
Chapter 3 - Finite Element Trusses Page 1 of 15

Finite Element Trusses 
 
3.0 Trusses Using FEA 
 
 We started this series of lectures looking at truss problems.  We limited the 
discussion to statically determinate structures and solved for the forces in elements and 
reactions at supports using basic concepts from statics. 
 In this section, we will apply basic finite element techniques to solve general two 
dimensional truss problems.  The technique is a little more complex than that originally 
used to solve truss problems, but it allows us to solve problems involving statically 
indeterminate structures. 
 
3.1 Local and Global Coordinates 
 
 We start by looking at the beam or element shown in the diagram below.  This  
element attaches to two nodes, 1 and 2.  In the Figure we are showing two coordinate 
systems.  One is a one dimensional coordinate system that aligns with the length of the 
element.  We will call this the local coordinate system.  The other is a two dimensional 
coordinate system that does not align with the element.  We will call this the global 
coordinate system.  The 〉′′〈 yx , coordinates are the local coordinates for the element and 

〉〈 yx, are the global coordinates. 

 
We can convert the displacements shown in the local coordinate system by 

looking at the following diagram.  We will let 1q′  and 2q′  represent displacements in the 
local coordinate system and q1, q2, q3, and q4 represent displacements in the x-y (global) 
coordinate system.  Note that the odd subscripted displacements are in the x direction and 
the even ones are in the y direction as shown in the following diagram. 

 

1

2

x’ 

y’ 
Local coordinate 
system 

x 

y 

Global coordinate 
System 

Figure 1 - Local and global coordinate systems
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We know that for small deformations in tension or compression a beam, acts like 

a spring.  The amount of deformation is linearly proportional to the force applied to the 
beam.  As the beam is stretched or compressed, we are added potential energy to the 
beam.  This energy is called strain energy and it can be modeled with Hook’s law.  The 
law states that the force is directly proportional to the deformation.  

 
xkF Δ=        (3.1) 

 
We can compute the energy by integrating over the deformation 
 

2

0 2
1 kQxdxku

Q

== ∫       (3.2) 

 

where 
L

AEk =  the element stiffness, A = the cross sectional area of the element, 

E = Young’s modulus for the material, and L = the length of the element.  Q is the total 
change in length of the element.  Note that we are assuming the deformation is linear 
over the element.  All equal length segments of the element will deform the same 
amount.  We call this a constant strain deformation of the element. 

We can rewrite this change in length as 
 

)( '
1

'
2 qqQ −=        (3.3) 

 
Substituting this into equation (3.2) gives us 
 

2
12 )(

2
1 qqku ′−′=       (3.4) 

q1’ 

q2’ 

Ө 

Deformed element 

θsin2q

q1 

q2 

q4 

q3

θcos1q

Un-deformed element 

Figure 2 - The deformation of an element in both local and global coordinate systems. 
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or expanding 

)2(
2
1 2

112
2

2 qqqqku ′+′′−′=      (3.5) 

 
Rewriting this in vector form we let 
 

⎭
⎬
⎫

⎩
⎨
⎧
′
′

=′
2

1

q
q

q        (3.6) 

 
and 
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With this we can rewrite equation (3.5) as: 

 

qkqu T ′′′=
2
1        (3.8) 

 
We can do the indicated operations in (3.8) to see how the vector notation works.  

We do this by first expanding the terms then doing the multiplication. 
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AEu ′−′′+′−′′=     (3.11) 
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221

2
1 qqqq

L
AEu ′+′′−′=      (3.13) 

 
Which is the same as equation (3.5). 
 
Equation (3.7) is the stiffness matrix for a one dimensional problem. 
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6.2 Two Dimensional Stiffness Matrix 
 

We know for local coordinates that 
 

⎭
⎬
⎫

⎩
⎨
⎧
′
′

=′
2

1

q
q

q        (3.6) 

 
and for global coordinates (See Figure 2) 
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We can transform the global coordinates to local coordinates with the equations 
 

θθ sincos 211 qqq +=′       (3.15) 
and 
 

θθ sincos 432 qqq +=′      (3.16) 
 

This can be rewritten in vector notation as: 
 

Mqq =′        (3.17) 
 

where 
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M
00
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θcos=c , and θsin=s . 

 
Using 

qkqu T ′′′=
2
1        (3.8) 

 
we can substitute in equation (3.17) 
 

[ ]qMkMqu TT ′=
2
1       (3.19) 

 
Now we will let 
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MkMk T ′=        (3.20) 

 
and doing the multiplication, k our stiffness matrix for global two dimensional 
coordinates becomes 
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where: 
 

E = Young’s modulus for the element material 
A = the cross sectional area of the element 
L = the length of the element 

θcos=c  
θsin=s  

 
3.3 Stress Computations 
 

The stress can be written as 
 

εσ E=       (3.22) 
 

where ε is the strain, the change in length per unit of length.  We can rewrite this as: 
 
 

 

L
qqE 12 ′−′

=σ        (3.23) 

 
 
 
In vector form we can write the equation as 
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From our previous discussion, we know that in local coordinates 
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total deformation 

length of element 
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and in global coordinates 
 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

4

3

2

1

q
q
q
q

q       (3.14) 

 
From equation (3.17) we know that 
 

Mqq =′       (3.17) 
 

where 
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Substituting this in to the equation (3.24) yields 
 

{ }Mq
L
E 11−=σ      (3.25) 

 
Now we multiply M by the vector 
 

{ }qscsc
L
E

−−=σ     (3.26) 
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3.4 Truss Example 
 

We can now use the techniques we have developed to compute the stresses in a 
truss.  Consider 

 

 
 
Computing Displacements 

 
There are 4 nodes and 4 elements making up the truss.  We are going to do a two 

dimensional analysis so each node is constrained to move in only the X or Y direction.  
We call these directions of motion degrees of freedom or dof for short.  There are 4 nodes 
and 8 degrees of freedom (two degrees of freedom for each node).  We can number the 
degrees of freedom with the formulas: 

 
Vertical degree of freedom  nodedof *2=    (3.27) 
Horizontal degree of freedom  1*2 −= nodedof    (3.28) 
 

where node is the node number. 
We can locate each node by its coordinates.  The table below shows the 

coordinates of the nodes in the problem we are solving.  We can use these coordinates to 
determine the lengths and angles of the elements. 

 
Node X Y 

1 0 0 
2 40 0 
3 40 30
4 0 30

Table 1 - Coordinates of the nodes in the truss. 

q1 

q2 

q3 

q4 

q5 

q6 

q7 

q8 

1 

2 

3 

4 

1 

2 3 

4 

25,000 lbs 

20,000 lbs 

E = 29.5x106 
Area = 1.0 in2 

30” 

40” 
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Each element can be described as extending from one node to another.  This also 
can be defined in a table below. 

 
Element From Node To Node

1 1 2 
2 3 2 
3 1 3 
4 4 3 

Table 2 - The elements and the nodes they connect in the truss. 
 

From these two tables we can derive the lengths of each element and the cosine 
and sine of their orientation.  This is shown in the table below. 

 
Element Length Cosine Sine

1 40 1 0 
2 30 0 -1 
3 50 0.8 0.6 
4 40 1 0 

Table 3 - Elements with sines and cosines to be used in the stiffness matrix. 
 

In the previous sections we developed the stiffness matrix for an element.  This is 
shown in equation (3.21) below. 
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This stiffness matrix is for an element.  The element attaches to two nodes and 

each of these nodes has two degrees of freedom.  The rows and columns of the stiffness 
matrix correlate to those degrees of freedom. 

Using the equation shown in (3.21) we can construct that stiffness matrix for 
element 1 defined in the table above.  The stiffness matrix is: 

 
 
                  1     2      3   4 

4
3
2
1
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Global dof 
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Element 2 

 
       5    6      3    4 

4
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Element 3 
 
                 1         2           5         6 

6
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Element 4 
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The next step is to add the stiffness matrices for the elements to create a matrix 

for the entire structure.  We can facilitate this by creating a common factor for Young’s 
modulus and the length of the elements. 

For element 1, we divide the outside by 15 and multiply each element of the 
matrix by 15.  Multiplying and dividing by the same number is the same as multiplying 
and dividing by 1. 

    
           1      2      3     4 

4
3
2
1
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0000
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We multiply and divide element 2 by 20. 
 
        5      6       3      4 

4
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Multiply and divide element 3 by 12. 
 
                  1           2             5            6 

6
5
2
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We do the same for element 4 by multiplying and dividing it by 15. 
 
         7     8       5     6 

6
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The coefficient for each stiffness matrix is the same so we can easily add the 

matrices.  We add the degree of freedom for each element stiffness matrix into the same 
degree of freedom in the structural matrix.  The resulting structural stiffness matrix is 
shown below. 

 
         1           2            3           4            5           6          7      8 

8
7
6
5
4
3
2
1

00000000
00.1500.150000
0032.2476.50.20032.476.5
01576.568.220076.568.7
000.2000.20000
000000.1500.15
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Remembering our basic equation 
 

FKQ =        (3.38) 
 

where K is the structural or global stiffness matrix, Q is the displacement of each node, 
and F is the external force matrix.  This results in 
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We have boundary conditions at the fixed supports.  Our assumption is that these 

joints will not move in the constrained direction.  We remove these from our matrix.  The 
constrained displacements are dof 1, 2, 4, 7, and 8.  The lines in equation (3.40) show the 
rows and columns that are removed. 
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The resulting matrix is: 
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We can use Gaussian elimination or any number of other solution techniques to 
solve the system of equations shown above.  Doing so yields 
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Computing Stresses 
 

Previously we showed that  
 

{ }qscsc
L
E

−−=σ       (3.26) 

 
We use this equation to compute the stress in each element. 
 

{ }

4
3
2
1

0
1012.27

0
0

0101
40

105.29
3

6

1

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

×
−

×
= −σ    (3.43) 

 
or 
 

psi000,201 =σ        (3.44) 
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psi875,212 −=σ        (3.46) 

 
Using a similar technique we get 
 

psi208,53 −=σ        (3.47) 
and 
 

psi167,44 =σ         (3.48) 
 

dof
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Computing the Reactions 
 

The last step is to compute the support reactions.  We need to determine the 
reaction forces along dof 1, 2, 3, 7, and 8 which correspond to the fixed supports.  These 
are obtained by substituting Q into the original finite element equation. 

 
FKQR −=         (3.48) 

 
We only need to use those rows of the structural stiffness matrix that correspond 

to the fixed supports.  At these supports, we are not supplying an external force so F=0.  
Our equation becomes 

 
KQR =          (3.50) 

 
or 
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 (3.51) 

 
We multiply the stiffness matrix K and the deformation vector Q to get the reactions.  
They are shown in the following equation. 
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     (3.52) 
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Problems 
 

1. Element area = 1.5 in2  E=30,000,000 
  
 Element length = 5 feet 
 
 Write the stiffness matrix for the structure.  The 
bar is vertical.  Show all work. 
 
 
 
 
2. Using a different load, the element shown in 
Problem 1 deforms by 0.02 inches in length.  What is the stress in the material?  Use a 
finite element approach to solve the problem.  Show all work. 
 
 
3. Use a finite element approach, solve for the stress, joint displacement, and 
reaction force on the element shown in Problem 1.  Use the 8,000 lbs force as shown in 
the diagram.  Show all work. 
 
 
4. The structure shown in the diagram results in the stiffness matrix shown in the 
table.  Manually solve for the displacement of node 4.  Show all work. 
 
  
 
 
 
 
1.0e+006 * 
 
 
 
 
  
 
     
 
      
 
 
 
 

   0.6293  0.4720    0 0 0 0 -0.6293  -0.4720
0.4720     0.3540    0 0 0 0 -0.4720  -0.3540
0 0 0.6146    0 0 0 -0.6146  0 
0 0 0 0 0 0 0 0 
0 0 0 0 0.6293   -0.4720  -0.6293  0.4720 
0 0 0 0 -0.4720  0.3540    0.4720    -0.3540
-0.6293    -0.4720  -0.6146  0 -0.6293 0.4720 1.8733 0 
-0.4720 -0.3540 0 0 0.4720 -0.3540 0 0.7080 

Element Area E 
1 2 in2 29.5e6
2 1 in2 29.5e6
3 2 in2 29.5e6
Node X feet Y feet 
1 0 0 
2 0 3 
3 0 6 
4 4 3 

1 

2 

8,000 lbs 

3 

1 

2 

1 

2 

3 

4 

10,000 lbs 
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5. Element area = 1 in2  Material = steel 
 
 

Node X Y 
1 0 40 
2 30 0 
3 60 40 

 
A. Find the joint displacements 
B. Find the stress in the elements 
C. Find the reactions 

 
 
6. Element area = 1 in2  Material = steel 

 
 

D. Find the joint displacements 
E. Find the stress in the elements 
F. Find the reactions 

 
 
 
Write a Matlab program that uses the finite element technique discussed in class to solve 
for the displacements, stresses, and reactions in a finite element truss.  You may want to 
modify the static stress program you wrote earlier to create this new program.  The two 
programs should be able to use the same input file.   
 
Solve the problem shown above to turn in.  Use both this new program and the static truss 
program to run the data file.  Compare the results.   
 
 
 

Node X Y 
1 0 0 
2 4 3 
3 8 0 
4 12 3 

Element From 
Node 

To 
Node 

1 1 2 
2 2 3 
3 2 4 
4 3 4 

1 3 

2 

10,000 lbs 

1 

2 

3 

4 

5,000 lbs 


