
 

 

Numerical Integration of Newton’s Second Law of 
Motion 
 
One of the biggest things we’ve done this semester is develop Newton’s Second Law of 
Motion: amF rr

= .  One of the reason’s this is important is operational: using Newton’s 
laws of motion, it becomes possible to determine the position of a given object at any 
time (given it’s position and velocity at some initial time).  (A more trivial reason for the 
importance is that Newton’s mechanics denies the existence of free will – but I 
digress…).  Some of the earlier successes of Newton’s mechanics were descriptions of 
the planetary motion that people had observed for centuries before.  Other more mundane 
applications are motion of projectiles and other objects here on Earth.  It is the purpose of 
this lab to develop the means to analyze the projectile motion of an object subject to a 
drag force that varies as the square of the velocity (as well as the force of gravity, of 
course), and to explore the behavior of such an object. 

Theoretical analysis 
First, consider the task of finding position as a function of time.  Newton’s Second tells 
us that: 
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That is, we can find position as a function of time if we know the forces involved and can 
solve a differential equation (an equation with derivatives all in it).  Notice that the force 
might depend on position and time (and even velocity, the rate of change of position).  In 
this case, the problem graduates from being merely Hard to being Really Hard.  Because 
in order to write down the force you need to know the position and velocity – but to get 
the position and velocity, I need to write down the force and solve the derivatives!  
Catch-22.  Remember that the concept of “energy” was invented to get around some of 
this.  In other cases, it is possible to separate the various dependences (for example, if the 
drag force depends only upon the velocity to the first power – called “Stokes’ drag” – it is 
possible to separate the variables and solve the problem).  But the number of problems 
you can solve in this way is actually pretty small (it was, to a certain extent, lucky for 
Newton that the important problems were problems it is possible to solve).  In the vast 
majority of cases, it is necessary to solve this problem numerically.  We discuss what 
“numerically” means below, but in short it involves doing LOTS and LOTS of simple 
calculations.  It is possible to do this by hand, but it only became common with the 
advent of computers (and particularly computers that can do lots of calculations really 
fast).  So how does that help? 
Imagine that I know the position – r(tn) – and velocity – v(tn) – of an object at one 
particular instant of time, tn.  (Never mind how – we’ll get to that in a moment). 
Newton’s Second tells me that: 
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So we see how to find the velocity at some instant later: 
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And the position can be found simply from: 
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Hopefully, these equations will look familiar: they are the equations we developed for the 
special case of constant acceleration.  And that is effectively what we are doing: 
assuming that the acceleration does not change.  This is exactly true for an infinitely short 
time period, and is APPROXIMATELY true for a pretty short time period.  Most of the 
hard work in numerical calculations of the type we’re undertaking is figuring out when 
the time periods are short enough to give you an approximate answer close enough to the 
right answer. 
Note that all the equations given so far are vector equations.  That means that they are 
really three equations in one (one for each dimension – x, y, and z).  For the problems we 
will consider, the problems are actually two dimensional (the projectile objects will stay 
in the plane containing their initial velocity – we will not prove that here, but you 
SHOULD).  So our problems will really be 2 dimensional, which makes life easier.  The 
two equations of motion can be developed in the following way.  The acceleration is 
obtained from the force in each direction: 
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The velocity and position as indicated above: 
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The last step is to realize that if we have the initial values (position and velocity at t=0) 
we can then step through time and generate the entire trajectory of the particle. 

Example: Simple projectile motion 
A simple case is that of a projectile subject only to gravity (meaning ax = 0, ay = 
-9.8 m/s2).  Note that this is a problem we don’t need to calculate numerically.  We 
discuss it here in order to clarify the method and to allow us to assess its accuracy.  We 
want to calculate the trajectory of a particle for a given initial conditions.  We start the 
projectile at the origin (x=0, y=0), with an initial speed of 10 m/s at an initial angle of 30 
degrees (meaning vx(0) = 8.66 m/s, vy(0) = 5 m/s).  We choose a time step of 0.1 second.  
Then at the next time step (t=0.1 s), vx(0.1) = 8.66 m/s and vy(0.1) = 5m/s-9.8 m/s2 (0.1s) 



 

 

= 4.02 m/s.  The position is x(0.1) = 0 m + 8.66 m/s (0.1 s) = 0.866 m and y(0.1) = 0 m + 
(5 m/s)(0.1s) + ½ (-9.8 m/s2)(0.1 s)2 = 0.451 m.  Knowing the values for t=0.1 s allows us 
to calculate the position at t=0.2 sec: vx(0.2) = 8.66 m/s and vy(0.2) = 4.02 m/s-9.8 m/s2 
(0.1s) = 3.04 m/s.  The position is x(0.2) = 0.866 m + 8.66 m/s (0.1 s) = 1.732 m and 
y(0.2) = 0.451 m + (4.02 m/s)(0.1s) + ½ (-9.8 m/s2)(0.1 s)2 = 0.804 m.   
This is already tedious and there are still about 10 more iterations to go – that’s why 
people do this with computers rather than by hand (with a calculator).  But if we carry 
this out, we get a table of values that looks like: 
time(sec) x position y position vx vy ax ay 

0.00 0.00 0.00 8.66 5.00 0.00 -9.80
0.10 0.87 0.40 8.66 4.02 0.00 -9.80
0.20 1.73 0.71 8.66 3.04 0.00 -9.80
0.30 2.60 0.91 8.66 2.06 0.00 -9.80
0.40 3.46 1.02 8.66 1.08 0.00 -9.80
0.50 4.33 1.03 8.66 0.10 0.00 -9.80
0.60 5.20 0.94 8.66 -0.88 0.00 -9.80
0.70 6.06 0.76 8.66 -1.86 0.00 -9.80
0.80 6.93 0.47 8.66 -2.84 0.00 -9.80
0.90 7.79 0.09 8.66 -3.82 0.00 -9.80
1.00 8.66 -0.39 8.66 -4.80 0.00 -9.80
1.10 9.53 -0.97 8.66 -5.78 0.00 -9.80

I stopped here because the y-position is becoming negative (meaning that the object as 
already hit the floor).  And we can look at the results and determine that the range is 
between 7.8 m and 8.6 m (probably closer to 7.8 m), the maximum height is about 
1.03 m, the time to the maximum height is between 0.4 sec and 0.5 sec (probably about 
0.45 sec), and the time back to the ground is between 0.9 sec and 1.0 sec (probably closer 
to 0.9 sec).  And we can check these results because we know how to calculate all these 
quantities for simple projectile motion: R = (v0

2/g) sin 2Θ = 8.837 m, yMAX = 
(v0 sin Θ)2/2g = 1.276 m, time for yMAX is t=(v0 sin Θ)/g = 0.510 sec and time for R is 
t=(2v0 sin Θ)/g = 1.020 sec.   
Notice that all the results from the numerical calculation are close (but no cigar).  And 
they are all a little too small.  This is because our approximation (that acceleration is 
constant) fails, at least a little.  For example, we calculate the position at the end of 0.5 
second as x = 4.33 m and y = 1.03 m.  But an exact calculation gives a result of x = 
4.33 m and y = 1.275 m.  It’s complicated to explain, but there are two reasons our 
numerical results are different from analytical results: our time steps are too big and our 
method of calculating the position is too simple-minded.  There is an entire branch of 
math and physics devoted just to the study of more intelligent ways to solve differential 
equations.  But fortunately for us, we don’t have to work smarter, we can make the 
computer work harder.  If we do the same calculation as described above, but using steps 
of 0.01 sec, we get: R = 8.747 m, yMAX = 1.2505 m, time for yMAX is t= 0.51 sec and time 
for R is t= 1.01 sec.  Note that the results are much closer this go round (and we can get 
closer still by shortening the step size more).  You can find the spreadsheet (in Excel 
format) that I used in these calculations and screw around with it some.  For example, 
you could calculate R while varying the angle, plot R versus Θ and conclude that the 
maximum range is for Θ = 45º.  (With some effort you might even be able to figure out 



 

 

that R~sin(2 Θ), but it’s harder than with the analytical technique).  But the REAL point 
of this lab is to do something you CAN’T do analytically: a projectile undergoing 
quadratic drag. 

Projectile with Quadratic Drag 
A real object flying through the air feels a drag force that depends on the speed of the 
object. For “low” speeds, that force is linear in the speed (i.e., F~v), while for “high” 
speeds, the force is quadratic (i.e., F~v2).  For a baseball, for example, “low” speeds are 
speeds much, much less than about 1 mm/sec (that’s millimeters…).  High speeds are 
much, much greater that 1 mm/sec.  So a fastball is DEFINITELY in the quadratic 
regime.  (Aside: This depends only on the SIZE of the object, so a cannon ball is the 
same as a baseball for these purposes – anybody who wants to know how this is 
calculated should sing out). 
Unfortunately for us, it is possible to solve the problem of linear drag analytically (and 
also quadratic drag in one dimension – we did this in class), but NOT quadratic drag in 
two dimensions.  So we’ll do it numerically.  Your task is to implement the solution in 
whatever calculating program you want (including Fortran, if that’s your bag).  I’ll sketch 
out the solution here. 
First, the forces are: 
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Note that I’ve defined down as negative (right?) and the drag force points in a direction 
opposite the velocity (right?).  There’s no explicit time dependence (good!) and the only 
space dependence is trivial.  The acceleration in each direction is then: 

( )

( ) θρ

θρ

sin
2

cos
2

2

2

m
Avgta

m
Avta

nY

nX

−−=

−=
     (8) 

But note that we must be VERY CAREFUL that the directions are correct – we have 
written the drag force along y as negative, but this is only true if the object is going up.  
On the way down, the drag force is actually UP (against the velocity).  If we write the trig 
functions as cosΘ = vX/v and sinΘ = vY/v, then the problem will take care of itself (you 
should prove this): 
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The velocity and position are then calculated in precisely the same way as we did for 
constant acceleration.  But note that now we don’t have the benefit of knowing the 
answer to compare to our calculation.  So how do we know our answer is right?  We 
don’t.  All we can do is work hard and try to be careful and hope and if possible, compare 
our answer to some experiment. (That’s why theoretical physicists are always desperate 
for experimental data to compare to their calculations – if not, they’re really 
mathematicians).  Here’s a graph of the results I had for the following conditions: 



 

 

gravity plus quadratic air drag  mass= 0.145
v0 = 45  radius= 0.03
theta0= 75  air density 1.2
k= 0.011701    
(the k thing is just the constant parts of the drag force (A/2m) to make the calculation 
slightly easier to code) The graph looks like: 
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The blue line is the trajectory for the object with air drag and the pink line (excuse me – 
magenta) is without air drag. 

Conclusion 
The tough part is getting the calculations to work.  Once it does, if gets kind of fun (if 
your mind works that way) because you can then start playing – for example, try varying 
the radius without varying the mass (you’ll see why you can throw a baseball much 
farther than a beach ball, even though they weigh about the same).  Also, you can vary 
the angle without changing anything else – you’ll see that with air drag, the maximum 
range does NOT occur at a launch angle of 45º.  (For the conditions I show you above, 
the maximum range occurs for a launch angle of 38º).  You could even construct a plot of 
the range as a function of launch angle (that would be a good idea for a report).  You 
should discuss in a report (if you do one) why defining the sin and cosine the way we did 
is correct and gives the right direction for the acceleration. 
Finally, suppose some nitwit in New Orleans decides it would be a great idea to fire off 
his pistol in the air on New Years Eve.  How high would it go?  How fast would it be 
going when it landed?  How far would it go to the side (if he shoots in the Marigny, will 
he kill somebody in the Quarter?  How about Uptown?)? 
Finally (really this time), if you drop a penny of the Empire State Building, would it be 
going fast enough to kill somebody if it hit them?  How about if you spit? 
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