
   

Newton's second law in action

In many cases, the nature of the force acting on a
body is known.  It might depend on time,
position, velocity, or some combination of these,
but its dependence is known from experiment.

In such cases, Newton's law becomes an equation
of motion which we can solve.  The solution
allows us to predict the position of the body at
any time, as long as we know its initial position
and velocity.  This predictive quality is the main
power of Newton’s law.

In this section, we will use Newton’s second law
in this way.  We will consider the case of one-
dimensional motion under a constant force, both
with and without damping.  This has many
applications, one of which is vertical motion
near earth’s surface.

   

Motion under a constant force

When we say that the force acting on a body is
constant, we mean that it does not vary over time,
is the same no matter where the body is, and does
not depend on the body's velocity.  In other
words, F is just a number. The following graph

shows a case in which the constant force happens
to be in the positive direction:
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We are going to use Newton's law to show that
the graph of the position of the body versus time,
x(t), is a parabola.

We begin with Newton’s law, F=ma.  Using the
definition of the acceleration as the second
derivative of x(t), we find the following equation
of motion:

m 
d 2 x ( t ) 
dt2 =  F  .

This is a differential equation for the function
x(t).  That is, it is an equation whose solution is a
whole function of time, not just an algebraic
number.  It says that x(t) is a function whose
second derivative with respect to time is a
constant, F/m.  Therefore, we know what its first
derivative must be; that is, we can integrate once
and find



  
dx( t ) 
dt

= F 
m 

t   +  constant,

where the constant does not depend on time.
Now, the left-hand side is the velocity.  So the
constant must be fixed by the value of the
velocity at some particular time.  For simplicity,
let's suppose that this time is t=0, and that the
velocity at that time is v0.  Substituting t=0 into
both sides, we find that the value of the constant
is v0.  The velocity is therefore given by

v ( t )   =   F 
m 

t   +  v0  .

We then integrate again, and find

  x ( t ) = 1 
2 

F 
m 

t 2   + v 0 t +  another constant.

The new constant is fixed by the value of the
position at another particular time, which we may
again take to be t =0.  If the position then is x0,

then the value of the new constant is x0.  The
final answer for the position as a function of time
is thus given by

  x ( t ) = F 
2 m 

t 2   + v 0 t + x 0   .

This formula allows us to find the position at any
time, as long as we know the values of the initial

position and velocity.  The reason we have to
know two quantities is because Newton's law
gives rise to a second-order differential equation.
That is, the highest derivative which appears is
the second derivative.

Let's try to picture such a motion physically. We
will do this by considering some special cases.  

Special case: zero initial velocity, positive force

Suppose the body is initially at rest at x
0
=0, and

the force acts in the positive x direction.  Then
we know what will happen - the body will just
speed up in the direction of the force.  The
position as a function of time is given by

x ( t )   =   F 
2 m 

t 2  .

This is (one half of) a parabola pointing upwards:
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The slope at t=0 is zero, corresponding to zero
initial velocity.

Special case: positive v
0
, negative force

Suppose now that the initial velocity is positive,
but the force is negative.  That means that the
body will slow down, eventually stop, and then
speed up in the opposite direction.  Since the
force is constant, the body continues to speed up
indefinitely (until Newtonian mechanics itself
breaks down - a topic for later discussion).

Here is a plot of x(t) in the case just described:
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Because we have the solution for x(t), we may
answer virtually any question we like about the
properties of the motion.  For example, suppose
we want to know the maximum value of x
reached by the body, and at what time it is
reached.  This may be handled by standard

methods of calculus, but we will instead do it
here using the methods of analytic geometry. We
complete the square in the solution for x(t):

  x ( t ) = F 
2 m 

ä 

ã 
å å å 
å 
t   + 

mv0 

F 

ë 

í 
ì ì ì 
ì 
2 

+ x 0 − 
mv0 

2 

2 F 

This makes it clear that the path in the t-x plane is
a parabola.  The parabola opens downward in our
case, because the factor F/2m is negative.  The
maximum value of x occurs when the first term is
zero, i.e. when

t = − 
mv0 

F 
  ,

which is positive).  The maximum value of x is

x 
max

  =   x 0 − 
mv 2 

0 

2 F 
  ,

which is greater than x
0
.  

Here’s a MAPLE input line which solves the
present differential equation symbolically: 

soln:=op(2,dsolve({m*diff(x(t),t$2)=F,
x(0)=x[0],D(x)(0)=v[0]},x(t)));

The next line plots a solution:

plot(subs({m=1,F=-1,x[0]=1,v[0]=1},
soln),t=0..3,0..2);

(Here’s how to copy these lines from the present



document and paste them into MAPLE.) You can
easily change the values of the parameters before
executing the input.  If you wish, you can also
plot the velocity by changing s o l n  to
diff(soln,t) in the above line.

Application:  vertical motion near earth

A very important physical situation to which the
above applies directly is the case of a body
moving vertically near the surface of the earth.  

Although we will not study the gravitational
interaction until later, you may be familiar with
the relevant fact:  

near the surface of the earth, all bodies (whatever
their inertial mass) have an acceleration of
approximately 9.81 m s–2 in the downward
direction.  

This is true as long as the effects of air resistance
are negligible.  This value is given a special
symbol, g, and is called the

gravitational acceleration at earth’s surface:

g ≈ 9.81 m  s–2 .

Let's orient our coordinates vertically, with
positive values pointing upwards.  Then the force
due to gravity is

F = − mg

The minus sign indicates that the force is directed
downwards.  (If we had oriented the coordinates
with positive values pointing downwards, the
minus sign would not be present in the equation
for F.)

   

3
   

2
   

1
   

0
   

-1
   

-2
   

-3

   

 f 

This force is constant - does not depend on time,
position, or velocity.  We can therefore take over
the above formulas directly, with −mg substituted
for F .  In particular, we find that

• a body fired upwards with velocity v
0
 reaches a

maximum height of

  
v 2 

0 

2 g 
  



above its starting height, at time 

  
v 0 

g 
  

.

The path in the t-x plane is given by the parabola
shown two figures ago.  It is important to realize
that the path in space is a straight line, not a
parabola.  We are considering vertical motion
only , at present. (Later, when we come to
consider motion in more than one dimension, we
will find that a projectile can move on a parabolic
path in space.  That parabolic path is not the
same as the present one in the t-x plane - don't get
them confused!)

The resources for this section contain a movie
showing this vertical motion along with graphs of
position, velocity and acceleration.  For
comparison, there is also a movie showing the
same quantities for a body dropped from rest.

   

Resistive forces

In many physical cases, there is some resistance
to motion.  For example, a body could be sliding
along a track with friction present.  Or, a body
could be moving vertically near the earth, with
air resistance.

In many cases, the force resisting the motion is
proportional to the velocity of the body.
Mathematically, this is written

 F
res

  =   − bv 
  .

The quantity b is a positive constant, whose value
depends on the properties of the material
providing the resistance.  It is not a fundamental
constant of nature. The minus sign indicates that
the force resists the motion, so is directed
opposite to the velocity. 

We would like to illustrate the procedure of
solving Newton’s law when such a force is
involved.  We will suppose that the total force on
the body is the sum of the constant force F that
we have just been considering, and the resistive
force

 
F res:

F 
net

  =   F + F 
res

  .

It is always a good idea to use physical intuition
to get an idea of the nature of the solution, before
beginning the mathematics. In the present case, it
is easy to see one aspect of the solution.  As time
goes on, the external constant force will just
balance the resistive force, giving zero net force.
The body will then move with a constant velocity
called the terminal velocity v

t
.
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The above figure shows the equal and opposite
forces in red.  The net force is

F 
net

  =   F   − bv
t 
=   0  ,

which gives for the terminal velocity

v 
t 
= F 

b 
 .

Let’s solve the equation of motion and see how
this is reflected in the solution. Newton's law
reads

m 
dv( t ) 
dt

=   F   − bv( t ) ,

which we have written entirely in terms of the
velocity v(t) and its first derivative.

How to solve this?  Well, if F were zero, we
would have dv/dt=–(b/m)v, which has its solution
some constant times exp(-bt/m).  By inspection,
we find that we can account for nonzero F by
simply adding a constant, F/b.  That is,

v ( t )   = F 
b 

  +  constant  H   exp
ä 

ã 
å å å − b 

m 
t 
ë 

í 
ì ì ì  .

The value of the constant must be related to the

value of v  at some particular time.  For
convenience, let’s say that at t =0 the value of v is
v

0
.  Then the constant is v

0
–F/b. The velocity is

thus given by

 v( t )   = F 
b 

+ ä 
ã 
å å å v 0 − F 

b 
ë 

í 
ì ì ì  exp

ä 

ã 
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m 
t 
ë 

í 
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 .

As t becomes large, the second term vanishes and
v(t) approaches F/b, as we know it should.
Notice that the second term never actually
becomes zero at any finite time - it just gets
closer and closer.

Let's now see how the introduction of the
resistive force changes the results we found

earlier in the case where the initial velocity is
positive and the force is negative.  

1)  At what time t
max

 does the position reach its
maximum value?  The answer is the time at
which the velocity is zero.  Solving, we find that
this is given by

t max=   m 
b 

 ln 
ä 

ã 
å å å 
å 
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bv0 

F 

ë 

í 
ì ì ì 
ì 
 .

It is positive because bv0 / F  is negative.  

2)  What is the maximum value x
max

 of the
position?  To answer this, we need to solve for



x(t).  We integrate our expression for v(t) once,
obtaining

x ( t )   = F 
b 

t − m 
b 

ä 

ã 
å å å v 0 − F 

b 
ë 

í 
ì ì ì  exp
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ã 
å å å − b 

m 
t 
ë 

í 
ì ì ì +  constant .

Let’s say that x=x
0
 at t=0.  Substituting into the

above expression yields

 constant  =  x0   +   m 
b 

ä 

ã 
å å å v 0 − F 

b 
ë 

í 
ì ì ì  .

Hence, the full solution for x(t) is

 x( t )   =  x0 + F 
b 

t + m 
b 

ä 

ã 
å å å v 0 − F 

b 
ë 

í 
ì ì ì 
ä 

ã 
å å å 1 −  exp
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å å å − b 

m 
t 
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ë 

í 
ì ì ì   

 .

To answer our question, we substitute t
max

 into
our expression for x(t), obtaining

x 
max

=  x0   +   
mv0 

b 
  +   Fm

b 2  ln
ä 

ã 
å å å 
å 
1 − 

bv0 

F 

ë 

í 
ì ì ì 
ì 
.

Here is a plot of x(t) showing the effect of
resistance; a plot with the same initial conditions
but no resistance is shown in red for comparison.
We see that the curve with resistance deviates
noticeably from the ideal parabolic form.
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Here is a MAPLE input line which solves the
present differential equation symbolically:

soln:=op(2,dsolve({m*diff(x(t),t$2)=F-
b*diff(x(t),t),x(0)=x[0],D(x)(0)=v[0]},
x(t)));

The next line plots a solution:

plot(subs({m=1,F=-1,b=1,x[0]=0,v[0]=1},
soln),t=0..2);

(Here’s how to copy these lines from the present
document and paste them into MAPLE.) You can
easily change the values of the parameters before
executing. If you wish, you can also plot the
velocity by changing soln to diff(soln,t) in
the above line.

Checking our answers:

In the next section, we will consider a couple of
ways to check the answers we obtained in this



section.  In particular, we will see how to make
sure that the units are correct (dimensional
analysis), and also how to make sure that the
case of zero damping is recovered when we set
the damping to zero in the more general case.


