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Abstract: The weak equivalence principle (WEP) through the strong equivalence principle 

creates even in strongly curved spacetime some small regions of it for which geodesics of 

particles are not curved as the basis vector within such region are basically invariant and 

spacetime approximates to flat. We show that in such flat space inside a strongly curved 

space, the Einstein general relativity reduces to Newton’s second law of motion �� � ��� �.      
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Introduction 

 In 1687, Sir Isaac Newton published the laws of motion which equilibrates inertial 

force due to acceleration of mass with the external force causing the acceleration. The second 

law which is the point of emphasis of this research states that the rate of change of state of 

motion of a body is directly proportional to the impressed motive force and acts in the 

direction of such a force. In strong gravitational fields, bodies move through curved 

trajectories in traveling through regions of varying gravitational intensities (Kleiss, 2010). 

However, if in some locally inertial frame for which gravity intensity is roughly constant, the 

Riemannian manifold reduces to the Euclidean space and trajectories of particles become 

straight lines. This is the Newtonian limit of the Einstein’s general relativity. This deduction 

is in tune with the Einstein’s postulate of the strong equivalence principle. It states that, 

 At every point in an arbitrary gravitational field, it is possible to choose a locally 

inertial system, such that (with a sufficiently small region around that point), the laws of 

nature take some form as an unaccelerated Cartesian coordinate system (Asaf, 2013). The 

dimension of such locally inertial system should be inversely related to the curvature of 

spacetime. Therefore, the action of gravity is attributed to the curvature of spacetime. The 

constancy of acceleration of falling bodies due to Galileo occur in this local inertial frame 

(Stuckey, 1993). 
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Theory     

 Mathematical tools are used to describe motion in spaces tangent to the curved 

manifold. These tools serve as building blocks for describing motion through the entire 

manifold. In curved manifold we transform a Cartesian coordinate system to a curvilinear 

coordinate system (Sokolinkoff, 1951). The basis vector of curvilinear coordinates describe 

displacements in the direction of each of these coordinates. To obtain the geometry of 

spacetime will require information on how basis vectors change along the manifold 

(Bertschinger, 1999). The vector displacement through a tangent plane for a general 

curvilinear coordinate system with Einstein summation convention is given by: 

�� � 	��
�����������������������������������������������������������������
�� 
and  

�� � 	��
� �����������������������������������������������������������������
�� 
where �
� � �
� are contravariant components of the infitesimal displacements and 	� � 	� are 

the basis vectors (Riley, 2002). We use the inner product of equation (1) and equation (2) to 

define the line element such that  
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i.e.  
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where ��� � a covariant tensor of the second rank, is the fundamental or metric tensor which 

determines the geometry of spacetime. For a vector � � ��	�, the covariant derivative is  
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where ���� is the k-th component of the derivative. We are free to interchange dummy indices 

since their expansion will yield the same result.  
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���� �is a convariant derivative component in the direction of 	�. 
where ����  is the Christoffel’s symbols of the second kind. It is the i-th component of the 

vector  
 !"
 #$ that is 

��������������������������������� � %	�%�� � 	� � ���� 	����������������������������������������������������������������������������������������������
&� 
Therefore.       
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 #$ � 	� � ���� 	�� 	� � ����  

To calculate the derivative of a vector along a curve '
(� where t is a parameter, we consider 

the derivative of the vector�� along the curve. For a coordinate system )�� * � �����, the 

vector is written as  

+ � , ��	�-�./   which by Einstein’s convention becomes,  
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Again, we swap dummy indices i, j to get that  

��
�( �

���
�( 	� � ���� �� ��

�
�( 	� 

��������������������������������������������������������������( � �����( � ������ ��
�

�( � 	�����������������������������������������������������
0� 
Equation (6) is the absolute derivative of the contravariant component �� along the curve 

'
(�.  
where    ���� 1#"

12 � 134
12 � ������ 1#"
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We recall that a geodesic in a flat space is a straight line which has two basic defining 

properties: (i) invariant direction of its vector which is always tangent to the curve and (ii) the 

separation between two locations is an extremum. Using the former, we seek for the intrinsic 

derivative of the tangent vector  7 � 7�	� and set it equal to zero, where 7 � 1#4
12 . 
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then 
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Therefore, we substitute for 7�� 
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Equation (8) is the contravariant component of the intrinsic derivative of the tangent vector. It 

is the geodesic equation which for a parameter of time is the acceleration in curvilinear 

coordinates. Using this, we state the Newton’s second law in contravariant form which 

becomes 

�� � �? � ���� � � ���� �@��@ �� � :����������������������������
A� 
The Christoffels symbol here is connected to the metric tensor which defines the fundamental 

geometry of spacetime. Recall that  

��� � 	�� 	� 
Taking a cyclic permutation in i,j,k, we get that 
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i.e                                              
/
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 #$ C  
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�:� 
We contract both sides with �H� �to get the levi-chivita connection  

 �����H�����D � 5�H���D � ���H 
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Equation (10) is the Christoffels symbols of the first kind while the connection coefficient is 

equation (11). From equation (11), in flat space where the metric tensor is invariant, the 

Christoffels symbols vanish because the metric tensor is constant and its differential is zero. 

Equation (9) reduces to  

�� � �? � ��� � 
Conclusion  

The geodesic equation in the external spacetime of a compact body is curved in traversing 

regions of varying gravitational intensities. This results to the curvature of spacetime. At far 

distances from the compact body for which curvature flattens, spacetime becomes flat and the 

fundamental tensor becomes constant. The generalized Riemannian manifold reduces to 

Euclidean space. However, even with a strongly curved spacetime a small region may exist 

where the gravitational intensity is fairly constant. Here, the metric tensor should remain 

invariant and the geodesics again should reduce to straight lines. 

 We therefore accommodate that the straightness of a geodesic which is a defining 

property of flat space identified with zero curvature also hold even in strongly curved 

spacetime only if the dimension of observation is such that the gravitational intensity is 

roughly constant. Then Newton’s laws can be applied even inside a strongly curved 

spacetime.   
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