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2 Electrical Conduction through Molecules

1 Introduction

In recent years, several experimental groups have reported measurements of the
current-voltage (I-V) characteristics of individual or small numbers of molecules.
Even three-terminal measurements showing evidence of transistor action has
been reported using carbon nanotubes [1, 2] as well as self-assembled monolayers
of conjugated polymers. These developments have attracted much attention
from the semiconductor industry who are actively looking for ways to progress
from gigabit to terabit integration by complementing or even replacing present-
day CMOS circuitry. There is great interest therefore from an applied point of
view to model and understand the capabilities of molecular conductors. At the
same time, this is also a topic of great interest from the point of view of basic
physics. A molecule represents a quantum dot, at least an order of magnitude
smaller than semiconductor quantum dots, which allows us to study many of
the same mesoscopic and/or many-body effects at far higher temperatures.
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Figure 1: Left, wire consisting of six gold atoms forming a Quantum Point
Contact (QPC). Right, quantized conductance (I = %V)

Consider for example a gold wire stretched between two gold surfaces as
shown in Fig. 1. One of the seminal results of mesoscopic physics is that such
a wire has a quantized conductance equal to % ~TT.5 pA/V ~ (12.9kQ) 7"
This was first established using semiconductor structures [3, 4, 5] at 4 K, but
recent experiments on gold contacts have demonstrated it at room temperature
[6]. How can a wire have a resistance that is independent of its length? The
answer is that this resistance is really associated with the interfaces between
the narrow wire and the wide contacts. If there is scattering inside the wire
it would give rise to an additional resistance in series with this fundamental
interface resistance. The fact that a short wire has a resistance of 12.9 k{2 is a
non-obvious result that was not known before 1988.

What happens if we replace the gold wire with a molecular wire? Most
commonly we get I-V characteristics of the type sketched in Fig. 2. This has
been observed using many different approaches including breakjunctions [7, 8,
9, 10, 11], scanning probes [12, 13, 14, 15], nanopores [16] and a host of other
methods (see for example [17]). A number of theoretical models have been
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Figure 2: Schematic picture, showing general properties of measured current-
voltage (I-V) and conductance (G-V) characteristics for molecular wires. Solid
line, symmetrical I-V. Dashed line, asymmetrical I-V.

developed for calculating the I-V characteristics of molecular wires using semi-
empirical [15, 18, 19, 20, 21] as well as first principles [22, 23, 24, 25, 26, 27, 28|
theory.

In sections 2 and 3 we will show that the basic features of these observed
I-V characteristics are easily understood in terms of three factors: (1) Dis-
tance |E; — €p| from the Fermi energy E to the nearest molecular level €, (2)
Broadening I'y, I's of the molecular levels due to the coupling to the contacts
and (3) the charging energy U per electron. We will present simple toy models
to illustrate the role of these three factors in determining the shape of the I-V
characteristics. These observations are supported by more detailed treatments,
both semi-empirical and ab initio, but the toy models make them more obvious.
In particular there is one point that we would like to stress. It is common in the
literature to associate the conductance gap with the gap between the highest oc-
cupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) and we often see statements like “conductance measurements show a
HOMO-LUMO gap of 2.5 eV”. However, we believe that the conductance gap
is related to the distance from the Fermi energy Ef to the nearest molecular
energy level ¢g. Indeed that is what makes transistor action possible: the gate
electrode basically moves the molecular level ¢y relative to the Fermi energy
E¢. However, this also makes the conductance gap depend sensitively on the
surface conditions and can vary widely from one theoretical model to another,
depending on the specific assumptions made. Even with the same metal, the
precise location of E¢ (and hence the conduction gap) can depend sensitively
on the surface conditions as is well known from the long-standing controversies
over the location of E at metal-semiconductor interfaces. As such we believe
that more theoretical and experimental effort should be focused on establishing
the precise location of E; for different metal-molecule “hetrostructures” with
well characterized interfaces.

The general shape of the I-V characteristics of molecular conductors com-
monly resembles those shown in Fig. 2. However, what makes the field of
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molecular electronics particularly exciting is the possibility of engineering novel
molecules that exhibit all kinds of I-V characteristics beyond those shown in
Fig. 2. For example, there is evidence for special molecules that exhibit switch-
ing behavior [16] although the precise mechanism is still unclear. In section 4 we
present a rigorous transport formalism, the Non-Equilibrium Green’s Function
(NEGF) formalism, that can be used in conjunction with a suitable molecular
Hamiltonian (semi-empirical or ab initio) to investigate the I-V characteristics
of different molecules. Illustrative examples are presented in section 5 using a
Hiickel Hamiltonian and a simple charging model, but the same basic approach
can be used to combine the NEGF transport formalism with more sophisticated
ab initio approaches to electronic structure calculations as discussed in the re-
lated articles [29, 30]. The simple model described in section 5 is publicly avail-
able through the Purdue Simulation Hub (“www.nanohub.purdue.edu”) and can
be run without any need for installation. This is an improved version of the
earlier model [15] made available in 1999. Further improvements may be needed
to take into account the role of inelastic scattering or polaronic effects especially
in larger molecules like DNA chains or long polymers.

2 Molecular Conduction: Qualitative Picture

To understand the flow of current through molecules, we need three basic ingre-
dients: (1) An energy level diagram showing the molecular energy levels relative
to the Fermi energy in the metallic contacts, (2) an estimate of the broadening
of the molecular levels due to the coupling to the contacts and (3) the spatial
profile of the applied potential under bias. Let us discuss these issues one by
one.

2.1 Energy Level Diagram

The first step in understanding the current (I) vs. voltage (V) curve for a molec-
ular conductor is to draw an energy level diagram and locate the Fermi energy.
Consider first a molecule sandwiched between two metallic contacts, but with
very weak electronic coupling. We could then line up the energy levels as shown
in Fig. 3 using the metallic work function (WF) and the electronic affinity (FA)
and ionization potential (IP) of the molecule. For example, a (111) gold sur-
face has a work function of ~ 5.3 eV while the electron affinity and ionization
potential, EAy and I Py, for isolated phenyl dithiol! in the gas phase have been
reported to be ~ 2.4 eV and 8.3 eV respectively [31]. These values are associ-
ated with electron emission and injection to and from a vacuum and may need
some modification to account for the metallic contacts. For example the actual
EA, IP will possibly be modified from FAg, 1P, due to the image potential
Wi associated with the metallic contacts [32]:

EA = EAy+ Wi, (1)

LA schematic picture of this conjugated molecule is shown in Fig. 17. We will use it as an
example throughout the chapter.
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IP = IPy— Wiy, (2)
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Figure 3: Equilibrium energy level diagram for a metal-molecule-metal sandwich
for a weakly coupled molecule.

The probability of the molecule losing an electron to form a positive ion is
equal to eWF—IP)/ksT while the probability of the molecule gaining an electron
to form a negative ion is equal to eEA-WE)/ksT YWe thus expect the molecule
to remain neutral as long as both (WF — IP) and (EA — W F) are much larger
than kT, a condition that is usually satisfied for most metal-molecule combi-
nations. Since it costs too much energy to transfer one electron into or out of
the molecule, it prefers to remain neutral in equilibrium.

The picture changes qualitatively if the molecule is chemisorbed directly on
the metallic contact, see Fig. 4. Then the molecular energy levels are broadened
significantly by the strong hybridization with the delocalized metallic wave-
functions, making it possible to transfer fractional amounts of charge to or from
the molecule. Indeed there is a change in the electrostatic potential inside the
molecule due to the charge transfer and the energy levels of the molecule are
shifted by a contact potential (CP), see Fig. 4.

It is now more appropriate to describe transport in terms of the HOMO-
LUMO levels associated with incremental charge transfer [33] rather than the
affinity and ionization levels associated with integer charge transfer. Whether
the molecule-metal coupling is strong enough for this to occur depends on the
relative magnitudes of the single electron charging energy (U) and energy level
broadening (I'). As a rule of thumb, if U >> I', we can expect the structure
to be in the Coulomb Blockade (CB) regime characterized by integer charge
transfer; otherwise it is in the self-consistent field (SCF) regime characterized
by fractional charge transfer. This is basically the same criterion that one uses
for the Mott transition in periodic structures, with I' playing the role of the
hopping matrix element. It is important to note that for a structure to be in
the CB regime both contacts must be weakly coupled, since the total broadening
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Figure 4: Equilibrium energy level diagram for a metal-molecule-metal sandwich
for a molecule strongly coupled to the contacts.

I is the sum of the individual broadening due to the two contacts. Even if only
one of the contacts is coupled strongly we can expect I' ~ U thus putting
the structure in the SCF regime. See section 3.3 and Fig. 15 for a toy model
illustration of the I-V characteristics in the CB regime.

Where is the Fermi energy? The location of the Fermi energy relative to the
HOMO and LUMO levels is probably the most important factor in determining
the current (I) versus voltage (V) characteristics of molecular conductors. Usu-
ally it lies somewhere inside the HOMO-LUMO gap. To see this, we first note
that E; is located by the requirement that the number of states below the Fermi
energy must be equal to the number of electrons in the molecule. But this num-
ber need not be equal to the integer number we expect for a neutral molecule.
A molecule does not remain exactly neutral when connected to the contacts. It
can and does pick up a fractional charge depending on the work function of the
metal. However, the charge transferred (dn) for most metal-molecule combina-
tions is usually much less than one. If in were equal to +1, the Fermi energy
would lie on the LUMO while if én were -1, it would lie on the HOMO. Clearly
for values in between, it should lie somewhere in the HOMO-LUMO gap.

To estimate the amount of charge transfered it is useful to introduce the
concept of a charge neutrality level which denotes the location of the Fermi
energy for a neutral molecule (CNL) [34, 35]. We use E%; and Ex to denote
its location before and after charge transfer has taken place, see Fig. 5. We can
write:

on = D(E;— Ey) (3)
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Figure 5: Position of the charge neutrality level before (E%) and after charge
transfer (Ey) relative to the contact Fermi energy.

where U is the charging energy per electron and D is the density of states
(assumed to be constant over this energy range for simplicity). From Egs. 3, 4:

D
on = (Ef—E?V)HUD (5)

_ Ef-EY
Ef—BEx = T (6)

This simple argument shows that the amount of charge transfer is driven by
the difference (Ef — E%) between the contact Fermi energy and the neutrality
level of the molecule (before charge transfer). But if the factor UD is large, the
neutrality level will align with E after charge transfer has taken place.

A number of authors have performed detailed calculations to locate the Fermi
energy with respect to the molecular levels for a phenyl dithiol molecule sand-
wiched between gold contacts, but there is considerable disagreement. Different
theoretical groups have placed it close to the LUMO [19, 24] or to the HOMO
[15, 22]. As noted in the introduction, the density of states inside the HOMO-
LUMO gap is quite small making the precise location of the Fermi energy very
sensitive to small amounts of electron transfer, a fact that could have a signifi-
cant effect on both theory and experiment. As such it seems justifiable to treat
Ef as a “fitting parameter” within reasonable limits when trying to explain
experimental I-V curves.

2.2 Broadening by the contacts

It is evident that the strength of coupling of the molecule to the contacts is
important in determining the current flow - the stronger the coupling, the larger
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Figure 6: Energy level broadening.

the current. A useful quantitative measure of the coupling is the resulting
broadening I' of the molecular energy levels, see Fig. 6.

This broadening I' can also be related to the time 7 it takes for an electron
placed in that level to escape into the contact: I' = /i/7. One could also interpret
T'/h as the rate at which electrons are injected into the level from the contact.
In general, the broadening I" could be different for different energy levels. Also
it is convenient to define two quantities I'y and I's, one for each contact, with
the total broadening I' = T'y + I's.

2.3 Potential Profile

A very important factor in determining the I-V characteristics is the voltage
profile across the conductor. At equilibrium, the entire system has a common
Fermi energy E¢ which is equal to the electrochemical potentials p1 and o in
the two contacts. When we apply a voltage Vi, across the structure we cause
w1 and pio to split by eVopp @ i1 — p2 = eVoppr. But how are p; and po disposed
with respect to the molecular levels?

We are of course free to choose any reference for the zero of our applied
potential. For example, we could take contact 1 as our reference and write:

pm=E; o pa=Ep+eVapp (7)

But we also have to take into account the shifting of the molecular levels, which
depends on the detailed shape of the potential profile inside the molecule. To a
lowest order approximation, we could say that the molecular levels shift “rigidly”
[36] by the change in the average potential, (§Upme;(r)) inside the molecule due
to the applied bias.

Let us denote this average potential as:

(6Vmol (1)) = neVappl (8)

where the voltage division factor 7 is a number between 0 and 1. It is often
convenient to take the molecular levels as our reference, and instead shift the
chemical potentials by:

1 = E¢ —neVoppi : w2 = Ef + (1 —n)eVappi (9)
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(8 n=0: Molecular levels remain fixed with respect to contact 1.

(i) Contact 1 positive (ii) Contact 1 negative

(b) n=0.5: Molecular levels shift with respect to contact 1 by
half the applied bias.

(i) Contact 1 positive (ii) Contact 1 negative

Figure 7: Schematic energy level diagram of metal-molecule-metal structure
when contact 1 is (i) positively biased and when contact 1 is (ii) negatively
biased with respect to contact 2. (a) n = 0: Molecular energy levels remain
fixed with respect to contact 1, and (b) n = 0.5: Molecular energy levels shift
by half the applied voltage, with respect to contact 1.

It is important to note that this voltage division factor, n can have a profound
effect on the I-V characteristics. If n = 0, then the energy level diagram under
bias looks as shown in Fig. 7(a). For a positive bias applied to contact 1,
current starts to flow when, pe crosses the LUMO, while for negative bias,
current starts to flow when ps crosses the HOMO. Thus, the positive branch of
the I-V characteristics can look very different from the negative branch, since
they involve different molecular orbitals. By contrast, if n = 0.5, then the energy
level diagram under bias looks as shown in Fig. 7(b). For either bias polarity,
conduction takes place through the HOMO and the LUMO plays no role at all,
assuming that the equilibrium Fermi energy Ey is much closer to the HOMO
to start with. If Ef is much closer to the LUMO, then conduction will take
place through the LUMO and the HOMO will play no role. In either case the
I-V characteristics will look much more symmetric, since the same orbitals are
involved for either bias direction.

The voltage division factor, 7 is basically a one-parameter characterization
of the profile of the applied potential inside the molecule as illustrated in Fig. 8
with four idealized examples. To understand how these different profiles can
arise, we note that in general the actual potential profile can be written in the
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form:

§Vmot (1) = Vappi (1) + F[6p(r)] (10)

where F represents an appropriate functional of the change in the charge density,
dp within the molecule and vy (7) is the external potential due to the voltage
applied between the contacts. For low voltages (less than the conductance gap)
there is very little change in the charge density because the molecule has a very
low density of states within the gap?; consequently v (T) ~ Vappi(r), Where
Vgppl is determined from simple electrostatics by solving the Laplace equation
(e : dielectric constant):

V- (VUappi(r)) =0 (11)
€Vappl €Vappl
@ (9
n=05 n=0
0 0
€ Vappl €Vappl
(b) (d)
n=05 n=10
0 0
Contact 1 Molecule Contact 2 Contact 1 Molecule Contact 2

Figure 8: Four examples of potential profiles, illustrating the meaning of the
voltage division factor 7.

If the contact area is large compared to the length of the molecule, then we
can solve a one-dimensional Laplace equation:

2
8 Vappl

0z2

=0 (12)

which yields a linear potential profile a shown in Fig. 8(a) and n = 0.5 if the
molecule is roughly halfway between the contacts. If the molecule is highly
polarizable (large €) then the potential profile could be flat inside the molecule
(Fig. 8(b)), again with n = 0.5. In any case, the coupling to the contacts has
very little effect on dv,,, and hence on 7. But if there is significant density of
states in the molecule then it will lose or gain charge depending on the relative
coupling to the contacts and the resulting potential profile will change to (c) or
(d) depending on the relative coupling to contacts 1 and 2 (Fig. 8(c, d)). For
this reason, although n = 0.5 is appropriate at low bias the effective 1 could
change with bias as the molecule starts to conduct, as noted in Ref. [15]. In this
chapter, we will use n = 0.5 and account for charging effects explicitly with a
simple model.

2This may not be true if the contacts are very strongly coupled so that there is a significant
density of Metal-Induced-Gap States (MIGS). In this case the potential profile would be
determined by the requirement of charge neutrality. For equal coupling to the two contacts
the potential would look like Fig. 8(b) or for unequal coupling Fig. 8(c/d).
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3 Toy Models

In this section we will introduce a toy model with just one molecular energy
level e. This level could represent either the HOMO or the LUMO whichever is
believed to be closer to the equilibrium Fermi energy E¢. This simple one-level
model incorporates the essential factors described in Section 2, and leads to
realistic I-V plots that illustrate the roles played by each of these factors: (1)
location of Ey with respect to ¢, (2) broadenings I'1, I's due to the two contacts
and (3) charging energy U which affects the shift in molecular energy levels
under bias.

3.1 Discrete Level Model

A useful toy model is easily set up with one molecular level € if we neglect the
broadening and treat it as discrete. The current through the level can then
be found from a simple sequential picture, see Fig. 9. Let I'y (I'z) denote the
coupling between the left (right) contact and the level. As discussed in section
2.2, the rate at which an electron can escape into the left (right) contact is then

Iy /h (T2/h).

My
Rate
/ (e /s)\
rllh r/h
PR PR u
E— 2
N~ 7 N~ 7
Contact1 Levd Contact?2

Figure 9: Illustration of the sequential model, i.e., similar to a reservoir being
filled from one side and emptied into both sides.

If the level were in equilibrium with contact 1 then the number of electrons
N1, occupying the level would be given by:

N1 = 2(for spin) f(e, p1) (13)

while if it were in equilibrium with contact 2 the number would be:

Ny = 2(for spin) f(e, p2) (14)
where: .
fleom) = (1+€57) (15)

is the Fermi-Dirac function. Under non-equilibrium conditions the number of
electrons N will be somewhere in between IN; and Ny and we can write the net
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current at the left junction as:

and that of the right junction as:
el
IRZ#(N—NQ) (17)

Steady state requires Iy, = I so that:

Flf(67 ,U,l) + FQf(67 /“‘2)

N = 2 18
I'i+T (18)

_ g g2 Ihly _
I = I=Ip=7 T T, (f(e, ) — f(e, p2)) (19)

Given the level (e), broadening (I'y, I'2) and the electrochemical potentials
w1 and peo of the two contacts, we can solve Eq. 19 for the current I. But
we want to include charging effects in the calculations. Therefore, we add a
potential Usc = (0Umer (7)) due to the change in the number of electrons from
the equilibrium value 2f(eq, E):

Usc =U (N —2f(eo, Ey)) (20)

similar to a Hubbard model. We then let the level € float up or down by this
potential:
e =¢y+ Usc (21)

Since the potential depends on the number of electrons, we need to calculate
the potential using the self consistent procedure shown in Fig. 10.

N Usgc
(Eq. 20)

€ My Hy I T, Use
— N, | (Eq. 18, 19)

Figure 10: Ilustration of the SCF procedure.

Note that, we should set n = 0.5 (see Eq. 7) p1 = Ef — 0.5eV, py =
E¢+0.5eV corresponding to zero charge inside the molecule, since we are taking
account of this charge separately by letting the molecular level € float up or
down, which could be viewed as a bias dependent adjustment of the effective 7.

Once the converged solution is obtained, the current is calculated from
Eq. 19. This very simple model captures much of the observed physics of molec-
ular conduction. For example, the results obtained by setting Ef = —5.0 eV,
€0 = —5.5eV, I'; =0.1 eV, Ty = 0.1 eV are shown in Fig. 11 with (U = 1.0
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Figure 11: The current-voltage (I-V) characteristics (left) and conductance-
voltage (G-V) (right) for our toy model with E; = —5.0 eV, ¢ = —5.5 €V and
I’y =T2 = 0.1 eV. Solid lines, charging effects included (U = 1.0 eV). Dashed
line, no charging (U = 0). [37]

eV) and without (U = 0 eV) charging effects. The finite width of the con-
ductance peak (with U = 0) is due to the temperature used in the calculations
(kT = 0.025 V) since the levels are assumed to be discrete in this model. Note
how the inclusion of charging tends to broaden the sharp peaks in conductance,
even though we have not included any extra level broadening in this calcula-
tion. The size of the conductance gap is directly related to the energy difference
between the molecular energy level and the Fermi energy. The current starts to
increase when the voltage reaches 1 V, which is exactly 2 |Ef — €| as would be
expected from 7n-theory (see Fig. 7(b)) with n = 0.5. At higher voltages, when a
chemical potential tries to cross the level, the level will be charged. The energy
level thus shifts in energy (Eq. 21) if the charging energy is non-zero. Thus, for
a small charging energy, the chemical potential easily crosses the level giving
a sharp increase of the current. If the charging energy is large, the current
increase gradually since the energy level follows the chemical potential due to
the charging.

What determines the conductance gap? The above discussion shows that the
conductance gap is equal to 4 (|Ey — €g| — A) where A is equal to ~ 4kgT (plus
I'; +T if broadening is included, see section 3.2), and € is the HOMO or LUMO
level whichever is closest to the Fermi energy, as pointed out in Ref. [38]. This
is unappreciated by many who associate the conductance gap with the HOMO-
LUMO gap, which would be true if molecular levels remained fixed with respect
to one contact as shown in Fig. 7(a). However, we believe that Fig. 7(b) is more
appropriate at low current levels and what conductance measurements show
is the gap between the Fermi energy and the nearest molecular level, which
suggests that the same molecule can show different conductance gaps when
contacted with different metals. Fig. 12 shows the I-V characteristics calculated
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Figure 12: Right, the current-voltage (I-V) characteristics for the two level toy
model for three different values of the Fermi energy (Ey). Left, the two energy
levels (LUMO= —1.5 eV, HOMO= —5.5 ¢V) and the three different Fermi
energies (—2.5, —3.5, —5.0) used in the calculations. (Other parameters used
U=10eV, Ty =T =0.1¢eV) [37]

using a two-level model (obtained by a straightforward extension of the one-
level model) with the Fermi energy located differently within the HOMO-LUMO
gap giving different conductance gaps corresponding to the different values of
|Efr — €o]. Note that with the Fermi energy located halfway in between, the
conductance gap is twice the HOMO-LUMO gap and the I-V shows no evidence
of charging effects because the depletion of the HOMO is neutralized by the
charging of the LUMO. This perfect compensation is unlikely in practice, since
the two levels will not couple identically to the contacts as assumed in the model.

(a) 20 (b) 20,

=01 n=02 /
r,=02 =01,
10 - 10 !
é “r=02 é r=01
— 1 — 1
@ 0 =01 @ 0| =02
5 5
o o
-10 -10|
2% -1 0 2 2 -1 0 1 2
Voltage (V) Voltage (V)

Figure 13: The current-voltage (I-V) characteristics for our toy model (Ey =
—5.0 ¢V and U = 1.0 e¢V). (a) Conduction through HOMO (E; > ¢y = —5.5
eV). (b) Conduction through LUMO (E; < ¢9 = —4.5 eV). Solid lines, I'y = 0.1
eV < T’y =0.2 eV. Dashed lines, I'y =0.2 eV > Ty =0.1¢eV. [37]

A very interesting effect that can be observed is the asymmetry of the I-
V characteristics if I'y # I's as shown in Fig. 13. This may explain several
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experimental results which show asymmetric I-V [15, 9] as discussed by Ghosh
et al. [39]. Assuming that the current is conducted through the HOMO level
(Ef > €), the current is less when a positive voltage is applied to the strongly
coupled contact, see Fig. 13(a). This is due to the effects of charging as we will
discuss in more detail in section 5.2.3. Ghosh et al. also shows that this result
will reverse if conduction is through the LUMO level. We can simulate this
situation by setting €y equal to —4.5 eV, 0.5 eV above the equilibrium Fermi
energy Ey. The sense of asymmetry is now reversed as shown in Fig. 13(b).
The current is larger when a positive voltage is applied to the strongly coupled
contact. Comparing with STM measurements seems to favor the first case, i.e.,
conduction through the HOMO [39].

3.2 Model with Broadening

In Sec. 3.1, we treated the level € as discrete, ignoring the broadening I' = I'1 +1',
that accompanies the coupling to the contacts. To take this into account we
need to replace the discrete level with a Lorentzian density of states D(E):

1 T

DE) = o B e T

(22)

and modifying Egs. 18, 19 for NV and [ to include an integration over energy:

N = o [ app RAEM I E ) )
1= 2 [ aBDE) A ) - f(Bp) (24)

The charging effect is included as before by letting the center ¢, of the molec-
ular density of states, float up or down:

e = e+ Usc (25)
Usc = U(N-Ny) (26)

where the number of electrons at equilibrium is approximated by Ny = 2f(eo, Ef).

The results of calculating the I-V is presented in Fig. 14. Here, the same
parameters as previously (Ef = —5.0, ¢ = =55, U =l and I';y =T = 0.1
eV) were used. The only effect of level broadening is to smear out the I-V
characteristic.

3.3 Unrestricted Model

In the previous examples (Figs. 11, 13) we have used values of I'y o that are
smaller than the charging energy U. However, under these conditions one can
expect single electron tunneling effects which are not captured by a “restricted
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Figure 14: The current-voltage (I-V) characteristics: Solid line, include broad-
ening of the level by the contacts. Dashed line, no broadening, same as solid
line in Fig. 11. [37]

solution” which assumes that both spin orbitals see the same self-consistent
field. However, an unrestricted solution, which allows the spin degeneracy to be
lifted, will show these effects®. For example, if we replace Eq. 21 with:

er =€ +U (N, — fo) (27)
€, =€ +U (N — fo) (28)

where the up-spin level feels a potential due to the down-spin electrons and
vice-versa, then we obtain I-V curves as shown in Fig. 15.

If the SCF iteration is started with a spin degenerate solution, the same
restricted solution as before is obtained. However, if the iteration is started
with a spin non-degenerate solution a different looking I-V is obtained. The
electrons only interact with the the electron of the opposite spin. Therefore,
the chemical potential of one contact can cross one energy level of the molecule
since the charging of that level only affects the opposite spin level. Thus, the I-V
contains two separate steps separated by U instead of a single step broadened
by U.

For a molecule chemically bonded to a metallic surface, i.e., the PDT molecule
bonded by the thiol group to a gold surface, the interaction I' is expected to be
of the same magnitude or larger than U. Therefore, CB is not expected in this
case [41]. However, if both interactions with the contacts are weak we should
keep the possibility of CB and the importance of unrestricted solutions in mind.

3The unrestricted one-particle picture discussed here provides at least a reasonable qual-
itative picture of CB effects, though a complete description requires a more advanced many
particle picture [40]. The one-particle picture leads to one of multiple possible states of the
device depending on our initial guess, while a full many particle picture would include all
states.
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Figure 15: The current-voltage (I-V) characteristics for restricted (dashed line)
and unrestricted solutions (solid line). Ey = —5.0 €V, ¢g = —5.5 eV, 'y = 0.2
eV >T5=0.1eVand U=1.0eV. [37]

4 A Realistic Multilevel Model

The one-level toy model described in the last section includes the three ba-
sic factors that influence molecular conduction, namely, E¢ — €, I'1 2 and U.
However, real molecules typically have multiple levels that often broaden and
overlap. Note that the two-level model (Fig. 12) in the last section treated the
two levels as independent and such models can be used only if the levels do not
overlap. In general we need a formalism that can do justice to multiple levels
with arbitrary broadening and overlap. The non-equilibrium Green’s function
(NEGF) formalism described in this section does just that.

4.1 Non-Equilibrium Green’s Function (NEGF) Formal-
ism

In section 3.2 we obtained equations for the number of electrons, N and the
current, I for a one-level model. It is useful to rewrite these equations in terms
of the Green’s function G(F) which is defined as follows:

r1+r2>‘1

G(E):(E—e+z’ 5

(29)

The density of states D(FE) is proportional to the spectral function A(E) defined
as:

A(E) = —-2Im{G(E)} (30)
A(E)
2w
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while the number of electrons, N and the current, I can be written as:

N = %/dE (|G(E)|2F1f(E,M1)+|G(E)|2F2f(E7N2)) (32)
I = % dET\Ts |G(B) (f(B, ) — (B, ) (33)

In the NEGF formalism the single energy level € is replaced by a Hamiltonian
matrix [H] while the broadening I'y s is replaced by a complex energy-dependent
self-energy matrix [¥1 2(E)] so that the Green’s function becomes a matrix given
by:

GE)=(ES—H-%; — %) " (34)
where S is the identity matrix of the same size as the other matrices and the

broadening matrices I'1 2 are defined as the imaginary (more correctly as the
anti-Hermitian) parts of 1,0

Typ=i (2172 - 2{72) (35)
The spectral function is the anti-Hermitian part of the Green’s function:
AE)=i(G(E)-G(E)) (36)
from which the density of states D(E) can be calculated by taking the trace:
Tr (AS)
D(E) =
(B) =~ (37)

The density matrix [p] is given by, c.f., Eq. 32:

o

L[ (B, m)GTAGT + F(B. 1) GToG] dE (38)

T on
—o0

p

from which the total number of electrons, N can be calculated by taking a trace:
N =Tr (pS) (39)

The current is given by, c.f., Eq. 33:

1225 [ 1 (060561 (B, 1) — F(B, )] dB (40)

—0o0

Equations 34 through 40 constitute the basic equations of the NEGF formal-
ism which have to be solved self consistently with a suitable scheme to calculate
the self-consistent potential matrix [Usc], c.f., Eq. 21:

H=Hy+ Usc (41)
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where Hj is the bare Hamiltonian (like €y in the toy model) and Uge is an
appropriate functional of the density matrix p:

Usc = F (p) (42)

This self-consistent procedure is essentially the same as in Fig. 10 for the one
level toy model, except that scalar quantities have been replaced by matrices:

€0 — [Ho (43)
r — [, (44)
N = o (45)

USC — [Usc] (46)

The sizes of all these matrices is (n x n), n being the number of basis functions
used to describe the molecule. Even the self-energy matrices ¥, 5 are of this size
although they represent the effect of infinitely large contacts. In the remainder
of this section, we will describe the procedure used to evaluate the Hamiltonian
matrix H, the self-energy matrices ¥ 2 and the functional “F” used to evaluate
the self-consistent potential Usc (see Eq. 42). But the point to note is that once
we know how to evaluate these matrices, Eqgs. 34 through 42 can be used straight
forwardly to calculate the current.

Non-orthogonal basis: The matrices appearing above depend on the basis
functions that we use. Many of the formulations in quantum chemistry use
non-orthogonal basis functions and the matrix equations 34 through 42 are still
valid as is, except that the elements of the matrix [S] in Eq. 34 represents the
overlap of the basis function ¢, (7):

S = / &r ¢ (F)gn () (a7)

For orthogonal bases, S, = dmn so that S is the identity matrix as stated
earlier. The fact that the matrix equations 34 through 42 are valid even in
a non-orthogonal representation is non self-evident and is discussed further in
appendix A.

Incoherent Scattering: One last comment about the general formalism be-
fore we move onto the details of H, ¥ and Ugc. The formalism as described
above neglects all incoherent scattering processes inside the molecule. In this
form it is essentially equivalent to the Landauer formalism [42]. Indeed our
expression for the current (Eq. 40) is exactly the same as in the transmission
formalism with the transmission 7' given by Tr (FlGFQGT). But it should be
noted that, the real power of the NEGF formalism lies in its ability to provide
a first principles description of incoherent scattering processes - something we
do not address in this chapter and leave for future work. However, we do in-
clude an elementary model for scattering in order to take care of localized states
that can otherwise cause numerical problems in the NEGF method. Since they
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are localized, they are not broadened and they do not contribute to the trans-
mission. However, if they are occupied they contribute to the charge density
matrix and are important to include in any SCF description. But their sharp
structure makes it easy to miss their contribution while integrating over energy.
One way to handle this problem is to integrate on a complex energy contour
[41, 43, 44]. A more physical approach is to add a third contact which acts
as a phase-breaking scatterer and broadens all states as first noted by Biittiker
[3]. The non-equilibrium calculations in section 5 were performed with a probe
described by the self energy ¥, = D, - SG(E)S, where the constant D, = 0.001
eV? and G(E) the Green’s function of the molecule. The Green’s function:

G=(ES—H-3%—%y—D,-SGS)™* (48)

now has to be calculated self-consistently. A self-energy like this provides a
broadening that is proportional to the density of states at every energy. This
is physically more correct than the conventional “Biittiker” probe with a con-
stant self-energy (3, = —inS) and can be justified rigorously from the NEGF
formalism for elastic (but incoherent) scattering.

Including this additional probe requires an additional term in the expression
for the density matrix:

o0

1

T o
—00

p [f(E, )GT1G" + f(E, 42)GT2G" + f(E, 1p)GT, G| dE - (49)

where 11, is the electrochemical potential associated with this fictive probe.
Strictly speaking this probe cannot be described by a single potential p, and
requires the complete NEGF formalism for a proper treatment. However, since
in our model this probe is merely intended to provide a small amount of broad-
ening to avoid singularities due to localized states, we can treat it simply as a
probe with a chemical potential given by:

L = Tippr + Toppa
P Tlp + T2p

where Ty, = Tr (FlGFpGT) and Ty, = Tr (FQGFPGT). It can be shown that
this choice of u, ensures that the current (I,) into the probe is equal to zero
[3]. In practice we can use any value of p, between w1 and po if the localized
levels are well outside of this range. The current is given by:

(50)

_2e

1
h

dET(E) (f(E, m1) — f(E, p2)) (51)

where T(E) = Tiz + 727, Tip = Tr (T1GT2G1).

4.2 Hamiltonian

Now that we have outlined the basic equations of the NEGF formalism, let us
talk about the details. The most important “detail” is to identify an appropriate
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Hamiltonian matrix to describe the molecule and the two contacts and then to
evaluate the self-energy matrices X7 and Y5 that account for the effects of the
contacts on the molecule.

Figure 16: Two p, orbitals on a nanotube. Also shown are the onsite potential
€o and hopping t.

The different approaches for obtaining the Hamiltonian matrix can broadly
be divided into two categories: ab initio and semi-empirical. In ab-initio meth-
ods one chooses a set of basis functions (typically non-orthogonal) and evalu-
ates the Hamiltonian matrix using a suitable scheme such as Hartree-Fock (HF')
or density functional theory (DFT) to treat the electron-electron interactions.
This requires the evaluation of “two-electron integrals” and a self-consistent it-
eration which make such methods time consuming. By contrast, semi-empirical
approaches simply adjust the matrix elements based on a set of rules derived
from a combination of theory and experimental observations. One example of
a simple semi-empirical Hamiltonian is that commonly used to describe carbon
nanotubes. The basis functions are chosen to be p.-orbitals centered at each
carbon atom (see Fig. 16) and the elements of the Hamiltonian matrix H are
assumed to be:

Hij = €0 lf] =1 (52)
= —t if j, i are nearest neighbors

= 0 otherwise

where €y, t are constants, typically 0 and 2.5 eV respectively. The orbitals are
assumed to be orthogonal, so that the overlap matrix S is the identity matrix.
Orthogonal parameterizations of this type based on p, orbitals are frequently
used to describe molecules with sp? hybridization whose electronic properties are
determined largely by the p,-electrons. A more general method is the Extended
Hiickel Theory (EHT) which uses all valence orbitals of the atoms as the basis
functions, e.g., carbon requires one 2s and three 2p orbitals as the basis. These
atomic orbitals are approximated with Slater Type Orbitals [45] which allows
the overlap matrix S;; = (i|j) to be calculated efficiently. The matrix elements
of the Hiickel Hamiltonian (H) are then described by the following equations:

Hy = -V (53)
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Hij= §Sij(Hii+Hjj;) i#j (54)

The diagonal elements of the Hamiltonian are approximated with the valence
orbital ionization energies (V;) taken either from experimental data or calculated
by more advanced methods. The off-diagonal elements are proportional to the
overlap where the constant is usually taken as ¢ = 1.75. Thus, given a molecular
geometry, the overlap matrix and thereafter the Hamiltonian can be calculated.

LUMO

-2 LUMO ———

HOMO HomMo —

e > 9
A ] 1 ¥
w -8—/—— s

|
(2]

LUMO

HOMO

EHT LSDA/6-31G* BPW/6-31G*

Figure 17: Energy levels (left) of the PDT molecule (right). EHT: Extended
Hiickel Theory. LSDA/6 — 31G™: Density Functional Theory (DFT) with the
6 — 31G™ basis and the LSDA functional. BPW/6 —31G": DFT with 6 — 31G*
basis and the Becke-Perdew-Wang (BPW) functional.

In this chapter we will present qualitative results based on the extended
Hiickel method which is widely used by chemists to describe the electronic
structure of molecules and solids [46]. This approach requires only a fraction
of the computational effort needed by the more elaborate ab initio methods
and provides reasonably accurate quantitative results that give insight into the
essential physics (or chemistry). Fig. 17 shows the energy levels of an isolated
PDT molecule obtained from the EHT method compared with that obtained
from Gaussian [47] using Density Functional Theory (DFT) with a 6 —31G™ ba-
sis and the LSDA functional or the Becke-Perdew-Wang (BPW) functional for
the self-consistent potential. Note that the EHT levels are 5 — 6 eV lower than
the DFT levels but the relative energies are comparable and the wavefunctions
of the HOMO and the LUMO levels are quite similar, see Fig. 18.

4.3 Self Energy

Once we have a Hamiltonian for the entire molecule-contact system, the next
step is to “partition” the device from the contacts and obtain the self-energy
matrices ¥ o describing the effects of the contacts on the device. The contact
will be assumed to be essentially unperturbed relative to the surface of a bulk
metal, and this assumption is clearly not true for a few atoms near the molecule-
metal interface. For this reason, the device should be defined so as to include
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EHT BPW/6-31G*
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Figure 18: The wavefunctions of the HOMO (top) and LUMO (bottom) for EHT
(left) and BPW/6 — 31G™ (right). LSDA also yields similar wavefunctions.

a cluster of metal atoms at each end which are affected by the presence of the
molecule and the applied bias, see Fig. 19.

Device

o )«

Molecule

Figure 19: Molecule, device (including a few surface atoms), surface Green’s
function (gs of the surface of the contacts) and Self-energies (X describing con-
tacts without the surface metal atoms included in the device).

Once we have defined the “surface” atoms that we wish to include as part
of our device, the next step is to compute the self-energy matrices ¥; and ¥,
that describe the effect of the bulk contact (without the surface atoms that are
included in the device). To do this we note that the Green’s function for one of
the isolated contacts (without the molecule) can be written as (the energy E is
assumed to have an infinitesimal imaginary part 07):

-1
G _ ESS — Hs ESsb — Hsb _ gs gsb (55)
ESys — Hys ES, — Hy Jbs  Gb
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where Hj is a finite sized matrix (describing the surface atoms included in the
device) while Hy is infinite (describing the rest of the contact). We wish to
discover a ¥ of the same size as H such that the surface Green’s function g, is
given by:

gs = (BES,—H,—%)"" (56)

How do we discover the matrix 37 The basic trick is that the surface Green’s
function g5 can be computed exactly by making use of the periodicity of the
infinite contact, using techniques that are standard in surface physics [32]. The
details for an FCC (111) gold surface are described in appendix B. Once we
have gs we can invert Eq. 56 to obtain X:

Y =ES, - H,—g;*' (57)

This procedure can be used to obtain each of the matrices 33 and Y5 assuming
that they are unaffected by the presence of the molecule. Eq. 57 will provide a
matrix of the same size as H, from which the full matrix (of the same size as
the full device) is obtained by filling in with zeroes.

In some cases, it may be useful to define the molecule itself as the device
without any surface atoms. In that case, we can obtain the self-energy 3 by
starting from the full Green’s function:

-1
or= w5 maone ) (@) 69
and partitioning it to discover a ¥ such that:
G=(ES—-H-%)" (59)
It is straightforward to show that:
Y = (ESye — Hae) (ES. — H.) " (ESeq — Hea) = Tgs7! (60)

where 7 is the non-zero part of (ES4. — Hg.) coupling the device to the surface
Green’s function corresponding to these surface atoms, which is determined
following the procedure described in appendix B.

4.4 Self-Consistent Potential

Finally we need to identify the functional F(p) that we will use to calculate the
self-consistent potential (Usc), see Eq. 42. Ab initio techniques use methods
based on HF or DFT to obtain these functionals which is numerically challeng-
ing and quantum chemistry programs like Gaussian incorporate many clever
techniques to speed up these calculations which have been developed over the
last thirty years. Although quantum chemistry software only address isolated
molecules in equilibrium, see Fig. 20. Step 1 is really identical with what we
need to do to address our problem. It is only step 2 that is different. We need
to use the NEGF formalism to handle the non-equilibrium statistical mecha-
nism of an open system. Since step 1 is identical it seems reasonable to start
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from a standard quantum chemistry software and modify step 2; this is exactly
what has been done in Ref. [22], while others have set up the full self-consistent
scheme [23].

1 HF / DFT 1 HF / DFT

p—>H p—» H

2
Equ. Stat. Mech.

A

A

p =«=—— H,N

(@) (b)

Figure 20: Comparison between (a) SCF quantum chemical methods and (b)
the NEGF method.

Semi-empirical methods like the EHT use simpler functionals to impose self-
consistency. For example, the Pariser-Parr-Pople (PPP) method [48] is a tight-
binding model designed to describe conjugated molecules. The m-electron sys-
tem is described by one p, basis function per atom. The one-electron part of the
Hamiltonian is similar to the EHT Hamiltonian, however, the basis is assumed
to be orthogonal and the functional describing the electron-electron interactions
is:

_ 1
H7 = 6ij | piavis + Z (P — Zi) ki | — SPisij (61)
k (ki)

where p is the charge density matrix, Z; the charge of the atom without the
m-electron and the one center two-electron integral v;;. The diagonal elements
~vi; are obtained from experimental data and the off-diagonal elements (v;;) are
parameterized to describe a potential that decrease as the inverse of the distance
(1/Rij):

62

= 2
4dmegR;; Ze
0-%ig + Yii+Y5;5

Yij (62)

Calculations of the conductance through molecules using the PPP model has
been carried out by Paulsson et al. [20]. However, this model has to be extended
appropriately in order to be applied to non-orthogonal bases.

5 Application of the NEGF Formalism

We will now present some numerical results obtained using the Hiickel Hamil-
tonian along with a computationally efficient toy model for the self-consistent
potential (Ugc) similar to that used in section 3.
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The potential of the molecule is approximated with a flat potential:
Usc = Uappt + F(p) = Uappl + U(N — No) (63)

where Ugppr = (Ur + Uz)/2 is the approximate solution to the Laplace equation
(see Eq. 11), U the charging energy and Ny is the number of electrons in the
neutral molecule. The advantage of a constant potential is that it merely shifts
the molecular states up/down. Indeed we can treat the molecular states as
unchanged and simply adjust the chemical potentials of the contacts by Ugc:

2 =FE;r+Ui2—Usc (64)

where Uy 5 is the applied potential. The chemical potential of the probe was set
to pp = (1 + p2)/2 as discussed following Eq. 50. We can then calculate the
number of electrons on the device by summing over the contacts and the probe:

N = Ni(p1) + Na(pz) + Np(pp) (65)

The functions Ny 2, (Eq. 49):

1 oo
Niagl) = o [ e (6T12,GY) S(B ) aE (66)

can be calculated once?, stored, and then reused in every SCF step for each
applied potential. Equations 63-66 are then solved self-consistently. Since the
integrals only have to be calculated once, the SCF calculations are fast. The
current is then found from Eq. 51.

This approach captures the basic physics of charging while being computa-
tionally inexpensive. However, the assumption of a constant potential across
the device is hard to justify if we include a large cluster of metal atoms at each
end of the device which will tend to have the same potential as the bulk contact.
For this reason, the results we present here have been obtained using a device
that consists of just the molecule without any additional metal atoms, using
Eqg. 60 from section 4.3 to calculate the self-energy.

5.1 Gold Contacts

Gold (111) films are commonly used to form the contacts to molecules. In
Fig. 21, we show the surface density of states (DOS) for a gold (111) surface
calculated from the surface Green’s function taking the FCC lattice of bulk gold
(nearest neighbor (n.n.) distance 2.885 A) into account. In the Hiickel model
each gold atom is described by three 5p-, five 5d- and one 6s-orbital. Each of
these orbitals contributes to the total density of states as shown. The features

4Changing the potential of the contacts shifts the energy bands in the contacts. This shift
gives a change in G and I'1 2 in Eq. 66. However, this shift can be ignored for applied voltages
much less than the bandwidth of the contacts.
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of the d- and p-band frame a region of nearly constant density of states from
the s-band. The Fermi energy of gold, calculated in the Hiickel model using a
51 x 51 x 51 cluster with periodic boundary conditions, is £y = —9.50 eV. Notice
that this value of E; differs from the (negative) workfunction for gold (~ —5.3
eV) because the Hiickel energy levels are 4 — 5 eV lower than the correct values
relative to vacuum (see Fig. 17). At the Fermi energy the s-band dominates the
DOS and any related properties such as the broadening of the molecular levels.
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Figure 21: Left, two layers (with different shadings) of the Au (111) surface.
Right, contributions to the surface density of states from the 5p, 5d and 6s
orbitals.

The conductance through a Quantum Point Contact (QPC), i.e., a thin (a
few gold atoms thick) gold wire (see Fig. 1), has been shown experimentally [49)
to equal the number of modes (roughly equal to the number of gold atoms in the

cross section), times the quantum conductance % ~T7.5 uA/V ~ (12.9kQ) "
Therefore, a good test of our method is to calculate the I-V of a linear chain of six
gold atoms sandwiched between two gold (111) contacts. The distances between
the gold atoms in the chain was set equal to the n.n. distance in bulk gold (2.885
A) although the actual spacing in experiments is somewhat controversial. The
calculated I-V compares well with the linear I-V having a slope of % shown in
Fig. 1.

5.2 Phenyl Dithiol

Now that we have a model for a QPC, it is straightforward to replace the Aug
molecule with any other molecule provided we know how it is bonded to the
gold surface. For phenyl dithiol (PDT) it is known that [50] the sulfur atoms
bond to the surface on the center of a gold triangle with a gold-sulfur bond
length of 2.53 A (Fig. 22).
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Figure 22: Left, the PDT molecule chemically bound to the Au (111) surface
by the sulfur atoms. Right, total DOS on the PDT molecule vs. Energy. Also
shown are the discrete energy levels of an isolated PDT molecule.

5.2.1 Equilibrium Properties

Connecting the molecule to the contacts broadens and shifts the discrete states
of the molecule as shown in Fig. 22. The broadening of the DOS depends on
the strength of the coupling to the contacts as well as the wavefunction of the
particular state. This is illustrated by the large broadening of the HOMO while
the LUMO is a sharp spike (almost invisible in the figure) since the LUMO is
localized to the benzene ring.
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Figure 23: Transmission through the PDT molecule attached to gold (111)
contacts. The discrete energy levels of an isolated PDT molecule are also shown.

The transmission through a PDT molecule often resembles the DOS closely
although this need not always be true. If the wavefunction (for one level) is
asymmetric it may couple strongly to only one contact giving a wide DOS
peak but a narrow transmission peak. However, for the PDT molecule this is
evidently not the case (see Fig. 23) and the transmission closely resembles the
DOS (note that one is plotted on a linear scale while the other is plotted on a
logarithmic scale). Note also that, despite the strong chemical bond between
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the sulfur and gold DOS and transmission are peaked around the states of the
isolated molecule. This shows the localized character of the chemical bond, i.e.,
the sulfur atom partially insulates the m-electron states of the molecule. By
contrast, the transmission for a QPC is nearly constant as evidenced by the
linear I-V.
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Figure 24: Equilibrium chemical potential as a function of number of electrons
on the molecule. Note the large change in the Fermi energy in response to small
changes in the number of electrons from 40; this makes the correct location of
the Fermi energy extremely sensitive to experimental uncertainties as well as
numerical errors.

Where is the Fermi energy? Connecting the molecule to the contact will in
general result in charge transfer between the contacts and molecule (see section
2.1 and Fig. 5). The direction and magnitude of the charge transfer depend on
the chemical potentials of the isolated parts together with the charging energy
of the molecule. The chemical potential for the contacts is calculated to be Ey =
—9.50 eV, as discussed in section 5.1. To locate the charge neutrality level (CNL)
of the molecule, the chemical potential is plotted against the number of electrons
in the molecule (Fig. 24). For the PDT molecule (without two hydrogens) the
molecule is neutral with 40 electrons giving a CNL of E = —11.08 eV, which
is in the HOMO-LUMO gap and closer to the HOMO level than the LUMO of
the molecule. Referring to Fig. 24 and the related discussion, it can be seen that
there are two limiting possibilities: (1) If UD < 1, then the molecular levels
remain unchanged and E; = —9.5 €V is closer to the LUMO (see Fig. 22) and
(2) if UD > 1, then the molecular levels float up to align E; with ES. In the
second case, we could view the molecular levels as fixed while Ef floats down
to EQ = —11.08 eV, thereby putting E; very close to the HOMO. The “truth”
we believe is closer to the second case but we leave it to future work to settle
the question unambiguously. In the following examples, we have used values of
Ey lying between —10.5 eV and —11.0 eV as indicated.
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Figure 25: Conductance vs. Voltage (G-V) for PDT (symmetric coupling). Solid
line, SCF solution with U = 2 eV. Dashed line, U = 0 for comparison.

5.2.2 Non Equilibrium Properties

The I-V characteristics for the PDT molecule is shown in Fig. 25 for both
U=2eVand U =0. With U = 0, the conductance corresponds to resonant
tunneling through molecular states that are fixed. This gives rise to peaks
in the conductance at the energy of the molecular energies. Broadening by
the contacts cause the width of the peaks, a small broadening by the finite
temperature (kg7 = 0.025 eV) used in the calculations is also present. In
Fig. 25 (dashed line, U = 0), the peak is positioned at V,pp, ~ 1.5 V which
corresponds to 2(E¢ — Egomo). The experimental results on PDT do not show
pronounced peaks. Therefore, a fit to the experimental data, with U = 0, is
only possible if a significant amount of inelastic scattering is included.

With U = 2 eV, however, the peaks broaden, even without any additional
scattering, due to charging. When the applied voltage makes the chemical
potential of one contact cross the HOMO level, the molecule loses a fraction of
an electron making it positively charged. This makes the molecular energy levels
float down and partially follow the chemical potential in the contact. Therefore,
the pronounced peak in U = 0 theory is replaced by a slower increase in the I-V
giving a plateau in the G-V. As the voltage is increased further, both the HOMO
and LUMO level are contributing to the transmission. Here, the molecule lose
electrons from the HOMO level but the other contact inject electrons in the
LUMO. Therefore, the chemical potentials can cross the energy levels of the
molecule without extensive charging. This gives rise to the large increase in the
G-V at high voltages (Voppr > 3.5 V).

The energy difference between the Fermi energy and the energy levels of the
molecule determine the size of the conductance gap. In Fig. 26, the G-V for two
different values of Ey is shown. The dashed lines shows the results of moving
the Fermi energy, compared with the solid line, 0.25 eV further away from the
HOMO level. The conductance gap increases as we would expect. The increase
is a little less than the expected 0.5 V due to the change in charging of the
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Figure 26: G-V for PDT (symmetric coupling) for two different Ey.

molecule at equilibrium. However, the second peak, which is largely unchanged,
in the G-V starts at a slightly lower applied voltage since the Fermi energy of
the contacts is closer to the LUMO.
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Figure 27: G-V for PDT (symmetric coupling) for two different charging energies
).

The second parameter in the SCF calculations is the charging energy of
the molecule which is estimated to be U = 2.0 eV from a Pariser-Parr-Pople
Hamiltonian [20]. Increasing the charging energy from U = 2.0 eV to U = 3.0
eV drags out the G-V plot (Fig. 27) due to a slower crossing of the HOMO level
by the chemical potential. However, the second peak in the G-V is not changed,
since it corresponds to emptying the HOMO while filling the LUMO-level.

5.2.3 Asymmetric Coupling to the Contacts

In most experimental measurements there is some doubts about the quality of
the chemical bond between the molecule and contact. Even if there is a well
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formed self assembled monolayer on one of the metallic contacts, the bonding
with the other contact is probably not perfect since it is simply evaporated.
To model a device where one side of the molecule is strongly coupled to the
contact while the other side is weakly coupled we performed calculations on a
system where we artificially reduce the self-energy of one contact by a constant
factor C2. This is the same as multiplying the interaction elements (7) of the
Hamiltonian by C, i.e., decreasing the coupling between the device and contact
by C.
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Figure 28: G-V for PDT (asymmetric coupling).

In Fig. 28, the G-V of the PDT molecule with a weaker coupling to the right
contact is shown. Here we used C? = 0.6 corresponding to a reduction of the
molecule contact overlap 7 by ~ 0.77. Even this relatively weak reduction® of
the coupling leads to marked changes in the G-V. For negative Vopp (11 > p2),
the chemical potential of the weakly coupled contact (u2) can cross the HOMO
level of the molecule without extensive charging giving a peak in the G-V that is
only slightly dragged out. But for positive bias, where the chemical potential of
the strongly coupled contact (p1) crosses the HOMO level, the effects of charging
drags out the G-V peak. The resulting asymmetric I-V seems to explain the
experimental observation in Fig. 10 of Ref. [15] as noted by Ghosh et al. [39).

6 Summary and Conclusions

We started with an intuitive description of the current-voltage (I-V) character-
istics of molecules (section 2) and then introduced several simple toy models
that captures the basic physics (section 3). These toy models were also used to
motivate the rigorous Non-Equilibrium Green’s Function (NEGF) theory (sec-
tion 4) and applied using the Hiickel Hamiltonian to a Phenyl Dithiol molecule
coupled to gold contacts (section 5).

5A change of 0.77 in the coupling matrix 7 corresponds to an estimated elongation of the
S-Au bond of the order of ~ 0.15 A.
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With both the simple toy models and the NEGF-Hiickel calculations we find
that the three most important properties that determine the current-voltage
(I-V) characteristics of a molecule are:

1. The position of the energy levels of the molecule relative to the Fermi en-
ergy of the contacts. Using simple toy models the conductance gap is seen
to correspond to 4|E; — €, i.e., the difference of the Fermi energy and
the closest molecular energy level. We believe that more theoretical and
experimental effort should be focused on establishing the precise location
of Ey for different metal-molecule “hetrostructures”.

2. The broadening of the energy levels due to the coupling to the contacts
determine the magnitude of the current through the molecule.

3. The charging of the molecule broadens the conductance peaks by the
charging energy per electron U. This can explain many experimental ob-
servations without invoking any additional inelastic scattering. Also, the
asymmetry of this charging effect can explain why symmetric molecules
give asymmetric I-V when coupled unequally to the two contacts.

Although most observed I-V characteristics have the shape shown in Fig. 2
and can be understood in terms of the three parameters listed above, more in-
teresting I-V can be expected to arise with cleverly engineered molecular struc-
tures. The NEGF formalism coupled with the Hiickel Hamiltonian as described
in section 4 should be useful in the theoretical investigation of such effects and
a simple implementation of this model (which is an improved version of the one
installed earlier) can be accessed by readers through the Purdue Simulation Hub
(“www.nanohub.purdue.edu”).
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A NEGF in Non-Orthogonal Basis

This appendix discusses the conceptual issues related to the use of a non-
orthogonal representation in an NEGF calculation (Egs. 34-40).
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Non-orthogonal bases are commonly used in quantum chemistry [51] and
we could use the standard approach to transform H, ¥ into an orthogonal
representation H, ¥ [51]:

H = §'2gs-1/? (67)

Yy = §2ygi/2 (68)

and define a transformed Green’s function:

G = (EI—fI—E)_l (69)

where I is the identity matrix which could be viewed as S, the orthogonalized
version of S. It is easy to show that:

G = §12Gs1/? (70)

r = SY2rs/? (71)

GGl = §7Y/2[GT G 57172 (72)
[,GLL.GH = §Y/2 [fléﬂé*] 5172 (73)
Tr (MGTLGT) = Tr (TWGTLET) (74)

One could argue that if Eqs. 34-40 are valid in the orthogonal representation
(denoted by the tilde ~), then Eqgs. 67-74 can be used to show that they will be
will be valid for the non-orthogonal representation as well. Note that:

A=SY248? = 2xD(E)=Tr (Z) = Tr (AS) (75)
p=5Y2pSsY2 = N =Tr(p) = Tr(pS) (76)

This shows that when calculating the number of electrons, N or the density of
states D(E), we should multiply p or A by S before taking the trace as we did
in Egs. 37 and 39. Note that quantities like H, 3, I transform differently from
quantities like G, A, p. Their transformation rules are similar to covariant and
contravariant tensors respectively [52].

It is important to note that we are obtaining ¥ by partitioning in a non-
orthogonal representation and then transforming it to yield ¥ (see Eq. 68). The
result is NOT the same as partitioning in the orthogonal representation: Not un-
less the overlap matrix is block diagonal, such that Sg. = Seq = [0]. This can be
shown mathematically but the physical reason is obvious. If there is any overlap
between the device and the contact then the process of orthogonalization will
mix the two spaces. The device subspace d in the orthogonal representation will
not be the same as the device subspace d in the non-orthogonal representation,
but will include some of the contact subspace c as well. In that case, partition-
ing in the orthogonal representation and in the non-orthogonal representation
correspond to using two different physical “partitions” and there is no reason
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to expect any equivalence. A non-zero Sy, introduces an element of ambiguity
into the process of partitioning, not unlike the ambiguity associated with the
different schemes for charge partitioning within a molecule (e.g. Mulliken and
Lowdin population analysis [51]).

B Surface Green’s Function

This appendix discusses the procedure for calculating the surface Green’s func-
tion of a given contact used to evaluate the self-energy from Eq. 60 [53].
Consider a semi-infinite solid whose overall Green’s function can be written

in the form:
-1

a B 0
Il
G=ms-m=|"y 5 n (77)

where « is the matrix ES — H corresponding to one isolated layer of the solid
and the matrix 8 provides the inter-layer coupling, see Fig. 29. Each of these

a a o o - Surface layer

Figure 29: The division of the semi-infinite contact into layers.

matrices are infinitely large since each layer is infinite in the two dimensions
parallel to the layers. We can simplify the problem by a two dimensional unitary
transformation to k-space, i.e., Fourier transform the two dimensions parallel to
the layers [54]:

o (E) =OQpg = Z Oéije_“;'(ﬂ_fj) (78)
38 (E) = B = Zﬁije—ﬁc'(ﬂ—ﬂ) (79)

where a;; correspond to the matrix elements of the layer subspace corresponding
to atom 4%, j, i.e., the interaction atom j to ¢, and similar for 3;;. Note that,
« (E) and 3 (E) are matrices with dimension equal to the number of orbitals in
the unit cell. The periodicity of each layer ensures that the sum is independent
of the value of ’j’ and that the different k values are completely decoupled so
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that we can calculate the surface Green’s function independently for each k:

—1

5® a® s o
G(k) = 0 af(i%) a(k) = o (80)

where we are only interested in the surface Green’s function gs(k) which can be
shown to satisfy the recursive relation:

gs(k) = (a(k) — B(R)gs (k)8 (k) " (81)

This equation can either be solved analytically (if the matrices a and 3 are
one-dimensional) or by iteration starting from a reasonable guess for g, (k). We
can then transform it back to real space by summing over the allowed k vectors

(using periodic boundary conditions with N unit cells in each direction):
o 1 TN ik (i —7;
gs(ri - 7“_]) = m ng(k)elk (Ti=75) (82)
Kk

Now we turn to the details of calculating the surface Green’s function for a

Gold (111) surface. To find the a(k) = ES(k) — H(k) and B(k) we need the
overlap and Hamiltonian matrices in real space. These were obtained from the
Hiickel Hamiltonian and overlap matrix of a 13 atom gold cluster, see Fig. 30.
From the matrices of the cluster, the sub-matrices S;; and H;; were obtained,
where we use j = 1 since the sums in Eq. 78 and 79 are independent of j.

10 -9

A 'Jq?d r
'8 ry k1
4 3
B 5'-< E "\?}2 ks -
7
oy iy

C 12 A.ﬁs

Figure 30: Left, numbering of gold atoms in the 13 atom Au cluster. Note that
the plane formed by atoms 1-7 is the FCC (111) surface. Right, basis vectors
and reciprocal basis used in the two dimensional Fourier transform.

Transforming the two real space dimensions (forming the plane of Au atoms
1-7 in Fig. 30) into k-space (assuming only nearest neighbor coupling) gives,
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c.f., Egs. 78 and 79:

7 —
o (k:) _ Ze—ik.(ﬂ—m)(ESﬂ — Hy) (83)
=1
10 -
ﬁ (E) = e_ik.(fi_Fl)(ESﬂ — Hﬂ) (84)
=8

One way to simplify these calculations is to note that the product k - 7 always
can be written:

k-7= (k:ﬂ?:l + kQEQ) . (Tlfl + TQEQ) =kiry + kars (85)

from the definition of the resiprocal lattice vectors ki and ko 7(see Fig. 30).
Using periodic boundary conditions (N unit cells in directions k; and ko) we
see that k1 = %Tm and ko = Q’TT” where m and n are integers. This makes the

transformation back to real space painless:

1 N-—1 o -
957 = 7j) = 555 D, €. (k) (86)

m,n=0

where k = %Tmh + Q’TT”EQ.
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