertion on the basis of the 

values of other assertions. 
 



Assignment Statements 
 
 Ex: 

 
a = b / 2 – 1 {a < 10} 
 
The weakest precondition is computed by substituting b / 2 -1 in the assertion {a < 10} as 
follows: 
 
b / 2 – 1 < 10 
b / 2 < 11 
b  < 22 
 
∴ the weakest precondition for the given assignment and the postcondition is {b < 22} 
 
 An assignment statement has a side effect if it changes some variable other than its left 

side. 
 Ex: 

 
x = 2 * y – 3 {x > 25} 
2 * y – 3 > 25 
2 * y > 28 
y > 14 
 

∴ the weakest precondition for the given assignment and the postcondition is {y > 14} 
 
 Ex: 

 
x = x + y – 3 {x > 10} 
x + y – 3 > 10 
y > 13 – x 

 
Sequences 
 
 The weakest precondition for a sequence of statements cannot be described by an axiom, 

because the precondition depends on the particular kinds of statements in the sequence. 
 In this case, the precondition can only be described with an inference rule. 
 Ex: 

 
y = 3 * x + 1; 
x = y + 3; {x < 10} 
 

 y + 3 < 10 
 y < 7 
 



 3 * x + 1 < 7 
3 * x < 6 
x < 2 
The precondition for the first assignment statement is {x < 2} 
 

Selection 
 

 Example of selection statement is 
 

If (x > 0) 
    y = y - 1; 
else y = y + 1;  
{y > 0} 
 
We can use the axiom for assignment on the then clause 
y = y - 1 {y > 0} 
This produce precondition {y – 1 > 0} or {y > 1} 
No we apply the same axiom to the else clause 
y = y + 1 {y > 0}  
This produce precondition {y + 1 > 0} or {y > -1} 
y > 1 AND y > -1 
{y > 1} 
Because {y > 1} => {y > -1}, the rule of consequence allows us to use {y > 1} for the 
precondition of selection statement. 
 

Logical Pretest Loops 
 

 Computing the weakest precondition (wp) for a while loop is inherently more difficult 
than for a sequence b/c the number of iterations can’t always be predetermined. 

 The corresponding step in the axiomatic semantics of a while loop is finding an assertion 
called a loop invariant, which is crucial to finding the weakest precondition. 

 It is helpful to treat the process of producing the wp as a function, wp. 
 To find I, we use the loop postcondition to compute preconditions for several different 

numbers of iterations of the loop body, starting with none.  If the loop body contains a 
single assignment statement, the axiom for assignment statements can be used to compute 
these cases. 
 
wp(statement, postcondition) = precondition 
 

 Ex: 
 

while y <> x do y = y + 1 end  {y = x} 
 
For 0 iterations, the wp is  {y = x} 
For 1 iteration, 

wp(y = y + 1, {y = x}) = {y + 1 = x}, or {y = x – 1} 



For 2 iterations, 
wp(y = y + 1, {y = x - 1}) = {y + 1 = x - 1}, or {y = x – 2} 

For 3 iterations, 
wp(y = y + 1, {y = x - 2}) = {y + 1 = x - 2}, or {y = x – 3} 

 
 It is now obvious that {y < x} will suffice for cases of one or more iterations.  Combining 

this with {y = x} for the 0 iterations case, we get {y <= x} which can be used for the loop 
invariant. 

 
 Ex: 

 
while s > 1 do s = s / 2 end  {s = 1} 
 
For 0 iterations, the wp is  {s = 1} 
For 1 iteration, 

wp(s > 1, {s = s / 2}) = {s / 2 = 1}, or {s = 2} 
For 2 iterations, 

wp(s > 1, {s = s / 2}) = {s / 2 = 2}, or {s = 4} 
For 3 iterations, 

wp(s > 1, {s = s / 2}) = {s / 2 = 4}, or {s = 8} 
 

 Loop Invariant I is {s is a nonnegative power of 2} 
 The loop invariant I is a weakened version of the loop postcondition, and it is also a 

precondition. 
 I must be weak enough to be satisfied prior to the beginning of the loop, but when 

combined with the loop exit condition, it must be strong enough to force the truth of 
the postcondition. 


