
Linear Work Suffix Array Construction
Juha Karkkainen, Peter Sanders, Stefan Burkhardt

Presented by Roshni Sahoo

March 7, 2019

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 1 / 27

Outline

1 Introduction

2 Related Work

3 DC3 Algorithm Example

4 Generalized Difference Cover Algorithm

5 Advanced Models of Computation

6 Final Remarks

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 2 / 27

Outline

1 Introduction

2 Related Work

3 DC3 Algorithm Example

4 Generalized Difference Cover Algorithm

5 Advanced Models of Computation

6 Final Remarks

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 3 / 27

Suffix Trees

A suffix tree of a string S is compacted trie of all the suffixes of S .

Suffix trees have explicit structure and a direct linear-time
construction algorithm (Farach’s algorithm).

Applications: Locating a substring P in S in O(|P|) time.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 4 / 27

Suffix Arrays

A suffix array is the lexicographically sorted array of the suffixes of a
string.

Suffix arrays have a more implicit form and are simpler and more
compact than suffix trees. In practice, they use three to five times
less space.

Applications: Locating a substring P in a string S in O(|P|+ log |S |)
time.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 5 / 27

Querying for a Substring in a Suffix Array

Assume that we have constructed a suffix array for a string S . We are
searching for a substring P in S .

Naive algorithm: Binary search the suffix array for the substring.
Each comparison between the substring and an element of the array
takes O(|P|) time and the binary search takes O(log |S |) time to
complete. → O(|P| log |S |).
When we construct a suffix array, we can also construct a longest
common prefixes (LCP) array. We can use the LCP array to augment
a classic binary search yielding O(|P|+ log |S |)-time algorithm.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 6 / 27

Contributions

Goal: Find a direct linear-time suffix array construction algorithm.

Bridge theory and practice by finding a linear-time construction
algorithm for a data structure that practitioners prefer.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 7 / 27

Outline

1 Introduction

2 Related Work

3 DC3 Algorithm Example

4 Generalized Difference Cover Algorithm

5 Advanced Models of Computation

6 Final Remarks

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 8 / 27

Farach’s Algorithm

A linear-time suffix tree construction algorithm for integer alphabet.

Algorithm:
1 Recursively compute the suffix tree of the suffixes starting at odd

positions.
2 Next, compute the suffix tree of the suffixes starting at even positions

based on the results of the first step.
3 Finally, merge the even and odd suffix trees together.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 9 / 27

Outline

1 Introduction

2 Related Work

3 DC3 Algorithm Example

4 Generalized Difference Cover Algorithm

5 Advanced Models of Computation

6 Final Remarks

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 10 / 27

DC3 Algorithm Sketch

1 Construct the suffix array of a sample of the suffixes. In the sample,
we include the suffixes starting at positions i mod 3 6= 0. We
recursively find the suffix array of a string of two-thirds length of the
original string.

2 Construct the suffix array of the remaining suffixes using the result of
the first step.

3 Merge the two suffix arrays into one using comparison-based merging.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 11 / 27

DC3 Step 1: Construct the sample.

Given a string T = yabbadabbado, we construct suffix array
SA = [12, 1, 6, 4, 9, 3, 8, 2, 7, 5, 10, 11, 0].

1. For k = 0, 1, 2, we can define sets of indices

Bk = {i ∈ [0, n]|i mod 3 = k}

Which indices do B0, B1, and B2 contain?

B0 = {0, 3, 6, 9, 12},B1 = {1, 4, 7, 10},B2 = {2, 5, 8, 11}.

Let Si denote a suffix starting at index i in T . Let C = B1 ∪ B2 be the
set of sample start indices and SC is the set of sample suffixes.

C = {1, 4, 7, 10, 2, 5, 8, 11}

SC = {S1,S4,S7...S8,S11}.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 12 / 27

DC3 Step 1: Construct the sample.

Given a string T = yabbadabbado, we construct suffix array
SA = [12, 1, 6, 4, 9, 3, 8, 2, 7, 5, 10, 11, 0].

1. For k = 0, 1, 2, we can define sets of indices

Bk = {i ∈ [0, n]|i mod 3 = k}

Which indices do B0, B1, and B2 contain?

B0 = {0, 3, 6, 9, 12},B1 = {1, 4, 7, 10},B2 = {2, 5, 8, 11}.

Let Si denote a suffix starting at index i in T . Let C = B1 ∪ B2 be the
set of sample start indices and SC is the set of sample suffixes.

C = {1, 4, 7, 10, 2, 5, 8, 11}

SC = {S1, S4,S7...S8,S11}.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 12 / 27

DC3 Step 1: Construct the sample.

Given a string T = yabbadabbado, we construct suffix array
SA = [12, 1, 6, 4, 9, 3, 8, 2, 7, 5, 10, 11, 0].

1. For k = 0, 1, 2, we can define sets of indices

Bk = {i ∈ [0, n]|i mod 3 = k}

Which indices do B0, B1, and B2 contain?

B0 = {0, 3, 6, 9, 12},B1 = {1, 4, 7, 10},B2 = {2, 5, 8, 11}.

Let Si denote a suffix starting at index i in T . Let C = B1 ∪ B2 be the
set of sample start indices and SC is the set of sample suffixes.

C = {1, 4, 7, 10, 2, 5, 8, 11}

SC = {S1, S4,S7...S8,S11}.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 12 / 27

DC3 Step 1: Construct the sample.

Given a string T = yabbadabbado, we construct suffix array
SA = [12, 1, 6, 4, 9, 3, 8, 2, 7, 5, 10, 11, 0].

1. For k = 0, 1, 2, we can define sets of indices

Bk = {i ∈ [0, n]|i mod 3 = k}

Which indices do B0, B1, and B2 contain?

B0 = {0, 3, 6, 9, 12},B1 = {1, 4, 7, 10},B2 = {2, 5, 8, 11}.

Let Si denote a suffix starting at index i in T . Let C = B1 ∪ B2 be the
set of sample start indices and SC is the set of sample suffixes.

C = {1, 4, 7, 10, 2, 5, 8, 11}

SC = {S1, S4,S7...S8,S11}.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 12 / 27

DC3 Step 2: Construct R to sort sample suffixes.

Recall that T = yabbadabbado

2. Construct a new string R to sort the sample suffixes.
Let ti be the i-th element of T . For k = 1, 2, we can construct the
strings

Rk = [tktk+1tk+2][tk+3tk+4tk+5] . . . [tmaxBk
tmaxBk+1tmaxBk+2].

What do R1 and R2 look like?

R1 = [abb][ada][bba][do0] and R2 = [bba][dab][bad][o00].

We can concatenate R1 and R2 into a string R.

R = [abb][ada][bba][do0][bba][dab][bad][o00]

The nonempty suffixes of R correspond to SC of sample suffixes. By
sorting the suffixes of R, we get the order of the sample suffixes SC .

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 13 / 27

DC3 Step 2: Construct R to sort sample suffixes.

Recall that T = yabbadabbado

2. Construct a new string R to sort the sample suffixes.
Let ti be the i-th element of T . For k = 1, 2, we can construct the
strings

Rk = [tktk+1tk+2][tk+3tk+4tk+5] . . . [tmaxBk
tmaxBk+1tmaxBk+2].

What do R1 and R2 look like?

R1 = [abb][ada][bba][do0] and R2 = [bba][dab][bad][o00].

We can concatenate R1 and R2 into a string R.

R = [abb][ada][bba][do0][bba][dab][bad][o00]

The nonempty suffixes of R correspond to SC of sample suffixes. By
sorting the suffixes of R, we get the order of the sample suffixes SC .

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 13 / 27

DC3 Step 2: Construct R to sort sample suffixes.

Recall that T = yabbadabbado

2. Construct a new string R to sort the sample suffixes.
Let ti be the i-th element of T . For k = 1, 2, we can construct the
strings

Rk = [tktk+1tk+2][tk+3tk+4tk+5] . . . [tmaxBk
tmaxBk+1tmaxBk+2].

What do R1 and R2 look like?

R1 = [abb][ada][bba][do0] and R2 = [bba][dab][bad][o00].

We can concatenate R1 and R2 into a string R.

R = [abb][ada][bba][do0][bba][dab][bad][o00]

The nonempty suffixes of R correspond to SC of sample suffixes. By
sorting the suffixes of R, we get the order of the sample suffixes SC .

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 13 / 27

DC3 Step 2: Construct R to sort sample suffixes.

Recall that T = yabbadabbado

2. Construct a new string R to sort the sample suffixes.
Let ti be the i-th element of T . For k = 1, 2, we can construct the
strings

Rk = [tktk+1tk+2][tk+3tk+4tk+5] . . . [tmaxBk
tmaxBk+1tmaxBk+2].

What do R1 and R2 look like?

R1 = [abb][ada][bba][do0] and R2 = [bba][dab][bad][o00].

We can concatenate R1 and R2 into a string R.

R = [abb][ada][bba][do0][bba][dab][bad][o00]

The nonempty suffixes of R correspond to SC of sample suffixes. By
sorting the suffixes of R, we get the order of the sample suffixes SC .

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 13 / 27

DC3 Step 2: Construct R to sort sample suffixes.

Recall that T = yabbadabbado

2. Construct a new string R to sort the sample suffixes.
Let ti be the i-th element of T . For k = 1, 2, we can construct the
strings

Rk = [tktk+1tk+2][tk+3tk+4tk+5] . . . [tmaxBk
tmaxBk+1tmaxBk+2].

What do R1 and R2 look like?

R1 = [abb][ada][bba][do0] and R2 = [bba][dab][bad][o00].

We can concatenate R1 and R2 into a string R.

R = [abb][ada][bba][do0][bba][dab][bad][o00]

The nonempty suffixes of R correspond to SC of sample suffixes. By
sorting the suffixes of R, we get the order of the sample suffixes SC .
Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 13 / 27

DC3 Step 3: Sort the characters of R

Recall that T = yabbadabbado.

3. Sort the suffixes of R. First, radix sort the characters of R (the triples
[ti ti+1ti+2]) and rename them with their ranks to obtain a new string
R ′.

R = [abb][ada][bba][do0][bba][dab][bad][o00]

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 14 / 27

DC3 Step 4: Sort the suffixes of R ′ (if needed).

Recall that T = yabbadabbado, and R ′ = [1, 2, 4, 6, 4, 5, 3, 7].

4. If any of the characters of R are the same, recursively sort the suffixes
of R ′.

But how does this relate to the suffixes of the original string T?

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 15 / 27

DC3 Step 4: Sort the suffixes of R ′ (if needed).

Recall that T = yabbadabbado, and R ′ = [1, 2, 4, 6, 4, 5, 3, 7].

4. If any of the characters of R are the same, recursively sort the suffixes
of R ′.

But how does this relate to the suffixes of the original string T?

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 15 / 27

DC3 Step 4: Sort the suffixes of R ′ (if needed).

We can write the correspondence between start indices of the suffixes R ′

to the start indices of T .

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 16 / 27

DC3 Step 5: Use sorted order of R ′ to sort the sample
suffixes of T

5. Combining the results in the last two tables, we see that we can assign
a rank to each suffix in SC .

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 17 / 27

DC3 Step 6: Sort non-sample suffixes

6. The non-sample suffixes are the suffixes with start indices in B0. We
represent each of these suffixes Si by a tuple, (ti , rank(Si+1)).

We can compare these suffixes as follows

Si ≤ Sj ⇐⇒ (ti , rank(Si+1)) ≤ (tj , rank(Sj+1)).

Radix-sorting the tuples gives us an ordering of the non-sample suffixes.
What is the sorted order of these suffixes?

S12,S6,S9,S3,S0.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 18 / 27

DC3 Step 6: Sort non-sample suffixes

6. The non-sample suffixes are the suffixes with start indices in B0. We
represent each of these suffixes Si by a tuple, (ti , rank(Si+1)).

We can compare these suffixes as follows

Si ≤ Sj ⇐⇒ (ti , rank(Si+1)) ≤ (tj , rank(Sj+1)).

Radix-sorting the tuples gives us an ordering of the non-sample suffixes.
What is the sorted order of these suffixes? S12,S6,S9, S3,S0.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 18 / 27

DC3 Step 7: (Almost done!) Merge

7. We can merge the two sorted sets of suffixes using standard
comparison-based merging.
To compare a suffix Si ∈ B1 with Sj ∈ B0,

Si ≤ Sj ⇐⇒ (ti , rank(Si+1)) ≤ (tj , rank(Sj+1)).

To compare a suffix Si ∈ B2 with Sj ∈ B0,

Si ≤ Sj ⇐⇒ (ti , ti+1, rank(Si+2)) ≤ (tj , tj+1, rank(Sj+2)).

Final Suffix Array: [12, 1, 6, 4, 9, 3, 8, 2, 7, 5, 10, 11, 0].
What’s the recurrence for this algorithm?

T (n) = T
(2n

3

)
+ O(n).

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 19 / 27

DC3 Step 7: (Almost done!) Merge

7. We can merge the two sorted sets of suffixes using standard
comparison-based merging.
To compare a suffix Si ∈ B1 with Sj ∈ B0,

Si ≤ Sj ⇐⇒ (ti , rank(Si+1)) ≤ (tj , rank(Sj+1)).

To compare a suffix Si ∈ B2 with Sj ∈ B0,

Si ≤ Sj ⇐⇒ (ti , ti+1, rank(Si+2)) ≤ (tj , tj+1, rank(Sj+2)).

Final Suffix Array: [12, 1, 6, 4, 9, 3, 8, 2, 7, 5, 10, 11, 0].

What’s the recurrence for this algorithm?

T (n) = T
(2n

3

)
+ O(n).

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 19 / 27

DC3 Step 7: (Almost done!) Merge

7. We can merge the two sorted sets of suffixes using standard
comparison-based merging.
To compare a suffix Si ∈ B1 with Sj ∈ B0,

Si ≤ Sj ⇐⇒ (ti , rank(Si+1)) ≤ (tj , rank(Sj+1)).

To compare a suffix Si ∈ B2 with Sj ∈ B0,

Si ≤ Sj ⇐⇒ (ti , ti+1, rank(Si+2)) ≤ (tj , tj+1, rank(Sj+2)).

Final Suffix Array: [12, 1, 6, 4, 9, 3, 8, 2, 7, 5, 10, 11, 0].
What’s the recurrence for this algorithm?

T (n) = T
(2n

3

)
+ O(n).

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 19 / 27

DC3 Step 7: (Almost done!) Merge

7. We can merge the two sorted sets of suffixes using standard
comparison-based merging.
To compare a suffix Si ∈ B1 with Sj ∈ B0,

Si ≤ Sj ⇐⇒ (ti , rank(Si+1)) ≤ (tj , rank(Sj+1)).

To compare a suffix Si ∈ B2 with Sj ∈ B0,

Si ≤ Sj ⇐⇒ (ti , ti+1, rank(Si+2)) ≤ (tj , tj+1, rank(Sj+2)).

Final Suffix Array: [12, 1, 6, 4, 9, 3, 8, 2, 7, 5, 10, 11, 0].
What’s the recurrence for this algorithm?

T (n) = T
(2n

3

)
+ O(n).

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 19 / 27

Outline

1 Introduction

2 Related Work

3 DC3 Algorithm Example

4 Generalized Difference Cover Algorithm

5 Advanced Models of Computation

6 Final Remarks

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 20 / 27

Difference Cover Samples

Definition

A difference cover Dv mod v is a subset of [0, v) such that all values in
[0, v) can be expressed as a difference of two elements in Dv mod v . In
other words,

[0, v) = {i − j mod v |i , j ∈ Dv}.

Example: Show that 1, 2, 4 = D7.
In general, we want the smallest possible difference cover for a given v .
For any v , there exist a difference cover Dv of size O(

√
v).

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 21 / 27

Generalized Algorithm and Lightweight Algorithm

Generalized: Instead of using a difference cover mod 3, we can use
any difference cover D mod v .

Merge step is different in the generalized version: we sort the suffixes
by the first v characters, then use a comparison based merge.

Lightweight: The generalized DC algorithm can be implemented in
O(n/

√
v) space in addition to the input and output and takes

O(vn)-time.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 22 / 27

Outline

1 Introduction

2 Related Work

3 DC3 Algorithm Example

4 Generalized Difference Cover Algorithm

5 Advanced Models of Computation

6 Final Remarks

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 23 / 27

Advanced Models

External Memory: The complexity is governed by the complexity of
the integer sort. O(n

DB logM
B

n
B).

Cache-Oblivious: The number of cache faults, O(n
B logM

B

n
B), is a

corollary of the optimal comparison based sorting algorithm.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 24 / 27

Outline

1 Introduction

2 Related Work

3 DC3 Algorithm Example

4 Generalized Difference Cover Algorithm

5 Advanced Models of Computation

6 Final Remarks

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 25 / 27

Final Remarks

DC3 Algorithm was very well-explained; it was very useful to have an
example to understand the intricacies of the algorithm.

The authors provided their source code at the end of the article,
which is useful so that readers can replicate their results.

The authors mention that there are already experiments with an
external memory implementation and a parallel implementation,
which show excellent performance. However, it would have been
useful to have more empirical data in the article.

The paper lacked a detailed explanation of the lightweight algorithm.
It would have been useful if the authors provided more justification for
each step of the algorithm.

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 26 / 27

Linear Work Suffix Array Construction
Juha Karkkainen, Peter Sanders, Stefan Burkhardt

Presented by Roshni Sahoo

March 7, 2019

Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019 27 / 27

	Introduction
	Related Work
	DC3 Algorithm Example
	Generalized Difference Cover Algorithm
	Advanced Models of Computation
	Final Remarks

